Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century

Author(s): Imran Ali*, Sofi D. Mukhtar, Heyam S. Ali, Marcus T. Scotti and Luciana Scotti*

Volume 26, Issue 15, 2020

Page: [1637 - 1649] Pages: 13

DOI: 10.2174/1381612826666200203124330

Price: $65

Abstract

Background: Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors that have recently been developed and recommended for use by scientists because of their potential targeting capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery.

Method: The present review article provides an overview of current advances in the use of nanoparticles (NPs) as anticancer drug-delivery vectors.

Results: This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine, personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and perspectives, biodegradability and safety.

Conclusion: This article will benefit academia, researchers, clinicians, and government authorities by providing a basis for further research advancements.

Keywords: Nanotechnology, Smart drug delivery vectors, stimuli-based characteristics, tumor vascular tissues, nanoparticles, anticancer drug-delivery vectors.

[1]
Wu JY, Lee YC, Graham DY. The eradication of Helicobacter pylori to prevent gastric cancer: a critical appraisal. Expert Rev Gastroenterol Hepatol 2019; 13(1): 17-24.
[http://dx.doi.org/10.1080/17474124.2019.1542299] [PMID: 30791844]
[2]
Basheer AA. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 2018; 30(4): 402-6.
[http://dx.doi.org/10.1002/chir.22808] [PMID: 29266491]
[3]
Basheer AA, Ali I. Stereoselective uptake and degradation of (±)-o,p-DDD pesticide stereomers in water-sediment system. Chirality 2018; 30(9): 1088-95.
[http://dx.doi.org/10.1002/chir.22989] [PMID: 29978905]
[4]
Basheer AA. New generation nano-adsorbents for the removal of emerging contaminants in water. J Mol Liq 2018; 261: 583-93.
[http://dx.doi.org/10.1016/j.molliq.2018.04.021]
[5]
Alharbi OML, Basheer AA, Khattab RA, Ali I. Health and environmental effects of persistent organic pollutants. J Mol Liq 2018; 263: 442-53.
[http://dx.doi.org/10.1016/j.molliq.2018.05.029]
[6]
Ali I. Design and synthesis of thalidomide based dithiocarbamate Cu(II), Ni(II) and Ru(III) complexes as anticancer agents. Polyhedron 2013; 56: 134-43.
[http://dx.doi.org/10.1016/j.poly.2013.03.056]
[7]
Aboul-Enein HY, Ali I. HPLC enantiomeric resolution of nebivolol on normal and reversed amylose based chiral phases. Pharmazie 2001; 56(3): 214-6.
[PMID: 11265585]
[8]
Al-Othman. Advances in enantiomeric resolution on chiral monolithic phases in liquid chromatography and electrochromatography. J Sep Sci 2014; 37: 1033-57.
[http://dx.doi.org/10.1002/jssc.201301326] [PMID: 24634395]
[9]
Ali I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Targets 2011; 11(2): 131-4.
[http://dx.doi.org/10.2174/156800911794328457] [PMID: 21062238]
[10]
Ali I, Lone MN, Al-Othman ZA, Al-Warthan A, Sanagi MM. heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets 2015; 16(7): 711-34.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[11]
Ali. Chirality: a challenge to the environmental scientists. Curr Sci 2003; 84: 152-6.
[12]
Zhang HZ, Zhao ZL, Zhou CH. Recent advance in oxazole-based medicinal chemistry. Eur J Med Chem 2018; 144: 444-92.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
[13]
Upadhyay KD, Dodia NM, Khunt RC, Chaniara RS, Shah AK. Synthesis and biological screening of Pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med Chem Lett 2018; 9(3): 283-8.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[14]
Ali. Synthesis, DNA binding, hemolytic and anticancer assays of curcumin I based ligands and their ruthenium (III) complexes. Med Chem Res 2013; 22: 1386-98.
[http://dx.doi.org/10.1007/s00044-012-0133-8]
[15]
Ali. Enantioselective toxicities and carcinogenesis. Curr Pharm Anal 2005; 1: 109-25.
[http://dx.doi.org/10.2174/1573412052953328]
[16]
Ali. Social aspects of cancer genesis. Cancer Ther 2011; 8: 6-14.
[17]
Saleem K, Wani WA, Haque A, et al. Synthesis, DNA binding, hemolysis assays and anticancer studies of copper(II), nickel(II) and iron(III) complexes of a pyrazoline-based ligand. Future Med Chem 2013; 5(2): 135-46.
[http://dx.doi.org/10.4155/fmc.12.201] [PMID: 23360139]
[18]
Ali I, Wani WA, Khan A, et al. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals. Microb Pathog 2012; 53(2): 66-73.
[http://dx.doi.org/10.1016/j.micpath.2012.04.005] [PMID: 22575887]
[19]
Ali. Thalidomide: a banned drug resurged into future anticancer drug. Curr Drug Ther 2012; 7: 13-23.
[http://dx.doi.org/10.2174/157488512800389164]
[20]
Ali I, Wani WA, Saleem K, Wesselinova D. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes. Med Chem 2013; 9(1): 11-21.
[http://dx.doi.org/10.2174/157340613804488297] [PMID: 22741786]
[21]
Ali. Natural products: human-friendly anti-cancer medications, egyp. Pharm J 2010; 9: 133-79.
[22]
Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm 2005; 293(1-2): 261-70.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[23]
Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000; 11(8): 1029-33.
[http://dx.doi.org/10.1023/A:1008365716693] [PMID: 11038041]
[24]
Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci 1998; 87(11): 1305-7.
[http://dx.doi.org/10.1021/js980084y] [PMID: 9811481]
[25]
Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 2002; 245(1-2): 109-21.
[http://dx.doi.org/10.1016/S0378-5173(02)00342-3] [PMID: 12270248]
[26]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[27]
Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 2003; 86(1): 33-48.
[http://dx.doi.org/10.1016/S0168-3659(02)00320-6] [PMID: 12490371]
[28]
Coester C, Kreuter J, von Briesen H, Langer K. Preparation of avidin-labelled gelatin nanoparticles as carriers for biotinylated peptide nucleic acid (PNA). Int J Pharm 2000; 196(2): 147-9.
[http://dx.doi.org/10.1016/S0378-5173(99)00409-3] [PMID: 10699706]
[29]
Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007; 117(2): 163-70.
[http://dx.doi.org/10.1016/j.jconrel.2006.10.023] [PMID: 17141909]
[30]
Date AA, Joshi MD, Patravale VB. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 505-21.
[http://dx.doi.org/10.1016/j.addr.2007.04.009] [PMID: 17574295]
[31]
Calvo P, Gouritin B, Brigger I, et al. PEGylated polycyanoacrylate nanoparticles as vector for drug delivery in prion diseases. J Neurosci Methods 2001; 111(2): 151-5.
[http://dx.doi.org/10.1016/S0165-0270(01)00450-2] [PMID: 11595281]
[32]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
[PMID: 18610673]
[33]
Kim SY, Lee YM. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers. Biomaterials 2001; 22(13): 1697-704.
[http://dx.doi.org/10.1016/S0142-9612(00)00292-1] [PMID: 11396872]
[34]
Lee KS, Chung HC, Im SA, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 2008; 108(2): 241-50.
[http://dx.doi.org/10.1007/s10549-007-9591-y] [PMID: 17476588]
[35]
van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007; 24(8): 1405-14.
[http://dx.doi.org/10.1007/s11095-007-9284-6] [PMID: 17393074]
[36]
Singh S. Nanomaterials as non-viral siRNA delivery agents for cancer therapy. Bioimpacts 2013; 3(2): 53-65.
[PMID: 23878788]
[37]
Mitra RN, Zheng M, Han Z. Nanoparticle-motivated gene delivery for ophthalmic application. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(1): 160-74.
[http://dx.doi.org/10.1002/wnan.1356] [PMID: 26109528]
[38]
Ljubimova JY, Holler E. Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond) 2012; 7(10): 1467-70.
[http://dx.doi.org/10.2217/nnm.12.115] [PMID: 23148535]
[39]
Lammers T. Improving the efficacy of combined modality anticancer therapy using HPMA copolymer-based nanomedicine formulations. Adv Drug Deliv Rev 2010; 62(2): 203-30.
[http://dx.doi.org/10.1016/j.addr.2009.11.028] [PMID: 19951732]
[40]
Kopecek J, Kopecková P. HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 2010; 62(2): 122-49.
[http://dx.doi.org/10.1016/j.addr.2009.10.004] [PMID: 19919846]
[41]
Lee JH, Nan A. Combination drug delivery approaches in metastatic breast cancer. J Drug Deliv 2012; 2012 915375
[http://dx.doi.org/10.1155/2012/915375] [PMID: 22619725]
[42]
Varshosaz J. Dextran conjugates in drug delivery. Expert Opin Drug Deliv 2012; 9(5): 509-23.
[http://dx.doi.org/10.1517/17425247.2012.673580] [PMID: 22432550]
[43]
Patel MP, Patel RR, Patel JK. Chitosan mediated targeted drug delivery system: a review. J Pharm Pharm Sci 2010; 13(4): 536-57.
[http://dx.doi.org/10.18433/J3JC7C] [PMID: 21486530]
[44]
Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 2010; 399: 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2010.08.022]
[45]
Wang JJ, Zeng ZW, Xiao RZ, et al. Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 2011; 6: 765-74.
[PMID: 21589644]
[46]
Li C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008; 60(8): 886-98.
[http://dx.doi.org/10.1016/j.addr.2007.11.009] [PMID: 18374448]
[47]
Poo H, Park C, Kwak MS, et al. New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid. Chem Biodivers 2010; 7(6): 1555-62.
[http://dx.doi.org/10.1002/cbdv.200900283] [PMID: 20564573]
[48]
Ding H, Inoue S, Ljubimov AV, et al. Inhibition of brain tumor growth by intravenous poly (β-L-malic acid) nanobioconjugate with pH-dependent drug release Proc Natl Acad Sci USA 2010; 107(42): 18143-8.
[http://dx.doi.org/10.1073/pnas.1003919107] [PMID: 20921419]
[49]
Inoue S, Ding H, Arias JP, et al. Nanobioconjugate inhibition of HER2/neu signaling and synthesis provides efficient mouse breast cancer treatment. Cancer Res 2011; 71: 1454-64.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3093] [PMID: 21303974]
[50]
Inoue S, Patil R, Arias JP, et al. Novel nanobioconjugate inhibiting EGFR expression in triple negative breast cancer. PLoS One 2012; 7 E3107
[http://dx.doi.org/10.1371/journal.pone.0031070]
[51]
Patil R, Portilla-Arias J, Ding H, et al. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(β-L-malic acid). Pharm Res 2010; 27(11): 2317-29.
[http://dx.doi.org/10.1007/s11095-010-0091-0] [PMID: 20387095]
[52]
Savaliya R, Singh P, Singh S. Pharmacological drug delivery strategies for improved therapeutic effects: recent advances. Curr Pharm Des 2016; 22(11): 1506-20.
[http://dx.doi.org/10.2174/1381612822666151210123546] [PMID: 26654439]
[53]
Singh S, Asal R, Bhagat S. Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. J Biomed Mater Res A 2018; 106(12): 3152-64.
[http://dx.doi.org/10.1002/jbm.a.36510] [PMID: 30194716]
[54]
Bhagat S. A novel nanoliposomal formulation of the FDA approved drug halofantrine causes cell death of leishmania donovani promastigotes. In Vitro 2019; 585 123852
[http://dx.doi.org/10.1016/j.colsurfa.2019.123852]
[55]
Singh V, Singh S, Das S, Kumar A, Self WT, Seal S. A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale 2012; 4(8): 2597-605.
[http://dx.doi.org/10.1039/c2nr12131j] [PMID: 22419352]
[56]
Dande P, Prakash TP, Sioufi N, et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 2006; 49(5): 1624-34.
[http://dx.doi.org/10.1021/jm050822c] [PMID: 16509579]
[57]
Thakur S. The effect of polyethylene glycol spacer chain length on the tumor targeting potential of folate modified PPI dendrimers. J Nanopart Res 2013; 15: 1625.
[http://dx.doi.org/10.1007/s11051-013-1625-2]
[58]
Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008; 16(2): 108-23.
[http://dx.doi.org/10.1080/10611860701794353] [PMID: 18274932]
[59]
Pauwels EK, Erba P. Towards the use of nanoparticles in cancer therapy and imaging. Drug News Perspect 2007; 20(4): 213-20.
[http://dx.doi.org/10.1358/dnp.2007.20.4.1103525] [PMID: 17637933]
[60]
Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009; 38(3): 185-96.
[http://dx.doi.org/10.1016/j.ejps.2009.07.008] [PMID: 19646528]
[61]
Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic organic chemistry. Prog Polym Sci 2005; 30: 294-324.
[http://dx.doi.org/10.1016/j.progpolymsci.2005.01.007]
[62]
Tomalia DA. A new class of polymers - starburst-dendritic macromolecules. Polym J 1985; 17: 117-32.
[http://dx.doi.org/10.1295/polymj.17.117]
[63]
Ihre H, Padilla De Jesús OL, Fréchet JM. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J Am Chem Soc 2001; 123(25): 5908-17.
[http://dx.doi.org/10.1021/ja010524e] [PMID: 11414823]
[64]
Crampton HL, Simanek EE. Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym Int 2007; 56(4): 489-96.
[http://dx.doi.org/10.1002/pi.2230] [PMID: 19960104]
[65]
Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 2007; 35(Pt 1): 61-7.
[http://dx.doi.org/10.1042/BST0350061] [PMID: 17233602]
[66]
Na M, Yiyun C, Tongwen X, et al. Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur J Med Chem 2006; 41(5): 670-4.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.001] [PMID: 16527374]
[67]
Patri AK, Kukowska-Latallo JF, Baker JR Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005; 57(15): 2203-14.
[http://dx.doi.org/10.1016/j.addr.2005.09.014] [PMID: 16290254]
[68]
Kesharwani P. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014; 39: 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[69]
Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials 2014; 35(21): 5539-48.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.064] [PMID: 24731713]
[70]
Kesharwani P, Tekade RK, Jain NK. Formulation development and in vitro-in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. Nanomedicine (Lond) 2014; 9(15): 2291-308.
[http://dx.doi.org/10.2217/nnm.13.210] [PMID: 24593000]
[71]
Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32(4): 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[72]
Ganesh VA, Baji A, Ramakrishna S. Smart functional polymers–a new route towards creating a sustainable environment. RSC Advances 2014; 4: 53352-64.
[http://dx.doi.org/10.1039/C4RA10631H]
[73]
Singh S. Glucose decorated gold nanoclusters: A membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf B Biointerfaces 2017; 155: 25-34.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.052] [PMID: 28391081]
[74]
Shah J, Singh S. Nanoparticle-protein corona complex: composition, kinetics, physico-chemical characterization, and impact on biomedical applicationsashutosh kumar, alok dhawan nanoparticle–protein corona: biophysics to biology. UK: Royal Society 2019.
[http://dx.doi.org/10.1039/9781788016308-00001]
[75]
Jain V. Unveiling the effect of 11-MUA coating on biocompatibility and catalytic activity of a gold-core cerium oxide-shell-based nanozyme. RSC Advances 2019; 9: 33195-206.
[http://dx.doi.org/10.1039/C9RA05547A]
[76]
Subudhi MB, Jain A, Jain A, et al. Eudragit S100 coated citrus pectin nanoparticles for colon targeting of 5-Fluorouracil. Materials (Basel) 2015; 8(3): 832-49.
[http://dx.doi.org/10.3390/ma8030832] [PMID: 28787974]
[77]
Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 2000; 6(1): 15-9.
[http://dx.doi.org/10.1016/S1357-4310(99)01615-9] [PMID: 10637570]
[78]
Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011; 10(10): 767-77.
[http://dx.doi.org/10.1038/nrd3554] [PMID: 21921921]
[79]
Lee ES, Oh KT, Kim D, Youn YS, Bae YH. Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly(ethylene glycol)-b-poly(L-histidine). J Control Release 2007; 123(1): 19-26.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.006] [PMID: 17826863]
[80]
Cheng R, Meng F, Deng C, Klok HA, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[81]
Hruby M, Filippov SK, Stepanek P. Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur Polym J 2015; 65: 82-97.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.01.016]
[82]
Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun (Camb) 2014; 50(58): 7743-65.
[http://dx.doi.org/10.1039/C4CC01429D] [PMID: 24805962]
[83]
Stumpel JE, Gil ER, Spoelstra AB, Bastiaansen CW, Broer DJ, Schenning AP. Stimuli-Responsive Materials Based on Interpenetrating Polymer Liquid Crystal Hydrogels. Adv Funct Mater 2015; 25: 3314-20.
[http://dx.doi.org/10.1002/adfm.201500745]
[84]
Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater 2013; 12(11): 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[85]
Delcea M, Möhwald H, Skirtach AG. Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 2011; 63(9): 730-47.
[http://dx.doi.org/10.1016/j.addr.2011.03.010] [PMID: 21463658]
[86]
Duan X, Xiao J, Yin Q, et al. Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 2013; 7(7): 5858-69.
[http://dx.doi.org/10.1021/nn4010796] [PMID: 23734880]
[87]
Inoue S, Patil R, Arias JP, Ding H. Konda1 B, Espinoza A, Mongayt D, Markman JL, Elramsisy A, Phillips HW, Black KL, Holler E, Ljubimova JY. Novel nanobioconjugate inhibiting EGFR expression in triple negative breast cancer. PLoS One 2012; 7 E3107
[88]
Ding H, Aries JP, Patil R, Black KL, Ljubimova JY, Holler E. Polymalic acid peptide copolymers: design and optimization for endosomolytic drug delivery. Biomaterials 2011; 32: 5269-78.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.073] [PMID: 21514661]
[89]
Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15(6): 321-33.
[http://dx.doi.org/10.1038/nrc3932] [PMID: 25998712]
[90]
Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 2015; 15(6): 467-74.
[http://dx.doi.org/10.2174/1389557515666150324123208] [PMID: 25807941]
[91]
Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release 2013; 172(3): 962-74.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.015] [PMID: 24075926]
[92]
Dahiya N, Sherman-Baust CA, Wang TL, et al. MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 2008; 3(6) e2436
[http://dx.doi.org/10.1371/journal.pone.0002436] [PMID: 18560586]
[93]
Mokhtarzadeh A, Alibakhshi A, Hashemi M, et al. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. J Control Release 2017; 245: 116-26.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.017] [PMID: 27884808]
[94]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[95]
Jorgensen WL. The many roles of computation in drug discovery. Science 2004; 303(5665): 1813-8.
[http://dx.doi.org/10.1126/science.1096361] [PMID: 15031495]
[96]
Rosenberger I, Strauss A, Dobiasch S, et al. Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer. J Control Release 2015; 214: 76-84.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.017] [PMID: 26192099]
[97]
Ding HM, Ma YQ. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 2014; 35(30): 8703-10.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.033] [PMID: 25005681]
[98]
Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005; 308(5726): 1318-21.
[http://dx.doi.org/10.1126/science1108367] [PMID: 15919995]
[99]
Clancy CE, An G, Cannon WR, et al. Multiscale modeling in the clinic: drug design and development. Ann Biomed Eng 2016; 44(9): 2591-610.
[http://dx.doi.org/10.1007/s10439-016-1563-0] [PMID: 26885640]
[100]
Hajduk PJ, Huth JR, Tse C. Predicting protein druggability. Drug Discov Today 2005; 10(23-24): 1675-82.
[http://dx.doi.org/10.1016/S1359-6446(05)03624-X] [PMID: 16376828]
[101]
Horie-Inoue K, Takayama K, Bono HU, Ouchi Y, Okazaki Y, Inoue S. Identification of novel steroid target genes through the combination of bioinformatics and functional analysis of hormone response elements. Biochem Biophys Res Commun 2006; 339(1): 99-106.
[http://dx.doi.org/10.1016/j.bbrc.2005.10.188] [PMID: 16289377]
[102]
Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors. J Med Chem 2005; 48(12): 4138-52.
[http://dx.doi.org/10.1021/jm049461b] [PMID: 15943486]
[103]
Ding HM, Ma YQ. Design maps for cellular uptake of gene nanovectors by computer simulation. Biomaterials 2013; 34(33): 8401-7.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.067] [PMID: 23891080]
[104]
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BY, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim Biophys Acta 2016; 1858(7 Pt B): 1688-709.
[http://dx.doi.org/10.1016/j.bbamem.2016.02.028] [PMID: 26930298]
[105]
Ranjitha VR, Muddegowda U, Ravishankar Rai V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 2019; 45(9): 1496-505.
[http://dx.doi.org/10.1080/03639045.2019.1634090] [PMID: 31241372]
[106]
Huang LY, Yu YS, Lu X, Ding HM, Ma YQ. Designing a nanoparticle-containing polymeric substrate for detecting cancer cells by computer simulations. Nanoscale 2019; 11(5): 2170-8.
[http://dx.doi.org/10.1039/C8NR06340K] [PMID: 30376020]
[107]
Hussain A. Biosynthesized silver nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Frontiers in Microbio 2019; p. 10.
[108]
Kulkarni A, Pandey P, Rao P, et al. Algorithm for designing nanoscale supramolecular therapeutics with increased anticancer efficacy. ACS Nano 2016; 10(9): 8154-68.
[http://dx.doi.org/10.1021/acsnano.6b00241] [PMID: 27452234]
[109]
Liu R, Rallo R, Bilal M, Cohen Y. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles. Comb Chem High Throughput Screen 2015; 18(4): 365-75.
[http://dx.doi.org/10.2174/1386207318666150306105525] [PMID: 25747434]
[110]
Luan F, Kleandrova VV, González-Díaz H, et al. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 2014; 6(18): 10623-30.
[http://dx.doi.org/10.1039/C4NR01285B] [PMID: 25083742]
[111]
Melagraki G, Afantitis A. Enalos In Silico nano platform: an online decision support tool for the design and virtual screening of nanoparticles. RSC Advances 2014; 4: 50713-25.
[http://dx.doi.org/10.1039/C4RA07756C]
[112]
Nabil M, Decuzzi P, Zunino P. Modelling mass and heat transfer in nano-based cancer hyperthermia. R Soc Open Sci 2015; 2(10) 150447
[http://dx.doi.org/10.1098/rsos.150447] [PMID: 26587251]
[113]
Ngwa W, Kumar R, Sridhar S, et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine (Lond) 2014; 9(7): 1063-82.
[http://dx.doi.org/10.2217/nnm.14.55] [PMID: 24978464]
[114]
Ojha PK, Kar S, Roy K, Leszczynski J. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 2019; 13(1): 14-34.
[http://dx.doi.org/10.1080/17435390.2018.1529836] [PMID: 30354872]
[115]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[116]
Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 2003; 42(13): 1089-105.
[http://dx.doi.org/10.2165/00003088-200342130-00002] [PMID: 14531722]
[117]
Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001; 74(1-3): 47-61.
[http://dx.doi.org/10.1016/S0168-3659(01)00309-1] [PMID: 11489482]
[118]
Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 2006; 98(5): 335-44.
[http://dx.doi.org/10.1093/jnci/djj070] [PMID: 16507830]
[119]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[120]
Al-Jamal KT, Al-Jamal WT, Wang JT, et al. Cationic poly-L-lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 2013; 7(3): 1905-17.
[http://dx.doi.org/10.1021/nn305860k] [PMID: 23527750]
[121]
Kaminskas LM, McLeod VM, Ryan GM, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release 2014; 183: 18-26.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.012] [PMID: 24637466]
[122]
Ma D, Zhang HB, Chen YY, Lin JT, Zhang LM. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. J Colloid Interface Sci 2013; 405: 305-11.
[http://dx.doi.org/10.1016/j.jcis.2013.05.017] [PMID: 23769303]
[123]
She W, Li N, Luo K, et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials 2013; 34(9): 2252-64.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.017] [PMID: 23298778]
[124]
Kaminskas LM, Boyd BJ, Porter CJ. Dendrimer pharmacokinetics: the effect of size, structure and surface characteristics on ADME properties. Nanomedicine (Lond) 2011; 6(6): 1063-84.
[http://dx.doi.org/10.2217/nnm.11.67] [PMID: 21955077]
[125]
Orive G. Micro and nano drug delivery systems in cancer therapy. Cancer Ther 2005; 3: 131-8.
[126]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[127]
Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006; 6(9): 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[128]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[129]
Kim S, Park K.Polymeric micelles for drug delivery. Curr Pharm Des 2006; 12(36): 4669-84.
[http://dx.doi.org/10.1201/9781420087734-c19]
[130]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[131]
Huwyler J, Drewe J, Krähenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine 2008; 3(1): 21-9.
[http://dx.doi.org/10.2147/IJN.S1253] [PMID: 18488413]
[132]
Yang X, Xi T. [Progress in the studies on the evaluation of biocompatibility of biomaterials]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2001; 18(1): 123-8.
[PMID: 11332093]
[133]
Fan CX, Chen L. Application of molecular biological methods to the study of biomaterial evaluation. Biomed Eng Foreign Med Sci 2004; 27: 375-9.
[134]
Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999; 178(2): 231-43.
[http://dx.doi.org/10.1016/S0378-5173(98)00378-0] [PMID: 10205643]
[135]
Kim JS, Yoon TJ, Yu KN, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89(1): 338-47.
[http://dx.doi.org/10.1093/toxsci/kfj027] [PMID: 16237191]
[136]
Chao WR, Yean D, Amin K, Green C, Jong L. Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J Med Chem 2007; 50(15): 3412-5.
[http://dx.doi.org/10.1021/jm070040e] [PMID: 17602463]
[137]
Stasevych M, Zvarych V, Lunin V, et al. Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents. SAR QSAR Environ Res 2017; 28(5): 355-66.
[http://dx.doi.org/10.1080/1062936X.2017.1323796] [PMID: 28524703]
[138]
Foudah AI, Sallam AA, El Sayed KA. Discovery and computer-aided drug design studies of the anticancer marine triterpene sipholanes as novel P-gp and Brk modulators handbook of anticancer drugs from marine origin. 2014; pp. 547-69.
[139]
Carabet LA, Lallous N, Leblanc E, et al. Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer. Eur J Med Chem 2018; 160: 108-19.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.023] [PMID: 30326371]
[140]
Meng X, Cui L, Song F, et al. 3D-QSAR and molecular docking studies on design anti-prostate cancer curcumin analogues. Curr Comput Aided Drug Des 2018. In press.
[http://dx.doi.org/10.2174/1573409914666181029123746]
[141]
Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MNDS. Chemoinformatics in anti-cancer chemotherapy: multi-target QSAR model for the in silico discovery of anti-breast cancer agents. Eur J Pharm Sci 2012; 47(1): 273-9.
[http://dx.doi.org/10.1016/j.ejps.2012.04.012] [PMID: 22538055]
[142]
Irsheid L, Wehler T, Borek C, et al. Identification of a potential allosteric site of Golgi α-mannosidase II using computer-aided drug design. PLoS One 2019; 14(5) e0216132
[http://dx.doi.org/10.1371/journal.pone.0216132] [PMID: 31067280]
[143]
De B, Bhandari K, Mendonça FJB, Scotti MT, Scotti L. Computational studies in drug design against cancer. Anticancer Agents Med Chem 2019; 19(5): 587-91.
[http://dx.doi.org/10.2174/1871520618666180911125700] [PMID: 30207247]
[144]
Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2(1): 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[145]
Jain RK. Barriers to drug delivery in solid tumors. Sci Am 1994; 271(1): 58-65.
[http://dx.doi.org/10.1038/scientificamerican0794-58] [PMID: 8066425]
[146]
Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev 2009; 109(1): 49-87.
[http://dx.doi.org/10.1021/cr068212n] [PMID: 19099452]
[147]
Naito K, Takeshita A, Shigeno K, et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 2000; 14(8): 1436-43.
[http://dx.doi.org/10.1038/sj.leu.2401851] [PMID: 10942240]
[148]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy