Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Studies on Molecular Interactions between Bovine β-Lactoglobulin and Silver Nanoparticles

Author(s): Anchal Sharma and Kalyan Sundar Ghosh*

Volume 27, Issue 8, 2020

Page: [793 - 800] Pages: 8

DOI: 10.2174/0929866527666200129123018

Price: $65

Abstract

Background: Silver Nanoparticles (AgNPs) were found to modulate the fibrillation of Bovine Β-Lactoglobulin (BLG).

Objective: To gain an insight regarding the mechanism of BLG aggregation modulation by AgNPs at molecular level, studies on the interactions between BLG and AgNPs were carried out.

Methods: Protein-ligand interactions were studied based on Trp fluorescence quenching (at four different temperatures), synchronous and three-dimensional fluorescence and circular dichroism spectroscopy (far-UV and near-UV).

Results: Protein-nanoparticles association constant was in the range of 106 -1010 M-1 and the quenching constant was determined as ~107 M-1. Ground state complexation between the protein and nanoparticles was predicted. Change in polarity surrounding the Trp residue was not detected by synchronous and three-dimensional fluorescence spectroscopy. AgNPs caused a global change in the secondary and tertiary structure of the protein as revealed from far-UV and near-UV CD spectroscopy. Enthalpy driven complexation between the protein and nanoparticles indicates the involvement of hydrogen bonding and/or van der Waals interactions.

Conclusion: Modulation of BLG aggregation by AgNPs is due to strong binding of the nanoparticles with BLG, which also causes structural perturbations of the protein.

Keywords: Bovine β-lactoglobulin, silver nanoparticles, fluorescence quenching, 3D-fluorescence, circular dichroism, synchronous fluorescence.

Graphical Abstract

[1]
Dong, X.; Gao, Z.; Yang, K.; Zhanga, W.; Xu, L. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5, 2554-2574.
[http://dx.doi.org/10.1039/C5CY00285K]
[2]
Gadkari, R.R.; Ali, S.W.; Alagirusamy, R.; Das, A. Silver nanoparticles in water purification: Opportunities and challenges. In: Modern age environmental problems and their remediation; Oves, M.; Khan, M.Z.; Ismail, I.M.I., Eds.; Springer: Cham, 2018; pp. 229-237.
[http://dx.doi.org/10.1007/978-3-319-64501-8_13]
[3]
Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003] [PMID: 29627463]
[4]
Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials (Basel), 2018, 8(9), 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[5]
Xu, X.H.; Brownlow, W.J.; Kyriacou, S.V.; Wan, Q.; Viola, J.J. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry, 2004, 43(32), 10400-10413.
[http://dx.doi.org/10.1021/bi036231a] [PMID: 15301539]
[6]
Huang, T.; Nallathamby, P.D.; Gillet, D.; Xu, X.H. Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. Anal. Chem., 2007, 79(20), 7708-7718.
[http://dx.doi.org/10.1021/ac0709706] [PMID: 17867652]
[7]
Malekzad, H.; Zangabad, P.S.; Mirshekari, H.; Karimi, M.; Hamblin, M.R. Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnol. Rev., 2017, 6(3), 301-329.
[http://dx.doi.org/10.1515/ntrev-2016-0014] [PMID: 29335674]
[8]
Prusty, K.; Swain, S.K. Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater. Sci. Eng. C, 2018, 85, 130-141.
[http://dx.doi.org/10.1016/j.msec.2017.11.028] [PMID: 29407141]
[9]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[10]
Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine, 2018, 13, 3311-3327.
[http://dx.doi.org/10.2147/IJN.S165125] [PMID: 29892194]
[11]
Prasher, P.; Singh, M. Green synthesis of silver nanoparticles and their antifungal properties. Bionanoscience, 2018, 8, 254-263.
[http://dx.doi.org/10.1007/s12668-017-0481-4]
[12]
Sharma, V.; Ghosh, K.S. Inhibition of amyloid fibrillation by small molecules and nanomaterials: Strategic development of pharmaceuticals against amyloidosis. Protein Pept. Lett., 2019, 26(5), 315-323.
[http://dx.doi.org/10.2174/0929866526666190307164944] [PMID: 30848182]
[13]
Aguzzi, A.; O’Connor, T. Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov., 2010, 9(3), 237-248.
[http://dx.doi.org/10.1038/nrd3050] [PMID: 20190788]
[14]
Kumar, S.; Udgaonkar, J.B. Mechanism of amyloid fibril formation by proteins. Curr. Sci., 2010, 98, 639-655.
[15]
Sen, S.; Konar, S.; Das, B.; Pathak, A.; Dhara, S.; Dasgupta, S.; DasGupta, S. Inhibition of fibrillation of human serum albumin through interaction with chitosan-based biocompatible silver nanoparticles. RSC Advances, 2016, 6, 43104-43115.
[http://dx.doi.org/10.1039/C6RA05129D]
[16]
Anand, B.G.; Dubey, K.; Shekhawat, D.S.; Kar, K. Capsaicin-coated silver nanoparticles inhibit amyloid fibril formation of serum albumin. Biochemistry, 2016, 55(24), 3345-3348.
[http://dx.doi.org/10.1021/acs.biochem.6b00418] [PMID: 27243335]
[17]
Wang, M.; Kakinen, A.; Pilkington, E.H.; Davis, T.P.; Ke, P.C. Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation. Biomater. Sci., 2017, 5(3), 485-493.
[http://dx.doi.org/10.1039/C6BM00764C] [PMID: 28078343]
[18]
Sardar, S.; Anas, M.; Maity, S.; Pal, S.; Parvej, H.; Begum, S.; Dalui, R.; Sepay, N.; Halder, U.C. Silver nanoparticle modulates the aggregation of beta-lactoglobulin and induces to form rod-like aggregates. Int. J. Biol. Macromol., 2019, 125, 596-604.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.039] [PMID: 30528992]
[19]
Krebs, M.R.; Devlin, G.L.; Donald, A.M. Amyloid fibril-like structure underlies the aggregate structure across the pH range for β-lactoglobulin. Biophys. J., 2009, 96(12), 5013-5019.
[http://dx.doi.org/10.1016/j.bpj.2009.03.028] [PMID: 19527661]
[20]
Hamada, D.; Dobson, C.M. A kinetic study of β-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci., 2002, 11(10), 2417-2426.
[http://dx.doi.org/10.1110/ps.0217702] [PMID: 12237463]
[21]
Pal, S.; Maity, S.; Sardar, S.; Chakraborty, J.; Halder, U.C. Insight into the co-solvent induced conformational changes and aggregation of bovine β-lactoglobulin. Int. J. Biol. Macromol., 2016, 84, 121-134.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.055] [PMID: 26657584]
[22]
Lewis, D.J.; Day, T.M.; MacPherson, J.V.; Pikramenou, Z. Luminescent nanobeads: Attachment of surface reactive Eu(III) complexes to gold nanoparticles. Chem. Commun. , 2006, 13, 1433-1435.
[23]
Jiang, M.; Xie, M.X.; Zheng, D.; Liu, Y.; Li, X.Y.; Cheng, X. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. J. Mol. Struct., 2004, 692, 71-80.
[http://dx.doi.org/10.1016/j.molstruc.2004.01.003]
[24]
Rana, S.; Velappan, A.B.; Debnath, J.; Ghosh, K.S. Inhibition of copper-induced aggregation of human γD-crystallin by a diimine molecule and investigations on their molecular interactions. J. Biomol. Struct. Dyn., 2019, 1-7. [ahead of print
[http://dx.doi.org/10.1080/07391102.2019.1686426] [PMID: 31663821]
[25]
Lakowicz, J.R. Principles of fluorescence spectroscopy, 3rd ed; Springer: New York, 2006.
[http://dx.doi.org/10.1007/978-0-387-46312-4]
[26]
Palazolo, G.; Rodríguez, F.; Farruggia, B.; Picó, G.; Delorenzi, N. Heat treatment of β-lactoglobulin: Structural changes studied by partitioning and fluorescence. J. Agric. Food Chem., 2000, 48(9), 3817-3822.
[http://dx.doi.org/10.1021/jf991353o] [PMID: 10995276]
[27]
Albani, J.R.; Vogelaer, J.; Bretesche, L.; Kmiecik, D. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence. J. Pharm. Biomed. Anal., 2014, 91, 144-150.
[http://dx.doi.org/10.1016/j.jpba.2013.12.015] [PMID: 24463042]
[28]
Dufour, E.; Genot, C.; Haertlé, T. β-Lactoglobulin binding properties during its folding changes studied by fluorescence spectroscopy. Biochim. Biophys. Acta, 1994, 1205(1), 105-112.
[http://dx.doi.org/10.1016/0167-4838(94)90098-1] [PMID: 8142474]
[29]
Barik, A.; Mishra, B.; Kunwar, A.; Priyadarsini, K.I. Interaction of curcumin with human serum albumin: Thermodynamic properties, fluorescence energy transfer and denaturation effects. Chem. Phys. Lett., 2007, 436, 239-243.
[http://dx.doi.org/10.1016/j.cplett.2007.01.006]
[30]
Ghosh, N.; Mondal, R.; Mukherjee, S. Inverse temperature dependence in static quenching versus calorimetric exploration: Binding interaction of chloramphenicol to β-lactoglobulin. Langmuir, 2015, 31(29), 8074-8080.
[http://dx.doi.org/10.1021/acs.langmuir.5b02103] [PMID: 26145148]
[31]
Han, X.L.; Mei, P.; Liu, Y.; Xiao, Q.; Jiang, F.L.; Li, R. Binding interaction of quinclorac with bovine serum albumin: A biophysical study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(3), 781-787.
[http://dx.doi.org/10.1016/j.saa.2009.08.018] [PMID: 19729340]
[32]
Tian, F.F.; Jiang, F.L.; Han, X.L.; Xiang, C.; Ge, Y.S.; Li, J.H.; Zhang, Y.; Li, R.; Ding, X.L.; Liu, Y. Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. J. Phys. Chem. B, 2010, 114(46), 14842-14853.
[http://dx.doi.org/10.1021/jp105766n] [PMID: 21038894]
[33]
Valeur, B. Molecular fluorescence: Principles and applications; Wiley-VCH Verlag GmbH: Weinheim, 2001.
[http://dx.doi.org/10.1002/3527600248]
[34]
Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20(11), 3096-3102.
[http://dx.doi.org/10.1021/bi00514a017] [PMID: 7248271]
[35]
Das, S.; Bora, N.; Rohman, M.A.; Sharma, R.; Jha, A.N.; Singha Roy, A. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Phys. Chem. Chem. Phys., 2018, 20(33), 21668-21684.
[http://dx.doi.org/10.1039/C8CP02760A] [PMID: 30101248]
[36]
Bhattacharjee, C.; Saha, S.; Biswas, A.; Kundu, M.; Ghosh, L.; Das, K.P. Structural changes of β-lactoglobulin during thermal unfolding and refolding--an FT-IR and circular dichroism study. Protein J., 2005, 24(1), 27-35.
[http://dx.doi.org/10.1007/s10930-004-0603-z] [PMID: 15756815]
[37]
Whitmore, L.; Wallace, B.A. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res., 2004, 32(Web Server issue), W668-673.
[http://dx.doi.org/10.1093/nar/gkh371] [PMID: 15215473]
[38]
Qi, X.L.; Holt, C.; McNulty, D.; Clarke, D.T.; Brownlow, S.; Jones, G.R. Effect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: A test of the molten globule hypothesis. Biochem. J., 1997, 324(Pt 1), 341-346.
[http://dx.doi.org/10.1042/bj3240341] [PMID: 9164875]
[39]
Kelly, S.M.; Price, N.C. The application of circular dichroism to studies of protein folding and unfolding. Biochim. Biophys. Acta, 1997, 1338(2), 161-185.
[http://dx.doi.org/10.1016/S0167-4838(96)00190-2] [PMID: 9128135]
[40]
Creamer, L.K. Effect of sodium dodecyl sulfate and palmitic acid on the equilibrium unfolding of bovine β-lactoglobulin. Biochemistry, 1995, 34(21), 7170-7176.
[http://dx.doi.org/10.1021/bi00021a031] [PMID: 7766627]
[41]
Viseu, M.I.; Carvalho, T.I.; Costa, S.M.B. Conformational transitions in β-lactoglobulin induced by cationic amphiphiles: Equilibrium studies. Biophys. J., 2004, 86(4), 2392-2402.
[http://dx.doi.org/10.1016/S0006-3495(04)74296-4] [PMID: 15041677]
[42]
Ali, A.; Le Potier, I.; Huang, N.; Rosilio, V.; Cheron, M.; Faivre, V.; Turbica, I.; Agnely, F.; Mekhloufi, G. Effect of high pressure homogenization on the structure and the interfacial and emulsifying properties of β-lactoglobulin. Int. J. Pharm., 2018, 537(1-2), 111-121.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.019] [PMID: 29241702]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy