Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

The Effects of Lauric Acid on IPEC-J2 Cell Differentiation, Proliferation, and Death

Author(s): Yuan Yang, Jin Huang, Jianzhong Li, Huansheng Yang* and Yulong Yin

Volume 20, Issue 7, 2020

Page: [572 - 581] Pages: 10

DOI: 10.2174/1566524020666200128155115

Price: $65

Abstract

Background: Lauric acid (LA) has antimicrobial effects and the potential to replace antibiotics in feeds to prevent postweaning diarrhea and increase overall swine productivity. The effects of lauric acid on the intestinal epithelial cells remain unclear.

Methods and Results: This study investigates the effects of LA on pig intestinal epithelial cell line (IPEC-J2) differentiation, proliferation, and death and explores its underlying mechanisms. It was found that 0.25-0.1 mM LA promoted IPEC-J2 cell differentiation. At 1 mM or higher concentrations, it induced IPEC-J2 cell viability decreases, lipid accumulation, cell proliferation inhibition, and cell apoptosis. The cell death induced did not depend on caspase pathways.

The data demonstrated that LA induced the IPEC-J2 cell autophagy and impaired autophagy flux and autophagy plays a role in protecting against LA induced-cell death. p38 MAPK inhibitor SB202190 attenuated LA-reduced IPEC-J2 cell viability. This associated with an increase in autophagy level and a decrease in lipid accumulations and FABPI levels.

Conclusion: In summary, LA promoted the IPEC-J2 cell apoptosis depends on the p38 MAPK pathways and may involve autophagy and TG metabolism regulation.

Keywords: lauric acid, IPEC-J2 cell, p38 MAPK, triglyceride, FABPI, autophagy.

« Previous
[1]
Zentek J, Buchheit-Renko S, Ferrara F, Vahjen W, Van Kessel AG, Pieper R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim Health Res Rev 2011; 12(1): 83-93.
[http://dx.doi.org/10.1017/S1466252311000089] [PMID: 21676342]
[2]
Pluske J, Turpin D, Abraham S, Collins A, Dunshea F. Lauric acid, a potentially new feed additive for the Australian pork industry 2018.
[3]
Black JL, Williams BA, Gidley MJ. Metabolic regulation of feed intake. In: Voluntary feed intake in pigs, ed D Torrallardona, Roura. The Netherlands: Wageningen Academic Publishers 2009.
[4]
Little TJ, Russo A, Meyer JH, et al. Gastroenterology 2005; 133.
[5]
Nonaka Y, Takagi T, Inai M, et al. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line. J Oleo Sci 2016; 65(8): 693-9.
[http://dx.doi.org/10.5650/jos.ess16069] [PMID: 27430387]
[6]
Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 1972; 2(1): 23-8.
[http://dx.doi.org/10.1128/AAC.2.1.23] [PMID: 4670656]
[7]
Bartolotta S, García CC, Candurra NA, Damonte EB. Effect of fatty acids on arenavirus replication: inhibition of virus production by lauric acid. Arch Virol 2001; 146(4): 777-90.
[http://dx.doi.org/10.1007/s007050170146] [PMID: 11402863]
[8]
Huang CB, Alimova Y, Myers TM, Ebersole JL. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 2011; 56(7): 650-4.
[http://dx.doi.org/10.1016/j.archoralbio.2011.01.011] [PMID: 21333271]
[9]
Bergsson G, Arnfinnsson J, Steingrímsson O, Thormar H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob Agents Chemother 2001; 45(11): 3209-12.
[http://dx.doi.org/10.1128/AAC.45.11.3209-3212.2001] [PMID: 11600381]
[10]
Yata T, Endo Y, Sone M, Ogawara K, Higaki K, Kimura T. Amino acids protect epithelial cells from local toxicity by absorption enhancer, sodium laurate. J Pharm Sci 2001; 90(10): 1456-65.
[http://dx.doi.org/10.1002/jps.1097] [PMID: 11745705]
[11]
Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther 1998; 284(1): 362-9.
[PMID: 9435199]
[12]
Lappano R, Sebastiani A, Cirillo F, et al. The lauric acid-activated signaling prompts apoptosis in cancer cells. Cell Death Discov 2017; 3: 1-9.
[http://dx.doi.org/10.1038/cddiscovery.2017.63]
[13]
Sheela DL, Narayanankutty A, Nazeem PA, Raghavamenon AC, Muthangaparambil SR. Lauric acid induce cell death in colon cancer cells mediated by the epidermal growth factor receptor downregulation: An in silico and in vitro study. Hum Exp Toxicol 2019; 38(7): 753-61.
[http://dx.doi.org/10.1177/0960327119839185] [PMID: 30942101]
[14]
Hinnebusch BF, Siddique A, Henderson JW, et al. Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor. Am J Physiol Gastrointest Liver Physiol 2004; 286(1): G23-30.
[http://dx.doi.org/10.1152/ajpgi.00203.2003] [PMID: 12919939]
[15]
Diesing AK, Nossol C, Panther P, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2011; 200(1-2): 8-18.
[http://dx.doi.org/10.1016/j.toxlet.2010.10.006] [PMID: 20937367]
[16]
Liu FY, Tang XC, Deng M, et al. The tumor suppressor p53 regulates c-Maf and Prox-1 to control lens differentiation. Curr Mol Med 2012; 12(8): 917-28.
[http://dx.doi.org/10.2174/156652412802480835] [PMID: 22827438]
[17]
Roostaee A, Benoit YD, Boudjadi S, Beaulieu JF. Epigenetics in intestinal epithelial cell renewal. J Cell Physiol 2016; 231(11): 2361-7.
[http://dx.doi.org/10.1002/jcp.25401] [PMID: 27061836]
[18]
Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62(7): 1062-71.
[http://dx.doi.org/10.1136/gutjnl-2011-301364] [PMID: 22689519]
[19]
Singh K, Sharma A, Mir MC, et al. Autophagic flux determines cell death and survival in response to Apo2L/TRAIL (dulanermin). Mol Cancer 2014; 13: 70.
[20]
Wang TY, Liu M, Portincasa P, Wang DQ. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest 2013; 43(11): 1203-23.
[http://dx.doi.org/10.1111/eci.12161] [PMID: 24102389]
[21]
Santos AJM, Lo YH, Mah AT, Kuo CJ. The intestinal stem cell niche: Homeostasis and adaptations. Trends Cell Biol 2018; 28(12): 1062-78.
[http://dx.doi.org/10.1016/j.tcb.2018.08.001] [PMID: 30195922]
[22]
Fauser JK, Matthews GM, Cummins AG, Howarth GS. Induction of apoptosis by the medium-chain length fatty acid lauric acid in colon cancer cells due to induction of oxidative stress. Chemotherapy 2013; 59(3): 214-24.
[http://dx.doi.org/10.1159/000356067] [PMID: 24356281]
[23]
Lima TM, Kanunfre CC, Pompéia C, Verlengia R, Curi R. Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro 2002; 16(6): 741-7.
[http://dx.doi.org/10.1016/S0887-2333(02)00095-4] [PMID: 12423658]
[24]
Guo R, Lin B, Pan JF, et al. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy. Sci Rep 2016; 6: 32447.
[http://dx.doi.org/10.1038/srep32447]
[25]
Wang W-T, Han C, Sun Y-M, et al. Activation of the lysosome-associated membrane protein lamp5 by dot1l serves as a bodyguard for MLL fusion oncoproteins to evade degradation in leukemia. Clin Cancer Res 2019; 25(9): 2795-808.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1474] [PMID: 30651276]
[26]
Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury. Autophagy 2014; 10(12): 2208-22.
[http://dx.doi.org/10.4161/15548627.2014.981787] [PMID: 25484084]
[27]
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57(8): 1329-38.
[http://dx.doi.org/10.1194/jlr.R067595] [PMID: 27146479]
[28]
Hertzel AV, Smith LA, Berg AH, et al. Lipid metabolism and adipokine levels in fatty acid-binding protein null and transgenic mice. Am J Physiol Endocrinol Metab 2006; 290(5): E814-23.
[http://dx.doi.org/10.1152/ajpendo.00465.2005] [PMID: 16303844]
[29]
Erol E, Kumar LS, Cline GW, Shulman GI, Kelly DP, Binas B. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice. FASEB J 2004; 18(2): 347-9.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy