Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Application of Nanomaterials in the Treatment and Diagnosis of Ophthalmology Diseases

Author(s): Nanxin Liu , Qingqing Wu, Yunfei Liu, Jiao Li, Ping Ji* and Gang Fu*

Volume 16, Issue 1, 2021

Published on: 10 February, 2020

Page: [95 - 103] Pages: 9

DOI: 10.2174/1574888X15666200210104449

Price: $65

Abstract

Eye diseases often lead to impaired vision and seriously affect the daily life of patients. Local administration of ophthalmic drugs is one of the most important approaches for the treatment of ophthalmic diseases. However, due to the special biochemical environment of the ocular tissue and the existence of many barriers, the bioavailability of conventional ophthalmic preparations in the eye is very low. Nanomaterials can be utilized as carriers of drugs, which can improve the absorption, distribution, metabolism and bioavailability of drugs in eyes. Nanomaterials have also the advantages of small size, simple preparation, good degradability, strong targeting, and little stimulation to biological tissues, providing an innovative and practical method for the drug delivery of ophthalmic diseases. In addition, nanomaterials can be used as an auxiliary means for early diagnosis of ophthalmic diseases by improving the specificity and accuracy of detection methods. Nanomaterials help clinicians and researchers delve deeper into the physiology and pathology of the eye at the nanoscale. We summarize the application of nanomaterials in the diagnosis and treatment of ophthalmic diseases in this review.

Keywords: Nanomaterials, drug-delivery, ophthalmology diseases, administration, bioavailability, auxiliary.

[1]
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol 2012; 96(5): 614-8.
[http://dx.doi.org/10.1136/bjophthalmol-2011-300539] [PMID: 22133988]
[2]
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res 2015; 49: 17-45.
[http://dx.doi.org/10.1016/j.preteyeres.2015.07.002] [PMID: 26197361]
[3]
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B 2017; 7(3): 281-91.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[4]
Cunha-Vaz JG. The blood-ocular barriers: Past, present, and future. Doc Ophthalmol 1997; 93(1-2): 149-57.
[http://dx.doi.org/10.1007/BF02569055] [PMID: 9476613]
[5]
Occhiutto ML, Freitas FR, Maranhao RC, Costa VP. Breakdown of the blood-ocular barrier as a strategy for the systemic use of nanosystems. Pharmaceutics 2012; 4(2): 252-75.
[http://dx.doi.org/10.3390/pharmaceutics4020252] [PMID: 24300231]
[6]
Weijtens O, Schoemaker RC, Romijn FP, Cohen AF, Lentjes EG, van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology 2002; 109(10): 1887-91.
[http://dx.doi.org/10.1016/S0161-6420(02)01176-4] [PMID: 12359610]
[7]
Ward AH, Siegwart JT Jr, Frost MR, Norton TT. The effect of intravitreal injection of vehicle solutions on form deprivation myopia in tree shrews. Exp Eye Res 2016; 145: 289-96.
[http://dx.doi.org/10.1016/j.exer.2016.01.015] [PMID: 26836248]
[8]
Rivers HM, Ray Chaudhuri S, Shah JC, Mittal S. A new vision for the eye: Unmet ocular drug delivery needs. Pharm Res 2015; 32(9): 2814-23.
[http://dx.doi.org/10.1007/s11095-015-1717-z] [PMID: 26055402]
[9]
Patel S, Garapati C, Chowdhury P, et al. Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application. J Ocul Pharmacol Ther 2015; 31(4): 215-27.
[http://dx.doi.org/10.1089/jop.2014.0152] [PMID: 25839185]
[10]
Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y. Drug delivery from ocular implants. Expert Opin Drug Deliv 2006; 3(2): 261-73.
[http://dx.doi.org/10.1517/17425247.3.2.261] [PMID: 16506952]
[11]
Garg SJ, Recchia FM. Re: Evolving guidelines for intravitreous injections. Retina 2005; 25(7): 949-50.
[http://dx.doi.org/10.1097/00006982-200510000-00027] [PMID: 16205582]
[12]
Aiello LP, Brucker AJ, Chang S, et al. Evolving guidelines for intravitreous injections. Retina 2004; 24(5)(Suppl.): S3-S19.
[http://dx.doi.org/10.1097/00006982-200410001-00002] [PMID: 15483476]
[13]
Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006; 3(2): 275-87.
[http://dx.doi.org/10.1517/17425247.3.2.275] [PMID: 16506953]
[14]
Leary J F. .Nanotechnology: What is it and why is small so big? Canadian journal of ophthalmology. Journal canadien d'ophtalmologie 2010; 45(5): 449-56..
[http://dx.doi.org/10.3129/i10-089]
[15]
Wang X, Wang S, Zhang Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv 2016; 23(8): 2897-901.
[http://dx.doi.org/10.3109/10717544.2015.1116025] [PMID: 26635087]
[16]
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019.
[PMID: 31808476]
[17]
Sahle FF, Kim S, Niloy KK, et al. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148: 290-307.
[http://dx.doi.org/10.1016/j.addr.2019.10.006] [PMID: 31707052]
[18]
Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: An important but neglected issue. Adv Sci (Weinh) 2019; 6(16)1802289
[http://dx.doi.org/10.1002/advs.201802289] [PMID: 31453052]
[19]
Da Silva GR, Lima TH, Fernandes-Cunha GM, et al. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm 2019; 142: 20-30.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.010] [PMID: 31129274]
[20]
Ibrahim MM, Jablonski MM. The impact of R-801 nanoparticles as a long acting topical glaucoma therapy. J Biomed Nanotechnol 2019; 15(9): 1968-81.
[http://dx.doi.org/10.1166/jbn.2019.2817] [PMID: 31387683]
[21]
Yang P, Dong Y, Huang D, et al. Silk fibroin nanoparticles for enhanced bio-macromolecule delivery to the retina. Pharm Dev Technol 2019; 24(5): 575-83.
[http://dx.doi.org/10.1080/10837450.2018.1545236] [PMID: 30457420]
[22]
Wang B, Tang Y, Oh Y, et al. Controlled release of dexamethasone sodium phosphate with biodegradable nanoparticles for preventing experimental corneal neovascularization. Nanomedicine (Lond) 2019; 17: 119-23.
[http://dx.doi.org/10.1016/j.nano.2019.01.001] [PMID: 30677499]
[23]
LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003; 21(10): 1184-91.
[http://dx.doi.org/10.1038/nbt876] [PMID: 14520404]
[24]
Kamaleddin MA. Nano-ophthalmology: Applications and considerations. Nanomedicine (Lond) 2017; 13(4): 1459-72.
[http://dx.doi.org/10.1016/j.nano.2017.02.007] [PMID: 28232288]
[25]
Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv Ophthalmol 2005; 50(2): 167-82.
[http://dx.doi.org/10.1016/j.survophthal.2004.12.006] [PMID: 15749307]
[26]
Bochot A, Fattal E, Boutet V, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 2002; 43(1): 253-9.
[PMID: 11773039]
[27]
Fattal E, Bochot A. Ocular delivery of nucleic acids: Antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 2006; 58(11): 1203-23.
[http://dx.doi.org/10.1016/j.addr.2006.07.020] [PMID: 17097190]
[28]
Xie Z, Su Y, Kim GB, et al. Immune cell-mediated biodegradable theranostic nanoparticles for melanoma targeting and drug delivery. Small 2017; 13(10)
[http://dx.doi.org/10.1002/smll.201603121] [PMID: 28026115]
[29]
Berton M, Benimetskaya L, Allémann E, Stein CA, Gurny R. Uptake of oligonucleotide-loaded nanoparticles in prostatic cancer cells and their intracellular localization. Eur J Pharm Biopharm 1999; 47(2): 119-23.
[http://dx.doi.org/10.1016/S0939-6411(98)00064-2] [PMID: 10234535]
[30]
Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002; 16(10): 1217-26.
[http://dx.doi.org/10.1096/fj.02-0088com] [PMID: 12153989]
[31]
Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 2008; 68(3): 513-25.
[PMID: 17983737]
[32]
Fathalla ZM, Khaled KA, Hussein AK, Alany RG, Vangala A. Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles. Drug Dev Ind Pharm 2016; 42(4): 514-24.
[http://dx.doi.org/10.3109/03639045.2015.1081236] [PMID: 26407208]
[33]
Bhatta RS, Chandasana H, Chhonker YS, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. Int J Pharm 2012; 432(1-2): 105-12.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.060] [PMID: 22569234]
[34]
Zhang L, Li Y, Zhang C, Wang Y, Song C. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 2009; 4: 175-83.
[http://dx.doi.org/10.2147/IJN.S6428] [PMID: 19774116]
[35]
Gu B, Wang Y, Burgess DJ. In vitro and in vivo performance of dexamethasone loaded PLGA microspheres prepared using polymer blends. Int J Pharm 2015; 496(2): 534-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.056] [PMID: 26520407]
[36]
Bode C, Kranz H, Siepmann F, Siepmann J. In-situ forming PLGA implants for intraocular dexamethasone delivery. Int J Pharm 2018; 548(1): 337-48.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.013] [PMID: 29981408]
[37]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond) 2010; 6(2): 324-33.
[http://dx.doi.org/10.1016/j.nano.2009.10.004] [PMID: 19857606]
[38]
Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 2011; 19(6): 409-17.
[http://dx.doi.org/10.3109/1061186X.2010.504268] [PMID: 20678034]
[39]
Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 2004; 56(7): 827-40.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[40]
Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011; 149(2): 175-81.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.007] [PMID: 20946923]
[41]
Abrego G, Alvarado HL, Egea MA, Gonzalez-Mira E, Calpena AC, Garcia ML. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen. J Pharm Sci 2014; 103(10): 3153-64.
[http://dx.doi.org/10.1002/jps.24101] [PMID: 25091511]
[42]
Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm 2013; 81(2): 591-606.
[http://dx.doi.org/10.3797/scipharm.1204-16] [PMID: 23833723]
[43]
Khan MS, Vishakante GD, Bathool A. Development and characterization of pilocarpine loaded Eudragit nanosuspensions for ocular drug delivery. J Biomed Nanotechnol 2013; 9(1): 124-31.
[http://dx.doi.org/10.1166/jbn.2013.1475] [PMID: 23627075]
[44]
Mintzer MA, Dane EL, O’Toole GA, Grinstaff MW. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. Mol Pharm 2012; 9(3): 342-54.
[http://dx.doi.org/10.1021/mp2005033] [PMID: 22126461]
[45]
Cheng Y, Qu H, Ma M, et al. Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 2007; 42(7): 1032-8.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.035] [PMID: 17336426]
[46]
Yang X, Wang L, Li L, et al. A novel dendrimer-based complex co-modified with cyclic RGD hexapeptide and penetratin for noninvasive targeting and penetration of the ocular posterior segment. Drug Deliv 2019; 26(1): 989-1001.
[http://dx.doi.org/10.1080/10717544.2019.1667455] [PMID: 31571502]
[47]
Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 2005; 102(1): 23-38.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.015] [PMID: 15653131]
[48]
Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG. Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 2009; 378(1-2): 177-86.
[http://dx.doi.org/10.1016/j.ijpharm.2009.05.028] [PMID: 19465101]
[49]
Yu A, Shi H, Liu H, et al. Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int J Pharm 2019.575118943
[http://dx.doi.org/10.1016/j.ijpharm.2019.118943] [PMID: 31830575]
[50]
Elkadery AAS, Elsherif EA, Ezz Eldin HM, Fahmy IAF, Mohammad OS. Efficient therapeutic effect of Nigella sativa aqueous extract and chitosan nanoparticles against experimentally induced Acanthamoeba keratitis. Parasitol Res 2019; 118(8): 2443-54.
[http://dx.doi.org/10.1007/s00436-019-06359-x] [PMID: 31144032]
[51]
Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007; 340(1-2): 126-33.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.011] [PMID: 17600645]
[52]
Dahmana N, Mugnier T, Gabriel D, et al. Topical administration of spironolactone-loaded nanomicelles prevents glucocorticoid-induced delayed corneal wound healing in rabbits. Mol Pharm 2018; 15(3): 1192-202.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01028] [PMID: 29397733]
[53]
Di Iorio E, Barbaro V, Alvisi G, et al. New Frontiers of Corneal Gene Therapy. Hum Gene Ther 2019; 30(8): 923-45.
[http://dx.doi.org/10.1089/hum.2019.026] [PMID: 31020856]
[54]
Klausner EA, Peer D, Chapman RL, Multack RF, Andurkar SV. Corneal gene therapy. J Control Release 2007; 124(3): 107-33.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.041] [PMID: 17707107]
[55]
Mohan RR, Rodier JT, Sharma A. Corneal gene therapy: Basic science and translational perspective. Ocul Surf 2013; 11(3): 150-64.
[http://dx.doi.org/10.1016/j.jtos.2012.10.004] [PMID: 23838017]
[56]
Williams KA, Coster DJ. Gene therapy for diseases of the cornea - a review. Clin Exp Ophthalmol 2010; 38(2): 93-103.
[PMID: 19958372]
[57]
Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004; 303(5662): 1352-5.
[http://dx.doi.org/10.1126/science.1093783] [PMID: 14739465]
[58]
Aiello LP, Pierce EA, Foley ED, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 1995; 92(23): 10457-61.
[http://dx.doi.org/10.1073/pnas.92.23.10457] [PMID: 7479819]
[59]
Garrett KL, Shen WY, Rakoczy PE. In vivo use of oligonucleotides to inhibit choroidal neovascularisation in the eye. J Gene Med 2001; 3(4): 373-83.
[http://dx.doi.org/10.1002/jgm.197] [PMID: 11529667]
[60]
Ferrara N. Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl) 1999; 77(7): 527-43.
[http://dx.doi.org/10.1007/s001099900019] [PMID: 10494799]
[61]
Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: A potent inhibitor of angiogenesis. Science 1999; 285(5425): 245-8.
[http://dx.doi.org/10.1126/science.285.5425.245] [PMID: 10398599]
[62]
Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362(6423): 841-4.
[http://dx.doi.org/10.1038/362841a0] [PMID: 7683111]
[63]
O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88(2): 277-85.
[http://dx.doi.org/10.1016/S0092-8674(00)81848-6] [PMID: 9008168]
[64]
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. Mater Sci Eng C 2019.104109928
[http://dx.doi.org/10.1016/j.msec.2019.109928] [PMID: 31500065]
[65]
Qazi Y, Stagg B, Singh N, et al. Nanoparticle-mediated delivery of shRNA.VEGF-a plasmids regresses corneal neovascularization. Invest Ophthalmol Vis Sci 2012; 53(6): 2837-44.
[http://dx.doi.org/10.1167/iovs.11-9139] [PMID: 22467572]
[66]
Torrecilla J, Gómez-Aguado I, Vicente-Pascual M, Del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. MMP-9 downregulation with lipid nanoparticles for inhibiting corneal neovascularization by gene silencing. Nanomaterials (Basel) 2019; 9(4)E631
[http://dx.doi.org/10.3390/nano9040631] [PMID: 31003493]
[67]
Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci 2019; 221: 362-76.
[http://dx.doi.org/10.1016/j.lfs.2019.02.029] [PMID: 30797820]
[68]
Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004; 22(8): 977-84.
[http://dx.doi.org/10.1038/nbt995] [PMID: 15258595]
[69]
Yu-Wai-Man C, Tagalakis AD, Manunta MD, Hart SL, Khaw PT. Receptor-targeted liposome-peptide-siRNA nanoparticles represent an efficient delivery system for MRTF silencing in conjunctival fibrosis. Sci Rep 2016; 6: 21881.
[http://dx.doi.org/10.1038/srep21881] [PMID: 26905457]
[70]
Natarajan JV, Chattopadhyay S, Ang M, et al. Sustained release of an anti-glaucoma drug: demonstration of efficacy of a liposomal formulation in the rabbit eye. PLoS One 2011; 6(9)e24513
[http://dx.doi.org/10.1371/journal.pone.0024513] [PMID: 21931735]
[71]
Kouchak M, Malekahmadi M, Bavarsad N, Saki Malehi A, Andishmand L. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm 2018; 44(8): 1239-42.
[http://dx.doi.org/10.1080/03639045.2017.1386196] [PMID: 28956449]
[72]
Li J, Tian S, Tao Q, et al. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int J Nanomedicine 2018; 13: 3975-87.
[http://dx.doi.org/10.2147/IJN.S162306] [PMID: 30022821]
[73]
Kim SJ. Novel Approaches for Retinal Drug and Gene Delivery. Transl Vis Sci Technol 2014; 3(5): 7.
[http://dx.doi.org/10.1167/tvst.3.5.7] [PMID: 25346872]
[74]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine (Lond) 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[75]
Guo D, Li Q, Sun Y, et al. Evaluation of controlled-release triamcinolone acetonide-loaded mPEG-PLGA nanoparticles in treating experimental autoimmune uveitis. Nanotechnology 2019; 30(16)165702
[http://dx.doi.org/10.1088/1361-6528/aafe36] [PMID: 30641491]
[76]
Yu X, Zhang R, Lei L, Song Q, Li X. High drug payload nanoparticles formed from dexamethasone-peptide conjugates for the treatment of endotoxin-induced uveitis in rabbit. Int J Nanomedicine 2019; 14: 591-603.
[http://dx.doi.org/10.2147/IJN.S179118] [PMID: 30666116]
[77]
Farjo KM, Ma JX. The potential of nanomedicine therapies to treat neovascular disease in the retina. J Angiogenes Res 2010; 2: 21.
[http://dx.doi.org/10.1186/2040-2384-2-21] [PMID: 20932321]
[78]
Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today 2011; 16(5-6): 270-7.
[http://dx.doi.org/10.1016/j.drudis.2010.12.004] [PMID: 21167306]
[79]
Jo DH, Kim JH, Kim JH. How to overcome retinal neuropathy: the fight against angiogenesis-related blindness. Arch Pharm Res 2010; 33(10): 1557-65.
[http://dx.doi.org/10.1007/s12272-010-1007-6] [PMID: 21052933]
[80]
Kim H, Robinson SB, Csaky KG. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 2009; 26(2): 329-37.
[http://dx.doi.org/10.1007/s11095-008-9745-6] [PMID: 18958405]
[81]
Koo H, Moon H, Han H, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials 2012; 33(12): 3485-93.
[http://dx.doi.org/10.1016/j.biomaterials.2012.01.030] [PMID: 22322197]
[82]
Amrite AC, Edelhauser HF, Singh SR, Kompella UB. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration. Mol Vis 2008; 14: 150-60.
[PMID: 18334929]
[83]
Huu VA, Luo J, Zhu J, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release 2015; 200: 71-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.001] [PMID: 25571784]
[84]
Prow TW, Bhutto I, Kim SY, et al. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine (Lond) 2008; 4(4): 340-9.
[http://dx.doi.org/10.1016/j.nano.2008.06.003] [PMID: 18640079]
[85]
Raju HB, Hu Y, Vedula A, Dubovy SR, Goldberg JL. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One 2011; 6(5)e17452
[http://dx.doi.org/10.1371/journal.pone.0017452] [PMID: 21637340]
[86]
Cholkar K, Gunda S, Earla R, Pal D, Mitra AK. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech 2015; 16(3): 610-22.
[http://dx.doi.org/10.1208/s12249-014-0244-2] [PMID: 25425389]
[87]
Li Q, Lai KL, Chan PS, et al. Micellar delivery of dasatinib for the inhibition of pathologic cellular processes of the retinal pigment epithelium. Colloids Surf B Biointerfaces 2016; 140: 278-86.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.053] [PMID: 26764115]
[88]
Suen WL, Chau Y. Specific uptake of folate-decorated triamcinolone-encapsulating nanoparticles by retinal pigment epithelium cells enhances and prolongs antiangiogenic activity. J Control Release 2013; 167(1): 21-8.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.004] [PMID: 23313961]
[89]
Apaolaza PS, Del Pozo-Rodríguez A, Solinís MA, et al. Structural recovery of the retina in a retinoschisin-deficient mouse after gene replacement therapy by solid lipid nanoparticles. Biomaterials 2016; 90: 40-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.004] [PMID: 26986855]
[90]
Prow T, Grebe R, Merges C, et al. Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol Vis 2006; 12(67-69): 616-25.
[PMID: 16760898]
[91]
Zeng L, Ma W, Shi L, et al. Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy. Int J Nanomedicine 2019; 14: 6357-69.
[http://dx.doi.org/10.2147/IJN.S214727] [PMID: 31496691]
[92]
Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, et al. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A 2015; 103(10): 3148-56.
[http://dx.doi.org/10.1002/jbm.a.35446] [PMID: 25773970]
[93]
Sun JG, Jiang Q, Zhang XP, et al. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy. Int J Nanomedicine 2019; 14: 1489-501.
[http://dx.doi.org/10.2147/IJN.S195504] [PMID: 30880960]
[94]
Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 2014; 10(4): 1671-82.
[http://dx.doi.org/10.1016/j.actbio.2013.08.013] [PMID: 23958781]
[95]
Nibourg LM, Gelens E, Nibourg SA, et al. Effects of peptide ratios in nanofibre-based hydrogels for the prevention of capsular opacification. Acta Ophthalmol 2016; 94(7): 721-9.
[http://dx.doi.org/10.1111/aos.13047] [PMID: 27062370]
[96]
Lin YX, Hu XF, Zhao Y, et al. Photothermal ring integrated intraocular lens for high-efficient eye disease treatment. Adv Mater 2017; 29(34)
[http://dx.doi.org/10.1002/adma.201701617] [PMID: 28714205]
[97]
Yang MS, Hu YJ, Lin KC, Lin CC. Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms. Magn Reson Imaging 2002; 20(2): 173-9.
[http://dx.doi.org/10.1016/S0730-725X(02)00477-0] [PMID: 12034338]
[98]
Townsend KA, Wollstein G, Schuman JS. Clinical application of MRI in ophthalmology. NMR Biomed 2008; 21(9): 997-1002.
[http://dx.doi.org/10.1002/nbm.1247] [PMID: 18384176]
[99]
De Potter P, Shields CL, Shields JA, Flanders AE, Rao VM. Role of magnetic resonance imaging in the evaluation of the hydroxyapatite orbital implant. Ophthalmology 1992; 99(5): 824-30.
[http://dx.doi.org/10.1016/S0161-6420(92)31918-9] [PMID: 1375714]
[100]
Finger PT, Kurli M, Reddy S, Tena LB, Pavlick AC. Whole body PET/CT for initial staging of choroidal melanoma. Br J Ophthalmol 2005; 89(10): 1270-4.
[http://dx.doi.org/10.1136/bjo.2005.069823] [PMID: 16170114]
[101]
Kiyosawa M, Inoue C, Kawasaki T, et al. Functional neuroanatomy of visual object naming: A PET study. Graefes Arch Clin Exp Ophthalmol 1996; 234(2): 110-5.
[http://dx.doi.org/10.1007/BF00695250] [PMID: 8720681]
[102]
Zagaynova EV, Shirmanova MV, Kirillin MY, et al. Contrasting properties of gold nanoparticles for optical coherence tomography: Phantom, in vivo studies and Monte Carlo simulation. Phys Med Biol 2008; 53(18): 4995-5009.
[http://dx.doi.org/10.1088/0031-9155/53/18/010] [PMID: 18711247]
[103]
Cang H, Sun T, Li ZY, et al. Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 2005; 30(22): 3048-50.
[http://dx.doi.org/10.1364/OL.30.003048] [PMID: 16315717]
[104]
Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC. Quantum dots in bio-imaging: Revolution by the small. Biochem Biophys Res Commun 2005; 329(4): 1173-7.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.043] [PMID: 15766550]
[105]
Jaffer FA, Weissleder R. Molecular imaging in the clinical arena. JAMA 2005; 293(7): 855-62.
[http://dx.doi.org/10.1001/jama.293.7.855] [PMID: 15713776]
[106]
Harisinghani MG, Barentsz J, Hahn PF, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348(25): 2491-9.
[http://dx.doi.org/10.1056/NEJMoa022749] [PMID: 12815134]
[107]
Anderson SA, Rader RK, Westlin WF, et al. Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 2000; 44(3): 433-9.
[http://dx.doi.org/10.1002/1522-2594(200009)44:3<433:AID-MRM14>3.0.CO;2-9] [PMID: 10975896]
[108]
Krause M, Kwong KK, Xiong J, Gragoudas ES, Young LH. MRI of blood volume and cellular uptake of superparamagnetic iron in an animal model of choroidal melanoma. Ophthalmic Res 2002; 34(4): 241-50.
[http://dx.doi.org/10.1159/000063883] [PMID: 12297697]
[109]
Muldoon LL, Tratnyek PG, Jacobs PM, et al. Imaging and nanomedicine for diagnosis and therapy in the central nervous system: report of the eleventh annual Blood-Brain Barrier Disruption Consortium meeting. AJNR Am J Neuroradiol 2006; 27(3): 715-21.
[PMID: 16552023]
[110]
Lin M, Song P, Zhou G, et al. Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc 2016; 11(7): 1244-63.
[http://dx.doi.org/10.1038/nprot.2016.071] [PMID: 27310264]
[111]
Zhou Q, Son K, Liu Y, Revzin A. Biosensors for cell analysis. Annu Rev Biomed Eng 2015; 17: 165-90.
[http://dx.doi.org/10.1146/annurev-bioeng-071114-040525] [PMID: 26274599]
[112]
Hosoya H, Dobroff AS, Driessen WH, et al. Integrated nanotechnology platform for tumor-targeted multimodal imaging and therapeutic cargo release. Proc Natl Acad Sci USA 2016; 113(7): 1877-82.
[http://dx.doi.org/10.1073/pnas.1525796113] [PMID: 26839407]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy