Review Article

用于药物再利用的网络工具:合作研究的成功例子

卷 28, 期 1, 2021

发表于: 28 January, 2020

页: [181 - 195] 页: 15

弟呕挨: 10.2174/0929867327666200128111925

价格: $65

摘要

计算方法已经被证明是一种互补的工具,在确定潜在的候选药物的再利用。然而,尽管迄今开发的方法提供了有趣的机会,并可能有助于解决制药部门面临的问题,但它们也有其局限性。事实上,必须解决从数据访问、标准化和集成到可靠和一致的验证方法的实施等具体挑战,以允许更大规模的系统使用。在这个迷你回顾中,我们涵盖了最近为解决这些挑战而开发的计算工具。这包括特定的数据库,这些数据库提供了对大量经整理的数据的可访问性,并提供了标准化的注释;基于web的工具集成了灵活的用户界面,以执行快速的计算性药物再利用实验;标准化的数据集,专门注释和平衡,以验证新的计算性药物再利用方法。有趣的是,这些新的数据库结合了越来越多的关于药物再利用研究结果的信息,可以用来进行荟萃分析,以确定与成功的药物再利用案例相关的关键属性。这些信息可以进一步用于设计评估方法,以计算再利用可能性的先验评估。

关键词: 药物再利用,基于网络的工具,数据库,计算方法,验证,数据集成。

[1]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[2]
Dudley, J.T.; Deshpande, T.; Butte, A.J. Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 2011, 12(4), 303-311.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[3]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[4]
Graul, A.I.; Revel, L.; Rosa, E.; Cruces, E. Overcoming the obstacles in the pharma/biotech industry: 2008 update. Drug News Perspect., 2009, 22(1), 39-51.
[http://dx.doi.org/10.1358/dnp.2009.22.1.1303817] [PMID: 19209298]
[5]
Schneider, G. Automating drug discovery. Nat. Rev. Drug Discov., 2018, 17(2), 97-113.
[http://dx.doi.org/10.1038/nrd.2017.232] [PMID: 29242609]
[6]
Paul, S.M.; Mytelka, D.S.; Dunwiddie, C.T.; Persinger, C.C.; Munos, B.H.; Lindborg, S.R.; Schacht, A.L. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Discov., 2010, 9(3), 203-214.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[7]
Munos, B.H.; Chin, W.W. How to revive breakthrough innovation in the pharmaceutical industry. Sci. Transl. Med., 2011, 3(89)89cm16
[http://dx.doi.org/10.1126/scitranslmed.3002273] [PMID: 21715677]
[8]
Mignani, S.; Huber, S.; Tomás, H.; Rodrigues, J.; Majoral, J.P. Why and how have drug discovery strategies in pharma changed? What are the new mindsets? Drug Discov. Today, 2016, 21(2), 239-249.
[http://dx.doi.org/10.1016/j.drudis.2015.09.007] [PMID: 26376356]
[9]
Tollman, P.; Morieux, Y.; Murphy, J.K.; Schulze, U.; Identifying, R. D outliers. Nat. Rev. Drug Discov., 2011, 10(9), 653-654.
[http://dx.doi.org/10.1038/nrd3555] [PMID: 21878973]
[10]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[11]
Novac, N. Challenges and opportunities of drug repositioning. Trends Pharmacol. Sci., 2013, 34(5), 267-272.
[http://dx.doi.org/10.1016/j.tips.2013.03.004] [PMID: 23582281]
[12]
Mucke, H.A.M. Drug repurposing patent applications October-December 2015. Assay Drug Dev. Technol., 2016, 14(5), 308-312.
[http://dx.doi.org/10.1089/adt.2016.29041.pq4] [PMID: 30909710]
[13]
Naylor, S.; Kaupi, M.J.; Schonfeld, J.M. Therapeutic drug repurposing, repositioning, and rescue: part III- market exclusivity using intellectual property and regulatory pathways. Drug Discov. World, 2015, 16(3), 62-69.
[14]
Vortherms, A.R.; Dang, H.N.; Doyle, R.P. Anticancer conjugates and cocktails based on methotrexate and nucleoside synergism. Clin. Med. Oncol., 2009, 3, 19-26.
[http://dx.doi.org/10.4137/CMO.S2113] [PMID: 20689607]
[15]
Gupta, S.C.; Sung, B.; Prasad, S.; Webb, L.J.; Aggarwal, B.B. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol. Sci., 2013, 34(9), 508-517.
[http://dx.doi.org/10.1016/j.tips.2013.06.005] [PMID: 23928289]
[16]
Yildiz, A.; Guleryuz, S.; Ankerst, D.P.; Ongür, D.; Renshaw, P.F. Protein kinase C inhibition in the treatment of mania: a double-blind, placebo-controlled trial of tamoxifen. Arch. Gen. Psychiatry, 2008, 65(3), 255-263.
[http://dx.doi.org/10.1001/archgenpsychiatry.2007.43] [PMID: 18316672]
[17]
Nishimura, Y.; Tagawa, M.; Ito, H.; Tsuruma, K.; Hara, H. Overcoming obstacles to drug repositioning in Japan. Front. Pharmacol., 2017, 8, 729.
[http://dx.doi.org/10.3389/fphar.2017.00729] [PMID: 29075191]
[18]
Yarchoan, M.; Arnold, S.E. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes, 2014, 63(7), 2253-2261.
[http://dx.doi.org/10.2337/db14-0287] [PMID: 24931035]
[19]
Mucke, H.A.M. Drug repurposing for vascular dementia: overview and current developments. Future Neurol., 2016, 11(3), 215-225.
[http://dx.doi.org/10.2217/fnl-2016-0001 ]
[20]
Lee, H.M.; Kim, Y. drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders. Schizophr. Res. Treatment, 2016.
[http://dx.doi.org/doi:10.1155/2016/6378137] [PMID: 27073698]
[21]
Is there a place for duloxetine? Drug Ther. Bull., 2007, 45(4), 29-32.
[http://dx.doi.org/10.1136/dtb.2007.45429] [PMID: 17451072]
[22]
Ho, L.Y.; Mok, C.C.; To, C.H.; Anselm, M.; Cheung, M.Y.; Yu, K.L. Rituximab for refractory rheumatoid arthritis: a 24-week open-label prospective study. Open Rheumatol. J., 2007, 1, 1-4.
[http://dx.doi.org/10.2174/1874312900701010001] [PMID: 19088893]
[23]
O’Donnell, E.F.; Koch, D.C.; Bisson, W.H.; Jang, H.S.; Kolluri, S.K. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis., 2014, 5(1)e1038
[http://dx.doi.org/10.1038/cddis.2013.549] [PMID: 24481452]
[24]
Ayzenberg, I.; Hoepner, R.; Kleiter, I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther. Clin. Risk Manag., 2016, 12, 261-272.
[http://dx.doi.org/10.2147/tcrm.s65558] [PMID: 26929636]
[25]
McMahon, C.G. Efficacy of dapoxetine in the treatment of premature ejaculation. Clin. Med. Insights Reprod. Health, 2011, 5, 25-39.
[http://dx.doi.org/10.4137/CMRH.S7337] [PMID: 24453509]
[26]
Smith, S.M.; Meyer, M.; Trinkley, K.E. Phentermine/topiramate for the treatment of obesity. Ann. Pharmacother., 2013, 47(3), 340-349.
[http://dx.doi.org/10.1345/aph.1R501] [PMID: 23482732]
[27]
Comte-Perret, S.; Zanchi, A.; Gomez, F. Long-term low-dose ketoconazole treatment in bilateral macronodular adrenal hyperplasia. Endocrinol. Diabetes Metab. Case Rep., 2014, 2014140083
[http://dx.doi.org/10.1530/EDM-14-0083] [PMID: 25535576]
[28]
Mazumdar, D.; Banerjee, S.; Bhattacharya, A.; Das, T. Repurposing of aspirin to regress tumor from its ‘Root’ - the cancer stem cells. Austin J. Pharmacol. Ther., 2017, 5(2), 1096.
[29]
Jin, G.; Wong, S.T.C. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug Discov. Today, 2014, 19(5), 637-644.
[http://dx.doi.org/10.1016/j.drudis.2013.11.005] [PMID: 24239728]
[30]
Snell, T.W.; Johnston, R.K.; Srinivasan, B.; Zhou, H.; Gao, M.; Skolnick, J. Repurposing FDA-approved drugs for anti-aging therapies. Biogerontology, 2016, 17(5-6), 907-920.
[http://dx.doi.org/10.1007/s10522-016-9660-x] [PMID: 27484416]
[31]
Kato, S.; Moulder, S.L.; Ueno, N.T.; Wheler, J.J.; Meric-Bernstam, F.; Kurzrock, R.; Janku, F. Challenges and perspective of drug repurposing strategies in early phase clinical trials. Oncoscience, 2015, 2(6), 576-580.
[http://dx.doi.org/10.18632/oncoscience.173] [PMID: 26244164]
[32]
Naik, R.R.; Luo, T.; Kohandel, M.; Bapat, S.A. Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol. Res., 2016, 111, 815-819.
[http://dx.doi.org/10.1016/j.phrs.2016.07.018] [PMID: 27431330]
[33]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[34]
Heckman-Stoddard, B.M.; Gandini, S.; Puntoni, M.; Dunn, B.K.; DeCensi, A.; Szabo, E. Repurposing old drugs to chemoprevention: the case of metformin. Semin. Oncol., 2016, 43(1), 123-133.
[http://dx.doi.org/10.1053/j.seminoncol.2015.09.009] [PMID: 26970131]
[35]
Gilbert, D.C.; Vale, C.; Haire, R.; Coyle, C.; Langley, R.E. Repurposing vitamin D as an anticancer drug. Clin. Oncol. (R. Coll. Radiol.), 2016, 28(1), 36-41.
[http://dx.doi.org/10.1016/j.clon.2015.10.004] [PMID: 26520788]
[36]
Guney, E.; Menche, J.; Vidal, M.; Barábasi, A.L. Network-based in silico drug efficacy screening. Nat. Commun., 2016, 7, 10331.
[http://dx.doi.org/10.1038/ncomms10331] [PMID: 26831545]
[37]
Kaplan, W.; Wirtz, V.; Mantel, A.; Batrice, P.S.U. Priority Medicines for Europe and the World Update 2013; World Health Organization: Geneva, Switzerland, 2013.
[38]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[39]
Wu, Z.; Wang, Y.; Chen, L. Network-based drug repositioning. Mol. Biosyst., 2013, 9(6), 1268-1281.
[http://dx.doi.org/10.1039/c3mb25382a] [PMID: 23493874]
[40]
Chen, B.; Butte, A.J. Leveraging big data to transform target selection and drug discovery. Clin. Pharmacol. Ther., 2016, 99(3), 285-297.
[http://dx.doi.org/10.1002/cpt.318] [PMID: 26659699]
[41]
Zou, J.; Zheng, M.W.; Li, G.; Su, Z.G. Advanced systems biology methods in drug discovery and translational biomedicine. BioMed Res. Int., 2013, 2013742835
[http://dx.doi.org/10.1155/2013/742835] [PMID: 24171171]
[42]
Prathipati, P.; Mizuguchi, K. Systems biology approaches to a rational drug discovery paradigm. Curr. Top. Med. Chem., 2016, 16(9), 1009-1025.
[http://dx.doi.org/10.2174/1568026615666150826114524] [PMID: 26306988]
[43]
Lavecchia, A.; Cerchia, C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov. Today, 2016, 21(2), 288-298.
[http://dx.doi.org/10.1016/j.drudis.2015.12.007] [PMID: 26743596]
[44]
Cichonska, A.; Rousu, J.; Aittokallio, T. Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin. Drug Discov., 2015, 10(12), 1333-1345.
[http://dx.doi.org/10.1517/17460441.2015.1096926] [PMID: 26429153]
[45]
Fu, C.; Jin, G.; Gao, J.; Zhu, R.; Ballesteros-Villagrana, E.; Wong, S.T. DrugMap Central: an online query and visualization tool to facilitate drug repositioning studies. Bioinformatics, 2013, 29(14), 1834-1836.
[http://dx.doi.org/10.1093/bioinformatics/btt279] [PMID: 23681121]
[46]
Luo, H.; Chen, J.; Shi, L.; Mikailov, M.; Zhu, H.; Wang, K.; He, L.; Yang, L. DRAR-CPI: a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res, 2011, 39(Web Server issue), 492-498.
[http://dx.doi.org/10.1093/nar/gkr299 ] [PMID: 21558322]
[47]
Pihan, E.; Colliandre, L.; Guichou, J.F.; Douguet, D. e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics, 2012, 28(11), 1540-1541.
[http://dx.doi.org/10.1093/bioinformatics/bts186] [PMID: 22539672]
[48]
Lee, H.S.; Bae, T.; Lee, J.H.; Kim, D.G.; Oh, Y.S.; Jang, Y.; Kim, J.T.; Lee, J.J.; Innocenti, A.; Supuran, C.T.; Chen, L.; Rho, K.; Kim, S. Rational drug repositioning guided by an integrated pharmacological network of protein, disease and drug. BMC Syst. Biol., 2012, 6, 80.
[http://dx.doi.org/10.1186/1752-0509-6-80] [PMID: 22748168]
[49]
von Eichborn, J.; Murgueitio, M.S.; Dunkel, M.; Koerner, S.; Bourne, P.E.; Preissner, R. PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res., 2011, 39(Database issue), D1060-D1066.
[http://dx.doi.org/10.1093/nar/gkq1037] [PMID: 21071407]
[50]
Nagaraj, A.B.; Wang, Q.Q.; Joseph, P.; Zheng, C.; Chen, Y.; Kovalenko, O.; Singh, S.; Armstrong, A.; Resnick, K.; Zanotti, K.; Waggoner, S.; Xu, R.; DiFeo, A. Using a novel computational drug-repositioning approach (DrugPredict) to rapidly identify potent drug candidates for cancer treatment. Oncogene, 2018, 37(3), 403-414.
[http://dx.doi.org/10.1038/onc.2017.328] [PMID: 28967908]
[51]
Shameer, K.; Readhead, B.; Dudley, J.T. Computational and experimental advances in drug repositioning for accelerated therapeutic stratification. Curr. Top. Med. Chem., 2015, 15(1), 5-20.
[http://dx.doi.org/10.2174/1568026615666150112103510] [PMID: 25579574]
[52]
Alaimo, S.; Giugno, R.; Pulvirenti, A. Recommendation techniques for drug-target interaction prediction and drug repositioning. Methods Mol. Biol., 2016, 1415, 441-462.
[http://dx.doi.org/10.1007/978-1-4939-3572-7_23] [PMID: 27115647]
[53]
González-Díaz, H.; Prado-Prado, F.; García-Mera, X.; Alonso, N.; Abeijón, P.; Caamaño, O.; Yáñez, M.; Munteanu, C.R.; Pazos, A.; Dea-Ayuela, M.A.; Gómez-Muñoz, M.T.; Garijo, M.M.; Sansano, J.; Ubeira, F.M. MIND-BEST: Web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae. J. Proteome Res., 2011, 10(4), 1698-1718.
[http://dx.doi.org/10.1021/pr101009e] [PMID: 21184613]
[54]
Vanhaelen, Q.; Mamoshina, P.; Aliper, A.M.; Artemov, A.; Lezhnina, K.; Ozerov, I.; Labat, I.; Zhavoronkov, A. Design of efficient computational workflows for in silico drug repurposing. Drug Discov. Today, 2017, 22(2), 210-222.
[http://dx.doi.org/10.1016/j.drudis.2016.09.019] [PMID: 27693712]
[55]
Jahchan, N.S.; Dudley, J.T.; Mazur, P.K.; Flores, N.; Yang, D.; Palmerton, A.; Zmoos, A.F.; Vaka, D.; Tran, K.Q.; Zhou, M.; Krasinska, K.; Riess, J.W.; Neal, J.W.; Khatri, P.; Park, K.S.; Butte, A.J.; Sage, J. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov., 2013, 3(12), 1364-1377.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0183] [PMID: 24078773]
[56]
Putin, E.; Mamoshina, P.; Aliper, A.; Korzinkin, M.; Moskalev, A.; Kolosov, A.; Ostrovskiy, A.; Cantor, C.; Vijg, J.; Zhavoronkov, A. Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY), 2016, 8(5), 1021-1033.
[http://dx.doi.org/10.18632/aging.100968] [PMID: 27191382]
[57]
Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm., 2016, 13(7), 2524-2530.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248] [PMID: 27200455]
[58]
Bloom, B.E. Creating new economic incentives for repurposing generic drugs for unsolved diseases using social finance. Assay Drug Dev. Technol., 2015, 13(10), 606-611.
[http://dx.doi.org/10.1089/adt.2015.29015.beddrrr] [PMID: 26284286]
[59]
Mucke, H.A.; Mucke, E. Sources and targets for drug repurposing: landscaping transitions in therapeutic space. Assay Drug Dev. Technol., 2015, 13(6), 319-324.
[http://dx.doi.org/10.1089/adt.2015.29009.hmedrrr] [PMID: 26241211]
[60]
Shameer, K.; Glicksberg, B.S.; Hodos, R.; Johnson, K.W.; Badgeley, M.A.; Readhead, B.; Tomlinson, M.S.; O’Connor, T.; Miotto, R.; Kidd, B.A.; Chen, R.; Ma’ayan, A.; Dudley, J.T. Systematic analyses of drugs and disease indications in RepurposeDB reveal pharmacological, biological and epidemiological factors influencing drug repositioning. Brief. Bioinform., 2018, 19(4), 656-678.
[http://dx.doi.org/10.1093/bib/bbw136] [PMID: 28200013]
[61]
Ursu, O.; Holmes, J.; Knockel, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Nelson, S.J.; Oprea, T.I. DrugCentral: online drug compendium. Nucleic Acids Res., 2017, 45(D1), D932-D939.
[http://dx.doi.org/10.1093/nar/gkw993] [PMID: 27789690]
[62]
Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.; Maguire, M.; Papa, E.; Pierleoni, A.; Pignatelli, M.; Platt, T.; Rowland, F.; Wankar, P.; Bento, A.P.; Burdett, T.; Fabregat, A.; Forbes, S.; Gaulton, A.; Gonzalez, C.Y.; Hermjakob, H.; Hersey, A.; Jupe, S.; Kafkas, Ş.; Keays, M.; Leroy, C.; Lopez, F.J.; Magarinos, M.P.; Malone, J.; McEntyre, J.; Munoz-Pomer Fuentes, A.; O’Donovan, C.; Papatheodorou, I.; Parkinson, H.; Palka, B.; Paschall, J.; Petryszak, R.; Pratanwanich, N.; Sarntivijal, S.; Saunders, G.; Sidiropoulos, K.; Smith, T.; Sondka, Z.; Stegle, O.; Tang, Y.A.; Turner, E.; Vaughan, B.; Vrousgou, O.; Watkins, X.; Martin, M.J.; Sanseau, P.; Vamathevan, J.; Birney, E.; Barrett, J.; Dunham, I. Open targets: a platform for therapeutic target identification and validation. Nucleic Acids Res., 2017, 45(D1), D985-D994.
[http://dx.doi.org/doi:10.1093/nar/gkw1055] [PMID: 27899665]
[63]
Corsello, S.M.; Bittker, J.A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J.E.; Johnston, S.E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C.C.; Subramanian, A.; Golub, T.R. The drug repurposing hub: a next-generation drug library and information resource. Nat. Med., 2017, 23(4), 405-408.
[http://dx.doi.org/10.1038/nm.4306] [PMID: 28388612]
[64]
Cho, S.J. COMBINE: a novel drug discovery platform designed to capture insight and experience of users. arXiv, 2017, arXiv-1711.
[65]
Brown, A.S.; Kong, S.W.; Kohane, I.S.; Patel, C.J. ksRepo: a generalized platform for computational drug repositioning. BMC Bioinformatics, 2016, 17, 78.
[http://dx.doi.org/10.1186/s12859-016-0931-y] [PMID: 26860211]
[66]
Lee, B.K.; Tiong, K.H.; Chang, J.K.; Liew, C.S.; Abdul Rahman, Z.A.; Tan, A.C.; Khang, T.F.; Cheong, S.C. DeSigN: connecting gene expression with therapeutics for drug repurposing and development. BMC Genomics, 2017, 18(Suppl. 1), 934.
[http://dx.doi.org/10.1186/s12864-016-3260-7] [PMID: 28198666]
[67]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[68]
Moosavinasab, S.; Patterson, J.; Strouse, R.; Rastegar-Mojarad, M.; Regan, K.; Payne, P.R.O.; Huang, Y.; Lin, S.M. ‘RE:fine drugs’: an interactive dashboard to access drug repurposing opportunities. Database (Oxford), 2016, 2016baw083
[http://dx.doi.org/10.1093/database/baw083] [PMID: 27189611]
[69]
Sanseau, P.; Agarwal, P.; Barnes, M.R.; Pastinen, T.; Richards, J.B.; Cardon, L.R.; Mooser, V. Use of genome-wide association studies for drug repositioning. Nat. Biotechnol., 2012, 30(4), 317-320.
[http://dx.doi.org/10.1038/nbt.2151] [PMID: 22491277]
[70]
Andronis, C.; Sharma, A.; Virvilis, V.; Deftereos, S.; Persidis, A. Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform., 2011, 12(4), 357-368.
[http://dx.doi.org/10.1093/bib/bbr005] [PMID: 21712342]
[71]
Tari, L.; Vo, N.; Liang, S.; Patel, J.; Baral, C.; Cai, J. Identifying novel drug indications through automated reasoning. PLoS One, 2012, 7(7)e40946
[http://dx.doi.org/10.1371/journal.pone.0040946] [PMID: 22911721]
[72]
Tari, L.B.; Patel, J.H. Systematic drug repurposing through text mining. Methods Mol. Biol., 2014, 1159, 253-267.
[http://dx.doi.org/10.1007/978-1-4939-0709-0_14] [PMID: 24788271]
[73]
Xu, R.; Wang, Q. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles. J. Biomed. Inform., 2015, 53, 128-135.
[http://dx.doi.org/10.1016/j.jbi.2014.10.002] [PMID: 25445920]
[74]
Yang, H.T.; Ju, J.H.; Wong, Y.T.; Shmulevich, I.; Chiang, J.H. Literature-based discovery of new candidates for drug repurposing. Brief. Bioinform., 2017, 18(3), 488-497.
[http://dx.doi.org/10.1093/bib/bbw030] [PMID: 27113728]
[75]
Brown, A.S.; Patel, C.J. A review of validation strategies for computational drug repositioning. Brief. Bioinform., 2018, 19(1), 174-177.
[http://dx.doi.org/10.1093/bib/bbw110] [PMID: 27881429]
[76]
Wu, H.; Huang, J.; Zhong, Y.; Huang, Q. DrugSig: A resource for computational drug repositioning utilizing gene expression signatures. PLoS One, 2017, 12(5)e0177743
[http://dx.doi.org/10.1371/journal.pone.0177743] [PMID: 28562632]
[77]
Liu, H.; Sun, J.; Guan, J.; Zheng, J.; Zhou, S. Improving compound-protein interaction prediction by building up highly credible negative samples. Bioinformatics, 2015, 31(12), i221-i229.
[http://dx.doi.org/10.1093/bioinformatics/btv256] [PMID: 26072486]
[78]
Brown, A.S.; Patel, C.J. A standard database for drug repositioning. Sci. Data, 2017, 4170029
[http://dx.doi.org/10.1038/sdata.2017.29] [PMID: 28291243]
[79]
Vanhaelen, Q., Ed.; Computational Methods for Drug Repurposing, MIMB, 1903; Humana Press: New York, 2019.
[http://dx.doi.org/doi:10.1007/978-1-4939-8955-3]
[80]
Sagers, J.E.; Brown, A.S.; Vasilijic, S.; Lewis, R.M.; Sahin, M.I.; Landegger, L.D.; Perlis, R.H.; Kohane, I.S.; Welling, D.B.; Patel, C.J.; Stankovic, K.M. Computational repositioning and preclinical validation of mifepristone for human vestibular schwannoma. Sci. Rep., 2018, 8(1), 5437.
[http://dx.doi.org/10.1038/s41598-018-23609-7] [PMID: 29615643]
[81]
Hurle, M.R.; Yang, L.; Xie, Q.; Rajpal, D.K.; Sanseau, P.; Agarwal, P. Computational drug repositioning: from data to therapeutics. Clin. Pharmacol. Ther., 2013, 93(4), 335-341.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]
[82]
Zhu, F.; Li, X.X.; Yang, S.Y.; Chen, Y.Z. Clinical success of drug targets prospectively predicted by in silico study. Trends Pharmacol. Sci., 2018, 39(3), 229-231.
[http://dx.doi.org/10.1016/j.tips.2017.12.002] [PMID: 29295742]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy