摘要
再生医学代表了一个新兴的多学科领域,将工程方法和生命科学的复杂性结合在一起,形成对微/纳米环境下结构-性能关系的统一的基本理解,以开发下一代支架和水凝胶来恢复或改善组织功能。壳聚糖具有一些独特的物理化学性质,使其成为多种应用领域的理想多糖,如生物医学、食品、保健品、农业、包装、涂料等。然而,壳聚糖在再生医学中的应用由于其机械性能、屏障性能和热性能的不足而受到限制。纤维素纳米材料因其优异的机械强度、易化学改性、生物相容性和与壳聚糖的良好相互作用,成为制备壳聚糖/壳聚糖支架和水凝胶的理想材料。壳聚糖/CNs生物纳米复合材料独特的力学和生物特性使其成为开发下一代再生医学应用生物支架和水凝胶的首选材料。本文综述了壳聚糖/CNs纳米复合材料的制备方法、力学性能、形态、细胞毒性/生物相容性等在再生医学中的应用,包括组织工程和创面敷料的应用。
关键词: 纤维素,纳米材料,形态,细胞毒性,生物医学应用,多糖。
[1]
Sainitya, R.; Sriram, M.; Kalyanaraman, V.; Dhivya, S.; Saravanan, S.; Vairamani, M.; Sastry, T.P.; Selvamurugan, N. Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int. J. Biol. Macromol., 2015, 80, 481-488.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.016] [PMID: 26188305]
[http://dx.doi.org/10.1016/j.ijbiomac.2015.07.016] [PMID: 26188305]
[2]
Rhim, J-W. Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr. Polym., 2011, 86(2), 691-699.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.010]
[http://dx.doi.org/10.1016/j.carbpol.2011.05.010]
[3]
Khan, A.; Vu, K.D.; Chauve, G.; Bouchard, J.; Riedl, B.; Lacroix, M. Optimization of microfluidization for the homogeneous distribution of cellulose nanocrystals (CNCs) in biopolymeric matrix. Cellulose, 2014, 21(5), 3457-3468.
[http://dx.doi.org/10.1007/s10570-014-0361-9]
[http://dx.doi.org/10.1007/s10570-014-0361-9]
[4]
Kim, J.; Cai, Z.; Chen, Y. Biocompatible bacterial cellulose composites for biomedical application. J. Nanotechnol. Eng. Med., 2010, 1(1) 011006
[http://dx.doi.org/10.1115/1.4000062]
[http://dx.doi.org/10.1115/1.4000062]
[5]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009]
[6]
Rhim, J-W.; Hong, S-I.; Park, H-M.; Ng, P.K.W. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem., 2006, 54(16), 5814-5822.
[http://dx.doi.org/10.1021/jf060658h] [PMID: 16881682]
[http://dx.doi.org/10.1021/jf060658h] [PMID: 16881682]
[7]
Khan, A.; Khan, R.A.; Salmieri, S.; Le Tien, C.; Riedl, B.; Bouchard, J.; Chauve, G.; Tan, V.; Kamal, M.R.; Lacroix, M. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr. Polym., 2012, 90(4), 1601-1608.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.037] [PMID: 22944422]
[http://dx.doi.org/10.1016/j.carbpol.2012.07.037] [PMID: 22944422]
[8]
Ling, S.; Chen, W.; Fan, Y.; Zheng, K.; Jin, K.; Yu, H.; Buehler, M.J.; Kaplan, D.L. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog. Polym. Sci., 2018, 85, 1-56.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.06.004] [PMID: 31915410]
[http://dx.doi.org/10.1016/j.progpolymsci.2018.06.004] [PMID: 31915410]
[9]
Gao, J.; Li, Q.; Chen, W.; Liu, Y.; Yu, H. Self-assembly of nanocellulose and indomethacin into hierarchically ordered structures with high encapsulation efficiency for sustained release applications. ChemPlusChem, 2014, 79(5), 725-731.
[http://dx.doi.org/10.1002/cplu.201300434]
[http://dx.doi.org/10.1002/cplu.201300434]
[10]
Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K.C. Recent advances in the application of cellulose nanocrystals. Curr. Opin. Colloid Interface Sci., 2017, 29, 32-45.
[http://dx.doi.org/10.1016/j.cocis.2017.01.005]
[http://dx.doi.org/10.1016/j.cocis.2017.01.005]
[11]
Khan, A.; Wen, Y.; Huq, T.; Ni, Y. Cellulosic nanomaterials in food and nutraceutical applications: a review. J. Agric. Food Chem., 2018, 66(1), 8-19.
[http://dx.doi.org/10.1021/acs.jafc.7b04204] [PMID: 29251504]
[http://dx.doi.org/10.1021/acs.jafc.7b04204] [PMID: 29251504]
[12]
Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W.; Zou, X.; Aspler, J.; Ni, Y. 3D printing using plant-derived cellulose and its derivatives: A review. Carbohydr. Polym., 2019, 203, 71-86.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.027] [PMID: 30318237]
[http://dx.doi.org/10.1016/j.carbpol.2018.09.027] [PMID: 30318237]
[13]
Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.L.; Heux, L.; Dubreuil, F.; Rochas, C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 2008, 9(1), 57-65.
[http://dx.doi.org/10.1021/bm700769p] [PMID: 18052127]
[http://dx.doi.org/10.1021/bm700769p] [PMID: 18052127]
[14]
Li, X.; Liu, Y.; Yu, Y.; Chen, W.; Liu, Y.; Yu, H. Nanoformulations of quercetin and cellulose nanofibers as healthcare supplements with sustained antioxidant activity. Carbohydr. Polym., 2019, 207, 160-168.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.084] [PMID: 30599995]
[http://dx.doi.org/10.1016/j.carbpol.2018.11.084] [PMID: 30599995]
[15]
Azarniya, A.; Eslahi, N.; Mahmoudi, N.; Simchi, A. Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos., Part A Appl. Sci. Manuf., 2016, 85, 113-122.
[http://dx.doi.org/10.1016/j.compositesa.2016.03.011]
[http://dx.doi.org/10.1016/j.compositesa.2016.03.011]
[16]
He, J.X.; Tan, W.L.; Han, Q.M.; Cui, S.Z.; Shao, W.; Sang, F. Fabrication of silk fibroin/cellulose whiskers-chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J. Mater. Sci., 2016, 51(9), 4399-4410.
[http://dx.doi.org/10.1007/s10853-016-9752-7]
[http://dx.doi.org/10.1007/s10853-016-9752-7]
[17]
Wang, Y.; Uetani, K.; Liu, S.; Zhang, X.; Wang, Y.; Lu, P.; Wei, T.; Fan, Z.; Shen, J.; Yu, H. Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose. ChemNanoMat, 2017, 3(2), 98-108.
[http://dx.doi.org/10.1002/cnma.201600266]
[http://dx.doi.org/10.1002/cnma.201600266]
[18]
Ko, S.W.; Soriano, J.P.E.; Lee, J.Y.; Unnithan, A.R.; Park, C.H.; Kim, C.S. Nature derived scaffolds for tissue engineering applications: Design and fabrication of a composite scaffold incorporating chitosan-g-d,l-lactic acid and cellulose nanocrystals from Lactuca sativa L. cv green leaf. Int. J. Biol. Macromol., 2018, 110, 504-513.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.109] [PMID: 29054519]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.109] [PMID: 29054519]
[19]
Sampath, U.G.T.M.; Ching, Y.C.; Chuah, C.H.; Singh, R.; Lin, P.C. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose, 2017, 24(5), 2215-2228.
[http://dx.doi.org/10.1007/s10570-017-1251-8]
[http://dx.doi.org/10.1007/s10570-017-1251-8]
[20]
Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym., 2019, 209, 130-144.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[http://dx.doi.org/10.1016/j.carbpol.2019.01.020] [PMID: 30732792]
[21]
Fu, L-H.; Qi, C.; Ma, M-G.; Wan, P. Multifunctional cellulose-based hydrogels for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(10), 1541-1562.
[http://dx.doi.org/10.1039/C8TB02331J] [PMID: 32254901]
[http://dx.doi.org/10.1039/C8TB02331J] [PMID: 32254901]
[22]
Anitha, A.; Sowmya, S.; Kumar, P.T.S.; Deepthi, S.; Chennazhi, K.P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci., 2014, 39(9), 1644-1667.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.02.008]
[http://dx.doi.org/10.1016/j.progpolymsci.2014.02.008]
[23]
Shahabipour, F.; Banach, M.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering. Int. J. Cardiol., 2017, 228, 319-326.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.210] [PMID: 27866022]
[http://dx.doi.org/10.1016/j.ijcard.2016.11.210] [PMID: 27866022]
[24]
Adekogbe, I.; Ghanem, A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials, 2005, 26(35), 7241-7250.
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.043] [PMID: 16011846]
[http://dx.doi.org/10.1016/j.biomaterials.2005.05.043] [PMID: 16011846]
[25]
Ma, L.; Gao, C.; Mao, Z.; Zhou, J.; Shen, J.; Hu, X.; Han, C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 2003, 24(26), 4833-4841.
[http://dx.doi.org/10.1016/S0142-9612(03)00374-0] [PMID: 14530080]
[http://dx.doi.org/10.1016/S0142-9612(03)00374-0] [PMID: 14530080]
[26]
Freyman, T.M.; Yannas, I.V.; Gibson, L.J. Cellular materials as porous scaffolds for tissue engineering. Prog. Mater. Sci., 2001, 46(3-4), 273-282.
[http://dx.doi.org/10.1016/S0079-6425(00)00018-9]
[http://dx.doi.org/10.1016/S0079-6425(00)00018-9]
[27]
Kanimozhi, K.; Khaleel Basha, S.; Sugantha Kumari, V.; Kaviyarasu, K.; Maaza, M. In vitro cytocompatibility of chitosan/PVA/methylcellulose - Nanocellulose nanocomposites scaffolds using L929 fibroblast cells. Appl. Surf. Sci., 2018, 449, 574-583.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.197]
[http://dx.doi.org/10.1016/j.apsusc.2017.11.197]
[28]
Kawasaki, T.; Nakaji-Hirabayashi, T.; Masuyama, K.; Fujita, S.; Kitano, H. Complex film of chitosan and carboxymethyl cellulose nanofibers. Colloids Surf. B Biointerfaces, 2016, 139, 95-99.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.056] [PMID: 26700238]
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.056] [PMID: 26700238]
[29]
Li, Z.; Ramay, H.R.; Hauch, K.D.; Xiao, D.; Zhang, M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005, 26(18), 3919-3928.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.062] [PMID: 15626439]
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.062] [PMID: 15626439]
[30]
Li, G.; Nandgaonkar, A.G.; Habibi, Y.; Krause, W.E.; Wei, Q.; Lucia, L.A. An environmentally benign approach to achieving vectorial alignment and high microporosity in bacterial cellulose/chitosan scaffolds. RSC Advances, 2017, 7(23), 13678-13688.
[http://dx.doi.org/10.1039/C6RA26049G]
[http://dx.doi.org/10.1039/C6RA26049G]
[31]
Ridolfi, D.M.; Lemes, A.P.; de Oliveira, S.; Justo, G.Z.; Palladino, M.V.; Durán, N. Electrospun poly(ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose, 2017, 24(8), 3353-3365.
[http://dx.doi.org/10.1007/s10570-017-1362-2]
[http://dx.doi.org/10.1007/s10570-017-1362-2]
[32]
Yan, H.; Chen, X.; Feng, M.; Shi, Z.; Zhang, D.; Lin, Q. Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering. Mater. Lett., 2017, 209, 492-496.
[http://dx.doi.org/10.1016/j.matlet.2017.08.093]
[http://dx.doi.org/10.1016/j.matlet.2017.08.093]
[33]
Lee, H.; Kim, G. Cryogenically fabricated three-dimensional chitosan scaffolds with pore size-controlled structures for biomedical applications. Carbohydr. Polym., 2011, 85(4), 817-823.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.001]
[http://dx.doi.org/10.1016/j.carbpol.2011.04.001]
[34]
Pinho, E.; Soares, G. Functionalization of cotton cellulose for improved wound healing. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(13), 1887-1898.
[http://dx.doi.org/10.1039/C8TB00052B] [PMID: 32254354]
[http://dx.doi.org/10.1039/C8TB00052B] [PMID: 32254354]
[35]
Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym., 2016, 146, 427-434.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.002] [PMID: 27112893]
[http://dx.doi.org/10.1016/j.carbpol.2016.03.002] [PMID: 27112893]
[36]
Czaja, W.K.; Young, D.J.; Kawecki, M.; Brown, R.M., Jr The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1), 1-12.
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[http://dx.doi.org/10.1021/bm060620d] [PMID: 17206781]
[37]
Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv., 2011, 29(3), 322-337.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.005] [PMID: 21262336]
[38]
Poonguzhali, R.; Basha, S.K.; Kumari, V.S. Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. Int. J. Biol. Macromol., 2017, 105(Pt 1), 111-120.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.006] [PMID: 28698076]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.006] [PMID: 28698076]
[39]
Haider, A.; Haider, S.; Kang, I.K.; Kumar, A.; Kummara, M.R.; Kamal, T.; Han, S.S. A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. Int. J. Biol. Macromol., 2018, 108, 455-461.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.022] [PMID: 29222019]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.022] [PMID: 29222019]
[40]
Ardila, N.; Medina, N.; Arkoun, M.; Ajji, A.; Panchal, C.J. Chitosan - bacterial nanocellulose nanofibrous structures for potential wound dressing applications. Cellulose, 2016, 23(5), 3089-3104.
[http://dx.doi.org/10.1007/s10570-016-1022-y]
[http://dx.doi.org/10.1007/s10570-016-1022-y]
[41]
Jia, Y.; Wang, X.; Huo, M.; Zhai, X.; Li, F.; Zhong, C. Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel. Nanomater. Nanotechnol., 2017, 7, 1-8.
[http://dx.doi.org/10.1177/1847980417707172]
[http://dx.doi.org/10.1177/1847980417707172]
[42]
Nguyen, T.H.M.; Abueva, C.; Ho, H.V.; Lee, S.Y.; Lee, B.T. In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel. Carbohydr. Polym., 2018, 180, 246-255.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.032] [PMID: 29103503]
[http://dx.doi.org/10.1016/j.carbpol.2017.10.032] [PMID: 29103503]
[43]
Khan, A.; Salmieri, S.; Fraschini, C.; Bouchard, J.; Riedl, B.; Lacroix, M. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Appl. Mater. Interfaces, 2014, 6(17), 15232-15242.
[http://dx.doi.org/10.1021/am503564m] [PMID: 25140839]
[http://dx.doi.org/10.1021/am503564m] [PMID: 25140839]
[44]
Ciechanska, D. Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibres Text. East. Eur., 2004, 12(4), 69-72.
[45]
Zhang, P.; Chen, L.; Zhang, Q.; Hong, F.F. Using in situ dynamic cultures to rapidly biofabricate fabric-reinforced composites of chitosan/bacterial nanocellulose for antibacterial wound dressings. Front. Microbiol., 2016, 7, 260.
[http://dx.doi.org/10.3389/fmicb.2016.00260] [PMID: 26973634]
[http://dx.doi.org/10.3389/fmicb.2016.00260] [PMID: 26973634]