Abstract
Background: Liposomes are mostly known to be prepared from phospholipids and lipids and have a remarkable capacity to encapsulate both lipophobic and lipophilic molecules. However, there is little research on developing fatty acid liposomes for chemotherapy.
Objective: We have successfully prepared mixed fatty acid liposomes from two monounsaturated fatty acids, namely oleic acid and erucic acid, which stabilised by DOPEPEG2000. The Critical Vesicular Concentration (CVC) of liposomes was found to be within 0.09 to 0.21 mmol dm-3, with an average particle size of 400 nm.
Methods: Encapsulation of various anticancer drugs such as folinic acid, methotrexate, doxorubicin, or irinotecan resulted in Encapsulation Efficiency (%EE) of up to 90%. Using a 3-(4, 5-dimethylthiazol-2- yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the median Inhibitory Concentration (IC50) values of mixed oleic acid-erucic acid encapsulating hydrophilic drugs was remarkably reduced at the end of 24 hours of incubation with the human lung carcinoma cell line A549.
Results: The results suggest that mixed oleic acid-erucic acid liposomes are a potential new approach to further develop as an alternative vehicle of various drugs for cancer treatment.
Keywords: Liposomes, oleic acid, erucic acid, fatty acid, anticancer drugs, solubility.
Graphical Abstract
[http://dx.doi.org/10.1016/j.plipres.2004.12.001] [PMID: 15748655]
(b) Mura, S.; Bui, D.T.; Couvreur, P.; Nicolas, J. Lipid prodrug nanocarriers in cancer therapy. J. Control. Release, 2015, 208, 25-41.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.021] [PMID: 25617724]
(c) Pratt, W.B. The anticancer drugs; Oxford University Press: United Kingdom, 1994.
(d) Giri, T.K. Breaking the barrier of cancer through liposome loaded with phytochemicals. Curr. Drug Deliv., 2019, 16(1), 3-17.
[http://dx.doi.org/10.2174/1567201815666180918112139] [PMID: 30227818]
[http://dx.doi.org/10.1016/j.cbi.2015.11.022] [PMID: 26620693]
(b) Woo, J.O.; Misran, M.; Lee, P.F.; Tan, L.P. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. Scientific World J., 2014, 2014, 205703
[http://dx.doi.org/10.1155/2014/205703] [PMID: 24578624]
(b) Yew, H-C.; Misran, M.B. Nonionic mixed surfactant stabilized water-in-oil microemulsions for active ingredient in vitro sustained release. J. Surfactants Deterg., 2016, 19(1), 49-56.
[http://dx.doi.org/10.1007/s11743-015-1753-z]
[http://dx.doi.org/10.1039/9781782622536]
[PMID: 20524422]
(b) Eloy, J.O.; Claro de Souza, M.; Petrilli, R.; Barcellos, J.P.A.; Lee, R.J.; Marchetti, J.M. Liposomes as carriers of hydrophilic small molecule drugs: strategies to enhance encapsulation and delivery. Colloids Surf. B Biointerfaces, 2014, 123, 345-363.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.029] [PMID: 25280609]
(c) Gulati, M.; Grover, M.; Singh, S.; Singh, M. Lipophilic drug derivatives in liposomes. Int. J. Pharm., 1998, 165(2), 129-168.
[http://dx.doi.org/10.1016/S0378-5173(98)00006-4]
(d) Hsu, W-H.; Liu, S-Y.; Chang, Y-J.; Chang, C-H.; Ting, G.; Lee, T-W. The PEGylated liposomal doxorubicin improves the delivery and therapeutic efficiency of 188Re-Liposome by modulating phagocytosis in C26 murine colon carcinoma tumor model. Nucl. Med. Biol., 2014, 41(9), 765-771.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.05.142] [PMID: 25027866]
(e) Teo, Y.Y.; Misran, M.; Low, K.H.; Zain, S.M. Effect of unsaturation on the stability of C18polyunsaturated fatty acids vesicles suspension in aqueous solution. Bull. Korean Chem. Soc., 2011, 32(1), 59-64.
[http://dx.doi.org/10.5012/bkcs.2011.32.1.59]
(f) Mahmoudi, A.; Oskuee, R.K.; Ramezani, M.; Malaekeh-Nikoue, B. Preparation and in-vitro transfection efficiency evaluation of modified cationic liposome-polyethyleneimine-plasmid nanocomplexes as a novel gene carrier. Curr. Drug Deliv., 2014, 11(5), 636-642.
[http://dx.doi.org/10.2174/1567201811666140616160237] [PMID: 24934225]
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
(b) Chia, S.W.; Misran, M. Flow Behavior of oleic acid liposomes in sucrose ester glycolipid oil-in-water emulsions. J. Surfactants Deterg., 2013, 17(1), 1-10.
[http://dx.doi.org/10.1007/s11743-013-1471-3]
(c) Tan, H.W.; Misran, M. Polysaccharide-anchored fatty acid liposome. Int. J. Pharm., 2013, 441(1-2), 414-423.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.013] [PMID: 23174410]
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.001] [PMID: 27725161]
[http://dx.doi.org/10.1201/9781420006902]
[http://dx.doi.org/10.1016/j.cocis.2014.08.005]
[http://dx.doi.org/10.1038/243232a0] [PMID: 4706295]
(b) Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Colloid Interface Sci., 2007, 12(2), 75-80.
[http://dx.doi.org/10.1016/j.cocis.2007.05.005]
[http://dx.doi.org/10.1016/j.foodchem.2014.09.164] [PMID: 25465991]
[http://dx.doi.org/10.1016/j.jconrel.2015.04.003] [PMID: 25861728]
[http://dx.doi.org/10.1529/biophysj.104.039875] [PMID: 15298905]
[http://dx.doi.org/10.1016/j.chemphyslip.2017.12.007] [PMID: 29305156]
(b) Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wong, T.W.; Roy, P. Quercetin-decorated curcumin liposome design for cancer therapy: in-vitro and in-vivo studies. Curr. Drug Deliv., 2017, 14(8), 1053-1059.
[http://dx.doi.org/10.2174/1567201813666160829100453] [PMID: 27572089]
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.086]
(b) Zhai, L.; Zhang, J.; Shi, Q.; Chen, W.; Zhao, M. Transition from micelle to vesicle in aqueous mixtures of anionic/zwitterionic surfactants studied by fluorescence, conductivity, and turbidity methods. J. Colloid Interface Sci., 2005, 284(2), 698-703.
[http://dx.doi.org/10.1016/j.jcis.2004.10.026] [PMID: 15780313]
[http://dx.doi.org/10.1016/j.chemphyslip.2017.04.003] [PMID: 28412173]
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.019] [PMID: 23262429]
(b) Koliqi, R.; Dimchevska, S.; Geskovski, N.; Petruševski, G.; Chacorovska, M.; Pejova, B.; Hristov, D.R.; Ugarkovic, S.; Goracinova, K. D.; Ugarkovic, S.; Goracinova, K. PEO-PPO-PEO/Poly (DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38: design, optimization and nano-bio interface interactions. Curr. Drug Deliv., 2016, 13(3), 339-352.
[http://dx.doi.org/10.2174/1567201813666151130221806] [PMID: 26728136]
(c) Azzi, J.; Auezova, L.; Danjou, P-E.; Fourmentin, S.; Greige-Gerges, H. First evaluation of drug-in-cyclodextrin-in-liposomes as an encapsulating system for nerolidol. Food Chem., 2018, 255, 399-404.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.055] [PMID: 29571492]
[http://dx.doi.org/10.1016/j.ecoenv.2015.09.006] [PMID: 26410194]
(b) Sun, L.; Zhou, D-S.; Zhang, P.; Li, Q-H.; Liu, P. Gemcitabine and γ-cyclodextrin/docetaxel inclusion complex-loaded liposome for highly effective combinational therapy of osteosarcoma. Int. J. Pharm., 2015, 478(1), 308-317.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.052] [PMID: 25433201]
[http://dx.doi.org/10.1006/jcis.2001.8009] [PMID: 12505514]
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.049] [PMID: 22850293]
[http://dx.doi.org/10.1007/BF02635002]
[PMID: 23378759]
(b) Kuntsche, J.; Horst, J.C.; Bunjes, H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm., 2011, 417(1-2), 120-137.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.001] [PMID: 21310225]
(c) Banerjee, K.; Banerjee, S.; Mandal, M. Enhanced chemotherapeutic efficacy of apigenin liposomes in colorectal cancer based on flavone-membrane interactions. J. Colloid Interface Sci., 2017, 491, 98-110.
[http://dx.doi.org/10.1016/j.jcis.2016.12.025] [PMID: 28012918]
[http://dx.doi.org/10.1007/s11743-016-1914-8]
[http://dx.doi.org/10.1016/j.bpc.2007.09.011] [PMID: 17950520]
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.038] [PMID: 26590900]
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
(b) Jain, A.; Jain, S.K. In vitro release kinetics model fitting of liposomes: an insight. Chem. Phys. Lipids, 2016, 201, 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005] [PMID: 27983957]
[http://dx.doi.org/10.1016/j.ejps.2006.07.004] [PMID: 16952451]
[http://dx.doi.org/10.1385/1592596878]
(b) Langdon, S.P. Cancer cell culture: methods and protocols; Humana Press Inc.: New Jersey,, 2004.