Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Effect of Lipase Treatment on Physical and Dyeing Properties of Cellulose Acetate Fabric

Author(s): Ali Akbar Zolriasatein*

Volume 13, Issue 5, 2020

Page: [344 - 352] Pages: 9

DOI: 10.2174/2405520413666200207114627

Price: $65

Abstract

Objective: Cellulose acetate fabric was bio-treated by lipase enzyme. Afterwards, untreated and bio-treated fabrics were dyed with direct and disperse dyes to study the treatment effect.

Methods: Bending length, fabric thickness, tensile strength and dyeing properties of the biotreated fabrics were studied. Change in the morphology of fibers was observed by SEM after enzymatic deacetylation.

Results: Enzymatic deacetylation of cellulose acetate fibers led to an improvement in hydrophilicity. The whiteness index of cellulose acetate fabric slightly decreased from 95.81 to 95.79 after bio-pretreatment. Lipase pre-treatment also caused an increase in fiber diameter of up to 54.80%. Bending length decreased from 1.95 to 1.80 cm after enzymatic treatment while the number of threads per centimeter and fabric thickness increased. Bio-treated fabric showed lower tensile strength in comparison to untreated fabric.

Conclusion: The lipase pretreatment increased the color strength by 19.04% and 18.50% for direct and disperse dyes respectively.

Keywords: Cellulose acetate fabric, lipase enzyme, fiber diameter, bending rigidity, whiteness index, color strength.

Graphical Abstract

[1]
Zhang Y, Chen S, Wu J, Chen J. Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins. Biocatal Biotransform 2011; 30(2): 184-9.
[http://dx.doi.org/10.3109/10242422.2011.638713]
[2]
Pocienė R, Žemaitaitienė R, Vitkauskas A. Mechanical properties and a physical-chemical analysis of acetate yarns. Mat Sci (Medziagotyra) 2004; 10(1): 75-9.
[3]
Fischer S, Thümmler K, Volkert B, Hettrich K, Schmidt I, Fischer K. Properties and applications of cellulose acetate. Macromol Symp 2008; 262(1): 89-96.
[http://dx.doi.org/10.1002/masy.200850210]
[4]
Callegari G, Tyomkin I, Kornev KG, Neimark AV, Hsieh YL. Absorption and transport properties of ultra-fine cellulose webs. J Colloid Interface Sci 2011; 353(1): 290-3.
[http://dx.doi.org/10.1016/j.jcis.2010.09.015 ] [PMID: 20932537]
[5]
He X. Optimization of deacetylation process for regenerated cellulose hollow fiber membranes. Int J Polym Sci 2017; 2017: 1-8.
[http://dx.doi.org/10.1155/2017/3125413]
[6]
Koh J, Soo Kim I, Soo Kim S, et al. Dyeing properties of novel regenerated cellulosic fibers. J Appl Polym Sci 2004; 91(6): 3481-8.
[http://dx.doi.org/10.1002/app.13551]
[7]
Liu H, Hsieh Y. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, B, Polym Phys 2002; 40(18): 2119-29.
[http://dx.doi.org/10.1002/polb.10261]
[8]
Braun JL, Kadla JF. Diffusion and saponification inside porous cellulose triacetate fibers. Biomacromolecules 2005; 6(1): 152-60.
[http://dx.doi.org/10.1021/bm0496413 ] [PMID: 15638515]
[9]
Gübitz GM, Paulo AC. New substrates for reliable enzymes: Enzymatic modification of polymers. Curr Opin Biotechnol 2003; 14(6): 577-82.
[http://dx.doi.org/10.1016/j.copbio.2003.09.010 PMID: 14662385]
[10]
Guebitz GM, Cavaco-Paulo A. Enzymes go big: Surface hydrolysis and functionalization of synthetic polymers. Trends Biotechnol 2008; 26(1): 32-8.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.003 PMID: 18037176]
[11]
Kumar A, Pintail C, Lepola M. Enzymatic treatment of man-made cellulosic fabrics. Text Chem Color 1994; 26(10): 25-8.
[12]
Matamá T, Araújo R, Gübitz GM, Casal M, Cavaco-Paulo A. Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnol Prog 2010; 26(3): 636-43.
[http://dx.doi.org/10.1002/btpr.364 PMID: 20014432]
[13]
Haske-Cornelius O, Pellis A, Tegl G, et al. Enzymatic systems for cellulose acetate degradation. Catalysts 2017; 7(10): 287.
[http://dx.doi.org/10.3390/catal7100287]
[14]
Kosaka PM, Kawano Y, El Seoud OA, Petri DF. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. Langmuir 2007; 23(24): 12167-73.
[http://dx.doi.org/10.1021/la701913q ] [PMID: 17949116]
[15]
Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 1999; 51(2): 134-40.
[http://dx.doi.org/10.1007/s002530051373 ] [PMID: 10091317]
[16]
Ishigaki T, Sugano W, Ike M, Fujita M. Enzymatic degradation of cellulose acetate plastic by Novel degrading bacterium Bacillus sp. S2055. J Biosci Bioeng 2000; 90(4): 400-5.
[http://dx.doi.org/10.1016/S1389-1723(01)80008-6 PMID: 16232879]
[17]
Parhizkar M, Zhao Y, Wang X, Lin T. Photostability and durability properties of photochromic organosilica coating on fabric. J Eng Fibers Fabrics 2014; 9(3): 65-73.
[http://dx.doi.org/10.1177/155892501400900308]
[18]
Zolriasatein AA, Yazdanshenas ME, Khajavi R, Rashidi A. Effects of alkali and ultraviolet treatment on colour strength and mechanical properties of jute yarn. Color Technol 2012; 128: 395-402.
[http://dx.doi.org/10.1111/j.1478-4408.2012.00393.x]
[19]
Zolriasatein AA, Yazdanshenas ME, Khajavi R, Rashidi A, Najafi F. The use of poly(amidoamine) dendrimer in modification of jute for improving dyeing properties of reactive dyes. J Appl Polym Sci 2012; 127(6): 4203-10.
[http://dx.doi.org/10.1002/app.37666]
[20]
Zolriasatein AA, Yazdanshenas ME. Changes in composition, appearance, physical, and dyeing properties of jute yarn after bio-pretreatment with laccase, xylanase, cellulase, and pectinase enzymes. J Textil Inst 2013; 105(6): 609-19.
[http://dx.doi.org/10.1080/00405000.2013.842290]
[21]
Zolriasatein AA. The use of ultrasound in bio-treatment of jute yarn with laccase enzyme. Recent Innov Chem Eng 2019; 12(4): 275-86.
[http://dx.doi.org/10.2174/2405520412666190731120559]
[22]
Müller RJ, Kleeberg I, Deckwer WD. Biodegradation of polyesters containing aromatic constituents. J Biotechnol 2001; 86(2): 87-95.
[http://dx.doi.org/10.1016/S0168-1656(00)00407-7 PMID: 11245897]
[23]
Tulos N, Harbottle D, Hebden A, Goswami P, Blackburn R. Kinetic analysis of cellulose acetate/cellulose II hybrid fiber formation by alkaline hydrolysis. ACS Omega 2019; 4(3): 4936-42.
[http://dx.doi.org/10.1021/acsomega.9b00159]
[24]
Puls J, Wilson S, Hölter D. Degradation of cellulose acetate-based materials: A review. J Polym Environ 2011; 19(1): 152-65.
[http://dx.doi.org/10.1007/s10924-010-0258-0]
[25]
Windler L, Lorenz C, von Goetz N, et al. Release of titanium dioxide from textiles during washing. Environ Sci Technol 2012; 46(15): 8181-8.
[http://dx.doi.org/10.1021/es301633b ] [PMID: 22746197]
[26]
Dehima S, Sharma J, Battan B. Industrial applications and future prospect of microbial xylanase: A review. BioResources 2008; 3(4): 1377-402.
[27]
Karra-Châabouni M, Bouaziz I, Boufi S, Botelho do Rego AM, Gargouri Y. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: Activity and stability studies. Colloids Surf B Biointerfaces 2008; 66(2): 168-77.
[http://dx.doi.org/10.1016/j.colsurfb.2008.06.010 PMID: 18684596]
[28]
Mehta P, Bhardwaj S. Managing quality in the apparel industry. New Delhi: New Age International Publ 2006.
[29]
Sisodia N, Parmar M, Jain S. Effect of pre-treatment on the smoothness behaviour of cotton fabric. Fibres Text East Eur 2019; 27(5(137)): 47-52.
[http://dx.doi.org/10.5604/01.3001.0013.2901]
[30]
Sharma IC, Chattopadhyay DP, Chatterjee KN, Mukhopadhyay A, Kumar A. Effect of various softeners on the performance of polyester-viscose ring and air-jet spun yarn fabrics. Indian J Fibre Text Res 1998; 23(1): 44-8.
[31]
Pan NC, Chattopadhyay SN, Roy AK. Application of biotechnology in the coloration of jute fabric using bis-triazinyl type of reactive dyes. Indian J Fibre Text Res 2015; 40(4): 414-8.
[32]
Tokiwa Y, Suzuki T, Takeda K. Two types of lipases in hydrolysis of polyester. Agric Biol Chem 1988; 52(8): 1937-43.
[33]
Gibson P, Desabrais K, Godfrey T. Dynamic permeability of porous elastic fabrics. J Eng Fibers Fabrics 2012; 7(2): 29-36.
[34]
Pei L, Luo Y, Gu X, Dou H, Wang J. Diffusion mechanism of aqueous solutions and swelling of cellulosic fibers in silicone non-aqueous dyeing system. Polymers (Basel) 2019; 11(3): 411.
[http://dx.doi.org/10.3390/polym11030411 ] [PMID: 30960395]
[35]
Kalantzi S, Mamma D, Kalogeris E, Kekos D. Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text East Eur 2010; 18(5(82)): 86-92.
[36]
Zolriasatein AA. Thermodynamics, kinetics and isotherms studies for sorption of direct dye onto the pectinase pre-treated jute Yarn Recent Innov Chem Eng 2019; 2019; 12(2): 160-71..
[http://dx.doi.org/10.2174/2405520412666190618144005]
[37]
Zolriasatein AA. A Review on the Application of Poly(amidoamine) Dendritic Nano-polymers for Modification of Cellulosic Fabrics. Recent Innov Chem Eng 2020; 13(2): 110-22.
[http://dx.doi.org/10.2174/2405520412666191019101828]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy