Generic placeholder image

Recent Patents on Drug Delivery & Formulation

Editor-in-Chief

ISSN (Print): 1872-2113
ISSN (Online): 2212-4039

Review Article

Nanoformulations for Ocular Delivery of Drugs - A Patent Perspective

Author(s): Anmol Dogra, Kuljeet Kaur, Javed Ali, Sanjula Baboota, Ramandeep Singh Narang and Jasjeet Kaur Narang*

Volume 13, Issue 4, 2019

Page: [255 - 272] Pages: 18

DOI: 10.2174/1872211314666200127101149

Abstract

Efficient delivery of ocular therapeutics with improved efficacy, enhanced bioavailability, and acceptable patient compliance presents unique challenges. This can be attributed to the presence of protective mechanisms, physicobiological barriers, and structural obstacles in the eye. Nanotherapeutic interventions have been explored extensively over the past few years to overcome these limitations. The present review focusses on the nanoformulations developed for the diagnosis and treatment of various ocular diseases besides providing an in-depth insight into the patents reported for the same.

Keywords: Ocular, nanoformulations, nanoparticles, nanoemulsions, solid lipid carriers, nanolipid carriers, nanoformulations, nanotechnology.

Graphical Abstract

[1]
Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol., 2012, 96(5), 614-618.
[http://dx.doi.org/10.1136/bjophthalmol-2011-300539] [PMID: 22133988]
[2]
Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol., 2013, 2(2), 47-64.
[http://dx.doi.org/10.5497/wjp.v2.i2.47] [PMID: 25590022]
[3]
Torchilin, V.P.; Trubetskoy, V.S. Which polymers can make nanoparticulate drug carriers long-circulating? Adv. Drug Deliv. Rev., 1995, 16(2-3), 141-155.
[http://dx.doi.org/10.1016/0169-409X(95)00022-Y]
[4]
Boddu, S.H.S.; Menees, A.L.; Ray, A.; Mitra, A.K. A Brief Overview of Ocular Anatomy and Physiology. In: Mitra AK, Ed. Treatise on Ocular Drug Delivery. Sharjah, UAE: Bentham Science Publishers 2013; pp. 3-19.
[5]
Willoughby, C.E.; Ponzin, D.; Ferrari, S.; Lobo, A.; Landau, K.; Omidi, Y. Anatomy and physiology of the human eye: Effects of mucopolysaccharidoses disease on structure and function – a review. Clin. Exp. Ophthalmol., 2010, 38, 2-11.
[http://dx.doi.org/10.1111/j.1442-9071.2010.02363.x]
[6]
Müller, L.J.; Marfurt, C.F.; Kruse, F.; Tervo, T.M.T. Corneal nerves: structure, contents and function. Exp. Eye Res., 2003, 76(5), 521-542.
[http://dx.doi.org/10.1016/S0014-4835(03)00050-2] [PMID: 12697417]
[7]
Rüfer, F.; Schröder, A.; Erb, C. White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system. Cornea, 2005, 24(3), 259-261.
[http://dx.doi.org/10.1097/01.ico.0000148312.01805.53] [PMID: 15778595]
[8]
Fares, U.; Otri, A.M.; Al-Aqaba, M.A.; Dua, H.S. Correlation of central and peripheral corneal thickness in healthy corneas. Cont. Lens Anterior Eye, 2012, 35(1), 39-45.
[http://dx.doi.org/10.1016/j.clae.2011.07.004] [PMID: 21885326]
[9]
Farjo, A.A.; McDermott, M.L.; Soong, H.K. Corneal anatomy, physiology, and wound healing. In: Yanoff M, Duker JS, eds. Ophthalmology, 3rd edn. Edinburgh, Mosby Elsevier: Elsevier Inc., 2009; 203– 8.
[http://dx.doi.org/10.1016/B978-0-323-04332-8.00025-1]
[10]
Daniels, J.T.; Dart, J.K.G.; Tuft, S.J.; Khaw, P.T. Corneal stem cells in review. Wound Repair Regen., 2001, 9(6), 483-494.
[http://dx.doi.org/10.1046/j.1524-475x.2001.00483.x] [PMID: 11896990]
[11]
Dua, H.S.; Shanmuganathan, V.A.; Powell-Richards, A.O.; Tighe, P.J.; Joseph, A. Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche. Br. J. Ophthalmol., 2005, 89(5), 529-532.
[http://dx.doi.org/10.1136/bjo.2004.049742] [PMID: 15834076]
[12]
Majo, F.; Rochat, A.; Nicolas, M.; Jaoudé, G.A.; Barrandon, Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 2008, 456(7219), 250-254.
[http://dx.doi.org/10.1038/nature07406] [PMID: 18830243]
[13]
Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 2006, 58(11), 1131-1135.
[http://dx.doi.org/10.1016/j.addr.2006.07.027] [PMID: 17097758]
[14]
Barar, J.; Javadzadeh, A.R.; Omidi, Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin. Drug Deliv., 2008, 5(5), 567-581.
[http://dx.doi.org/10.1517/17425247.5.5.567] [PMID: 18491982]
[15]
Miller, N.R.; Newman, N.J. Eds Embryology, anatomy, and physiology of the afferent visual pathway. Miller NR, Newman NJ, Eds. Walsh & Hoyt’s Clinical Neuro-Ophthalmology Philadelphia: Lippincott Williams & Wilkins 2005; 1.
[16]
Schubert, H.D. Structure and function of the neural retina. In: Yanoff M, Duker JS, eds. Ophthalmology, 3rd edn. Edinburgh, Mosby Elsevier: Elsevier Inc., 2009; 511–21.
[http://dx.doi.org/10.1016/B978-0-323-04332-8.00074-3]
[17]
Awwad, S.; Lockwood, A.; Brocchini, S.; Khaw, P.T. The PK-Eye: A novel in vitro ocular flow model for use in preclinical drug development. J. Pharm. Sci., 2015, 104(10), 3330-3342.
[http://dx.doi.org/10.1002/jps.24480] [PMID: 26108574]
[18]
Awwad, S.; Day, R.M.; Khaw, P.T.; Brocchini, S.; Fadda, H.M. Sustained release ophthalmic dexamethasone: In vitro in vivo correlations derived from the PK-Eye. Int. J. Pharm., 2017, 522(1-2), 119-127.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.047] [PMID: 28232270]
[19]
Bourlais, C.L.; Acar, L.; Zia, H.; Sado, P.A.; Needham, T.; Leverge, R. Ophthalmic drug delivery systems--recent advances. Prog. Retin. Eye Res., 1998, 17(1), 33-58.
[http://dx.doi.org/10.1016/S1350-9462(97)00002-5] [PMID: 9537794]
[20]
Gulsen, D.; Chauhan, A. Ophthalmic drug delivery through contact lenses. Invest. Ophthalmol. Vis. Sci., 2004, 45(7), 2342-2347.
[http://dx.doi.org/10.1167/iovs.03-0959] [PMID: 15223815]
[21]
Blasig, I.E.; Bellmann, C.; Cording, J.; Del Vecchio, G.; Zwanziger, D.; Huber, O.; Haseloff, R.F. Occludin protein family: oxidative stress and reducing conditions. Antioxid. Redox Signal., 2011, 15(5), 1195-1219.
[http://dx.doi.org/10.1089/ars.2010.3542] [PMID: 21235353]
[22]
Yi, X.; Wang, Y.; Yu, F.S. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest. Ophthalmol. Vis. Sci., 2000, 41(13), 4093-4100.
[PMID: 11095601]
[23]
Bauer, H.; Zweimueller-Mayer, J.; Steinbacher, P.; Lametschwandtner, A.; Bauer, H.C. The dual role of zonula occludens (ZO) proteins. J. Biomed. Biotechnol., 2010, 2010402593
[http://dx.doi.org/10.1155/2010/402593] [PMID: 20224657]
[24]
Fanning, A.S.; Anderson, J.M. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann. N. Y. Acad. Sci., 2009, 1165, 113-120.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x] [PMID: 19538295]
[25]
Contreras-Ruiz, L.; Schulze, U.; García-Posadas, L.; Arranz-Valsero, I.; López-García, A.; Paulsen, F.; Diebold, Y. Structural and functional alteration of corneal epithelial barrier under inflammatory conditions. Curr. Eye Res., 2012, 37(11), 971-981.
[http://dx.doi.org/10.3109/02713683.2012.700756] [PMID: 22738643]
[26]
Mannermaa, E.; Vellonen, K.S.; Urtti, A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev., 2006, 58(11), 1136-1163.
[http://dx.doi.org/10.1016/j.addr.2006.07.024] [PMID: 17081648]
[27]
Endres, C.J.; Hsiao, P.; Chung, F.S.; Unadkat, J.D. The role of transporters in drug interactions. Eur. J. Pharm. Sci., 2006, 27(5), 501-517.
[http://dx.doi.org/10.1016/j.ejps.2005.11.002] [PMID: 16364611]
[28]
DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 249-273.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134529] [PMID: 21942630]
[29]
Gaudana, R.; Ananthula, H.K.; Parenky, A.; Mitra, A.K. Ocular drug delivery. AAPS J., 2010, 12(3), 348-360.
[http://dx.doi.org/10.1208/s12248-010-9183-3] [PMID: 20437123]
[30]
Bucolo, C; Leggio, GM; Drago, F; Salomone, S Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats., Biochem Pharmacol 2012; 84(1): 88-92. a
[http://dx.doi.org/10.1016/j.bcp.2012.03.019 PMID: 22484312]
[31]
Bucolo, C; Leggio, GM; Maltese, A; Castorina, A; D’Agata, V; Drago, F Dopamine-3 receptor modulates intraocular pressure: Implications for glaucoma. Biochem Pharmacol 2012; 83(5): 680-6. b
[http://dx.doi.org/10.1016/j.bcp.2011.11.031] [PMID: 22178719]
[32]
Musumeci, T.; Bucolo, C.; Carbone, C.; Pignatello, R.; Drago, F.; Puglisi, G. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Int. J. Pharm., 2013, 440(2), 135-140.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.014] [PMID: 23078856]
[33]
Schoenfeld, E.R.; Greene, J.M.; Wu, S.Y.; Leske, M.C. Patterns of adherence to diabetes vision care guidelines: baseline findings from the Diabetic Retinopathy Awareness Program. Ophthalmology, 2001, 108(3), 563-571.
[http://dx.doi.org/10.1016/S0161-6420(00)00600-X] [PMID: 11237912]
[34]
Tyagi, P.; Kadam, R.S.; Kompella, U.B. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry. PLoS One, 2012, 7(10)e48188
[http://dx.doi.org/10.1371/journal.pone.0048188] [PMID: 23118950]
[35]
Olsen, T.W.; Feng, X.; Wabner, K.; Csaky, K.; Pambuccian, S.; Cameron, J.D. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Invest. Ophthalmol. Vis. Sci., 2011, 52(7), 4749-4756.
[http://dx.doi.org/10.1167/iovs.10-6291] [PMID: 21447680]
[36]
Novack, G.D.; Robin, A.L. Ocular pharmacology. J. Clin. Pharmacol., 2016, 56(5), 517-527.
[http://dx.doi.org/10.1002/jcph.634] [PMID: 26360129]
[37]
Yellepeddi, V.K.; Palakurthi, S. Recent advances in topical ocular drug delivery. J. Ocul. Pharmacol. Ther., 2016, 32(2), 67-82.
[http://dx.doi.org/10.1089/jop.2015.0047] [PMID: 26666398]
[38]
Rodríguez Villanueva, J.; Navarro, M.G.; Rodríguez Villanueva, L. Dendrimers as a promising tool in ocular therapeutics: Latest advances and perspectives. Int. J. Pharm., 2016, 511(1), 359-366.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.031] [PMID: 27436708]
[39]
Mehta, P.; Haj-Ahmad, R.; Al-Kinani, A.; Arshad, M.S.; Chang, M.W.; Alany, R.G.; Ahmad, Z. Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther. Deliv., 2017, 8(7), 521-541.
[http://dx.doi.org/10.4155/tde-2017-0018] [PMID: 28633591]
[40]
Zarbin, M.A.; Montemagno, C.; Leary, J.F.; Ritch, R. Nanotechnology in ophthalmology. Can. J. Ophthalmol., 2010, 45(5), 457-476.
[http://dx.doi.org/10.3129/i10-090] [PMID: 20871642]
[41]
Raghava, S.; Goel, G.; Kompella, U.B. Ophthalmic Applications of Nanotechnology. In: Tombran-Tink J., Barnstable C.J. (eds) Ocular Transporters in Ophthalmic Diseases and Drug Delivery. Ophthalmology Research. Humana Press 2008: 415-435.
[http://dx.doi.org/10.1007/978-1-59745-375-2_22]
[42]
Bell, A.T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613), 1688-1691.
[http://dx.doi.org/10.1126/science.1083671] [PMID: 12637733]
[43]
Whitesides, G.M. Nanoscience, nanotechnology, and chemistry. Small, 2005, 1(2), 172-179.
[http://dx.doi.org/10.1002/smll.200400130] [PMID: 17193427]
[44]
Meyer, E.; Gyalog, T.; Overney, R.M.; Dransfeld, K. Nanoscience: Friction and rheology on the nanometer scale. Singapore: World Scientific 1998;
[http://dx.doi.org/10.1142/3026]
[45]
Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141.
[http://dx.doi.org/10.1021/mp200394t] [PMID: 21974749]
[46]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[47]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[48]
Goldberg, M.; Langer, R.; Jia, X. Nanostructured materials for applications in drug delivery and tissue engineering. J. Biomater. Sci. Polym. Ed., 2007, 18(3), 241-268.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[49]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[50]
Harikumar, S.L.; Arora, S. Nanotechnological approaches in Ophthalmic delivery systems. Int J Drug Dev & Res, 2011, 3(4), 9-19.
[51]
John, M; Gacche, RN Nano-formulations for ophthalmic treatments. Arch Pharm Pharma Sci 2017; 1: 028-35.,
[http://dx.doi.org/10.29328/journal.hps.1001005.]
[52]
Lee, K.C.; Choo, H.S. Preparation of poly(BMA-co-MMA) particles by soap-free emulsion polymerization and its optical properties as photonic crystals. J. Nanosci. Nanotechnol., 2014, 14(11), 8279-8287.
[http://dx.doi.org/10.1166/jnn.2014.9912] [PMID: 25958515]
[53]
Bucolo, C.; Maltese, A.; Drago, F. When nanotechnology meets the ocular surface. Expert Rev. Ophthalmol., 2008, 3, 325-332.
[http://dx.doi.org/10.1586/17469899.3.3.325]
[54]
Ideta, R.; Tasaka, F.; Jang, W.D.; Nishiyama, N.; Zhang, G.D.; Harada, A.; Yanagi, Y.; Tamaki, Y.; Aida, T.; Kataoka, K. Nanotechnology-based photodynamic therapy for neovascular disease using a supramolecular nanocarrier loaded with a dendritic photosensitizer. Nano Lett., 2005, 5(12), 2426-2431.
[http://dx.doi.org/10.1021/nl051679d] [PMID: 16351191]
[55]
Kayser, O.; Lemke, A.; Hernández-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol., 2005, 6(1), 3-5.
[http://dx.doi.org/10.2174/1389201053167158] [PMID: 15727551]
[56]
Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today, 2003, 8(24), 1112-1120.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[57]
Yuan, X.; Marcano, D.C.; Shin, C.S.; Hua, X.; Isenhart, L.C.; Pflugfelder, S.C.; Acharya, G. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano, 2015, 9(2), 1749-1758.
[http://dx.doi.org/10.1021/nn506599f] [PMID: 25585134]
[58]
Tseng, C.L.; Chen, K.H.; Su, W.Y.; Lee, Y.H.; Wu, C.C.; Lin, F.H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: In vitro and In vivo Evaluation. J. Nanomater., 2013, •••, 1-11.
[59]
Jiang, M.; Gan, L.; Zhu, C.; Dong, Y.; Liu, J.; Gan, Y. Cationic core-shell liponanoparticles for ocular gene delivery. Biomaterials, 2012, 33(30), 7621-7630.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.079] [PMID: 22789720]
[60]
Vega, E.; Egea, M.A.; Valls, O.; Espina, M.; García, M.L. Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J. Pharm. Sci., 2006, 95(11), 2393-2405.
[http://dx.doi.org/10.1002/jps.20685] [PMID: 16886193]
[61]
Pan, Q.; Xu, Q.; Boylan, N.J.; Lamb, N.W.; Emmert, D.G.; Yang, J.C.; Tang, L.; Heflin, T.; Alwadani, S.; Eberhart, C.G.; Stark, W.J.; Hanes, J. Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J. Control. Release, 2015, 201, 32-40.
[http://dx.doi.org/10.1016/j.jconrel.2015.01.009] [PMID: 25576786]
[62]
Kelidari, H.R.; Saeedi, M.; Akbari, J.; Morteza-Semnani, K.; Valizadeh, H.; Maniruzzaman, M.; Farmoudeh, A.; Nokhodchi, A. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech, 2017, 18(5), 1469-1474.
[http://dx.doi.org/10.1208/s12249-016-0621-0] [PMID: 27834054]
[63]
Beloqui, A.; Solinís, M.A.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[64]
Araújo, J.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm., 2010, 393(1-2), 167-175.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.034] [PMID: 20362042]
[65]
Gonzalez-Mira, E.; Egea, M.A.; Souto, E.B.; Calpena, A.C.; García, M.L. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology, 2011, 22(4)045101
[http://dx.doi.org/10.1088/0957-4484/22/4/045101] [PMID: 21169662]
[66]
Liu, R.; Liu, Z.; Zhang, C.; Zhang, B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: improving in vivo ocular bioavailability. J. Pharm. Sci., 2012, 101(10), 3833-3844.
[http://dx.doi.org/10.1002/jps.23251] [PMID: 22767401]
[67]
Chauhan, H.; Mohapatra, S.; Munt, D.J.; Chandratre, S.; Dash, A. Physical-chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech, 2016, 17(3), 640-651.
[http://dx.doi.org/10.1208/s12249-015-0394-x] [PMID: 26292931]
[68]
Cavalli, R.; Gasco, M.R.; Chetoni, P.; Burgalassi, S.; Saettone, M.F. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm., 2002, 238(1-2), 241-245.
[http://dx.doi.org/10.1016/S0378-5173(02)00080-7] [PMID: 11996827]
[69]
Attama, A.A.; Reichl, S.; Müller-Goymann, C.C. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm., 2008, 355(1-2), 307-313.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.007] [PMID: 18242022]
[70]
Liu, Z.; Zhang, X.; Wu, H.; Li, J.; Shu, L.; Liu, R.; Li, L.; Li, N. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev. Ind. Pharm., 2011, 37(4), 475-481.
[http://dx.doi.org/10.3109/03639045.2010.522193] [PMID: 21054217]
[71]
Ako-Adounvo, A.M.; Nagarwal, R.C.; Oliveira, L.; Boddu, S.H.; Wang, X.S.; Dey, S.; Karla, P.K. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat. Drug Deliv. Formul., 2014, 8(3), 193-201.
[http://dx.doi.org/10.2174/1872211308666140926112000] [PMID: 25262835]
[72]
Moghimipour, E.; Salimi, A.; Yousefvand, T. Preparation and evaluation of celecoxib nanoemulsion for ocular drug delivery. AJP, 2017, 11(3), S543-S550.
[73]
Morsi, N.M.; Mohamed, M.I.; Refai, H.; El Sorogy, H.M. Nanoemulsion as a novel ophthalmic delivery system for acetazolamide. Int. J. Pharm. Pharm. Sci., 2014, 6(11), 227-236.
[74]
Bhattacharjee, A.; Das, P.J.; Adhikari, P.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur. J. Ophthalmol., 2019, 29(1), 113-126.
[http://dx.doi.org/10.1177/1120672118769776] [PMID: 29756507]
[75]
Natarajan, J.V.; Darwitan, A.; Barathi, V.A.; Ang, M.; Htoon, H.M.; Boey, F.; Tam, K.C.; Wong, T.T.; Venkatraman, S.S. Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano, 2014, 8(1), 419-429.
[http://dx.doi.org/10.1021/nn4046024] [PMID: 24392729]
[76]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[77]
Tam, A.L.; Gupta, N.; Zhang, Z.; Yücel, Y.H. Quantum dots trace lymphatic drainage from the mouse eye. Nanotechnology, 2011, 22(42)425101
[http://dx.doi.org/10.1088/0957-4484/22/42/425101] [PMID: 21934199]
[78]
Guo, C.; Zhang, Y.; Yang, Z. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation. Sci. Rep., 2015, 5, 12968.
[http://dx.doi.org/10.1038/srep12968]
[79]
Pignatello, R.; Bucolo, C.; Spedalieri, G.; Maltese, A.; Puglisi, G. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials, 2002, 23(15), 3247-3255.
[http://dx.doi.org/10.1016/S0142-9612(02)00080-7] [PMID: 12102196]
[80]
Kao, H.J.; Lin, H.R.; Lo, Y.L.; Yu, S.P. Characterization of pilocarpine-loaded chitosan/Carbopol nanoparticles. J. Pharm. Pharmacol., 2006, 58(2), 179-186.
[http://dx.doi.org/10.1211/jpp.58.2.0004] [PMID: 16451745]
[81]
Read, S.P.; Cashman, S.M.; Kumar-Singh, R. POD nanoparticles expressing GDNF provide structural and functional rescue of light-induced retinal degeneration in an adult mouse. Mol. Ther., 2010, 18(11), 1917-1926.
[http://dx.doi.org/10.1038/mt.2010.167] [PMID: 20700110]
[82]
Rajala, A.; Wang, Y.; Zhu, Y.; Ranjo-Bishop, M.; Ma, J.X.; Mao, C.; Rajala, R.V. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett., 2014, 14(9), 5257-5263.
[http://dx.doi.org/10.1021/nl502275s] [PMID: 25115433]
[83]
Anderson, S.A.; Rader, R.K.; Westlin, W.F.; Null, C.; Jackson, D.; Lanza, G.M.; Wickline, S.A.; Kotyk, J.J. Magnetic resonance contrast enhancement of neovasculature with α(v)β(3)-targeted nanoparticles. Magn. Reson. Med., 2000, 44(3), 433-439.
[http://dx.doi.org/10.1002/1522-2594(200009)44:3<433:AID-MRM14>3.0.CO;2-9] [PMID: 10975896]
[84]
Roizenblatt, R.; Weiland, J.D.; Carcieri, S.; Qiu, G.; Behrend, M.; Humayun, M.S.; Chow, R.H. Nanobiolistic delivery of indicators to the living mouse retina. J. Neurosci. Methods, 2006, 153(1), 154-161.
[http://dx.doi.org/10.1016/j.jneumeth.2005.10.001] [PMID: 16290199]
[85]
Schachar, R.A.; Chen, W.; Woo, B.K.; Pierscionek, B.K.; Zhang, X.; Ma, L. Diffusion of nanoparticles into the capsule and cortex of a crystalline lens. Nanotechnology, 2008, 19(2)025102
[http://dx.doi.org/10.1088/0957-4484/19/02/025102] [PMID: 21817533]
[86]
Varshochian, R.; Riazi-Esfahani, M.; Jeddi-Tehrani, M.; Mahmoudi, A.R.; Aghazadeh, S.; Mahbod, M.; Movassat, M.; Atyabi, F.; Sabzevari, A.; Dinarvand, R. Albuminated PLGA nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J. Biomed. Mater. Res. A, 2015, 103(10), 3148-3156.
[http://dx.doi.org/10.1002/jbm.a.35446] [PMID: 25773970]
[87]
Kompella, U.B.; Bandi, N.; Ayalasomayajula, S.P. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest. Ophthalmol. Vis. Sci., 2003, 44(3), 1192-1201.
[http://dx.doi.org/10.1167/iovs.02-0791] [PMID: 12601049]
[88]
Yandrapu, S.K.; Upadhyay, A.K.; Petrash, J.M.; Kompella, U.B. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol. Pharm., 2013, 10(12), 4676-4686.
[http://dx.doi.org/10.1021/mp400487f] [PMID: 24131101]
[89]
Kadam, R.S.; Tyagi, P.; Edelhauser, H.F.; Kompella, U.B. RETRACTED: Influence of choroidal neovascularization and biodegradable polymeric particle size on transscleral sustained delivery of triamcinolone acetonide. Int. J. Pharm., 2012, 434(1-2), 140-147.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.025] [PMID: 22633904]
[90]
Ikuta, Y.; Aoyagi, S.; Tanaka, Y.; Sato, K.; Inada, S.; Koseki, Y.; Onodera, T.; Oikawa, H.; Kasai, H. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci. Rep., 2017, 7, 44229.
[http://dx.doi.org/10.1038/srep44229] [PMID: 28290486]
[91]
Zhang, W.; Li, X.; Ye, T.; Chen, F.; Yu, S.; Chen, J.; Yang, X.; Yang, N.; Zhang, J.; Liu, J.; Pan, W.; Kong, J. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions. Int. J. Nanomedicine, 2014, 9(1), 4305-4315.
[PMID: 25246787]
[92]
Ustündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Özer, O.; Ertan, G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci., 2014, 63, 204-215.
[http://dx.doi.org/10.1016/j.ejps.2014.07.013] [PMID: 25111119]
[93]
Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.I.; Eğrilmez, S.; Ertan, G.; Özer, Ö. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert Opin. Drug Deliv., 2015, 12(11), 1791-1807.
[http://dx.doi.org/10.1517/17425247.2015.1059419] [PMID: 26159181]
[94]
Puglia, C.; Blasi, P.; Ostacolo, C.; Sommella, E.; Bucolo, C.; Platania, C.B.M.; Romano, G.L.; Geraci, F.; Drago, F.; Santonocito, D.; Albertini, B.; Campiglia, P.; Puglisi, G.; Pignatello, R. Innovative nanoparticles enhance N-palmitoylethanolamide intraocular delivery. Front. Pharmacol., 2018, 9, 285.
[http://dx.doi.org/10.3389/fphar.2018.00285] [PMID: 29643808]
[95]
Hao, J.; Fang, X.; Zhou, Y.; Wang, J.; Guo, F.; Li, F.; Peng, X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int. J. Nanomedicine, 2011, 6, 683-692.
[PMID: 21556343]
[96]
Hippalgaonkar, K.; Adelli, G.R.; Hippalgaonkar, K.; Repka, M.A.; Majumdar, S. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J. Ocul. Pharmacol. Ther., 2013, 29(2), 216-228.
[http://dx.doi.org/10.1089/jop.2012.0069] [PMID: 23421502]
[97]
Gökçe, E.H.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Güneri, T.; Caramella, C. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm., 2008, 364(1), 76-86.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.028] [PMID: 18725276]
[98]
Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 2009, 10(3), 808-819.
[http://dx.doi.org/10.1208/s12249-009-9268-4] [PMID: 19536653]
[99]
Chauhan, S.; Batra, S. Development and in vitro characterization of nanoemulsion embedded thermosensitive in-situ ocular gel of diclofenac sodium for sustained delivery. Int. J. Pharm. Sci. Res., 2018, 9(6), 2301-2314.
[100]
Weng, Y.; Liu, J.; Jin, S.; Guo, W.; Liang, X.; Hu, Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B, 2017, 7(3), 281-291.
[http://dx.doi.org/10.1016/j.apsb.2016.09.001] [PMID: 28540165]
[101]
Lai, S.; Wei, Y.; Wu, Q.; Zhou, K.; Liu, T.; Zhang, Y.; Jiang, N.; Xiao, W.; Chen, J.; Liu, Q.; Yu, Y. Liposomes for effective drug delivery to the ocular posterior chamber. J. Nanobiotechnology, 2019, 17(1), 64.
[http://dx.doi.org/10.1186/s12951-019-0498-7] [PMID: 31084611]
[102]
Hosny, K.M. Ciprofloxacin as ocular liposomal hydrogel. AAPS PharmSciTech, 2010, 11(1), 241-246.
[http://dx.doi.org/10.1208/s12249-009-9373-4] [PMID: 20151337]
[103]
Zhang, R.; He, R.; Qian, J.; Guo, J.; Xue, K.; Yuan, Y.F. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest. Ophthalmol. Vis. Sci., 2010, 51(7), 3575-3582.
[http://dx.doi.org/10.1167/iovs.09-4373] [PMID: 20164461]
[104]
Yunshin, QS Antimicrobial medical device containing silver nanoparticles. JP2,010,521,697 A (2008).
[105]
Wang, LR; Wang, Y; Wang, SLW; Jingjing, JC; Xingguo, H Seed crystal nanoparticles tetrandrine ophthalmic formulation and preparation method. CN1,05,726,484 B (2016).
[106]
Yamamoto, K; Yamamoto, S; Manabe, SH Vitreous stain and staining methods of the eye, including fluorescent nanoparticles. JP4,936,508 B2 (2006).
[107]
Jialu, WLR; Ruijuan, LWL; Ze, ZFW Puerarin and scutellarin lipid nanoparticle ophthalmic preparation and preparation method thereof. CN1,08,066,315 A (2016).
[108]
Kang, Z. The use of the red cell membrane wrapped ophthalmic drug. CN1,03,550,223B (2015).
[109]
Campora, G. Nanoparticle ophthalmic composition for the treatment of ocular disorders or diseases. US20,190,070,242 A1 (2018).
[110]
Chen, H; Enlow, EM; Popov, A Pharmaceutical nanoparticles showing improved mucosal transport. AU2,013,256,092 B2 (2017).
[111]
Li, CY; Li, YP; Ying, WH; Hangping, C Timolol maleate cubic liquid crystal nanoparticle eye drops and preparation method thereof. CN1,06,619,573 A (2016).
[112]
Qiu, Y; Lally, JM Antimicrobial medical devices containing silver nanoparticles. CA2,530,041 (2005).
[113]
Naash, MI; Cooper, MJ Use of compacted nucleic acid nanoparticles in non-viral treatments of ocular diseases. WO2,008,137,066 A1 (2008).
[114]
Davis, ME; Davishan, ME; Han, H Nanoparticles stabilized by nitrophenylboronic acid composition. JP2,019,108,372A (2019).
[115]
Lee, HC Drug delivery implant for treating eye diseases, and preparation method therefore. WO2,019,160,306A1 (2019).
[116]
Lopes, FP; Jose, E Compositions of jasmonate compounds and methods of use. US20,180,000,958 A1 (2018).
[117]
Fan, S; Cha, GH; Kang, H; Sung, BK Bland nanoemulsion ophthalmic composition of cyclosporin-containing. JP5,986,296 B2 (2012).
[118]
Junyoubi, J; Singh, J; Singh, Y; Ryu, Y; Bui, SRY Nanoemulsion ophthalmic compositions and methods for their preparation containing cyclosporine. JP6,392,858 B2 (2014).
[119]
Simonnet, JT; Sonneville, O; Legret, S Nanoemulsion, composition for topical, ophthalmic support, pharmaceutical composition, cosmetic use of the nanoemulsion cosmetic care process and / or hydration, and use of the nanoemulsion preparation of a nanoemulsion process. BR9,906,206 A (1998).
[120]
Sonneville, O; Simonnet, JT Oil-in-water nanoemulsions for cosmetic, dermatological, pharmaceutical and ophthalmic use contain amphiphilic lipid and anionic polymer. FR2,809,010 A1 (2000).
[121]
Liang, LC; Li, Z; Cui, Y; Zongxi, HL Nanoemulsion form ophthalmic composition. CN1,03,282,044 B (2011).
[122]
Quemin, E. Translucent oil-in-water nanoemulsion useful for preparing cosmetic, dermatological or ophthalmological compositions comprises three specified surfactants. FR2,819,427 A1 (2001).
[123]
Legret, S; Simonnet, JT; Sonneville, O Nanoemulsion based on mixed esters of a fatty acid or alcohol, of a carboxylic acid and glyceryl, and uses thereof in the cosmetical, dermatological and/or ophtalmological fields. EP1,010,414 B1 (1998).
[124]
Simonnet, JT; Sonneville, O; Legret, S Nanoemulsion based on alkoxylated alkenyl succinates or alkoxylated alkenyl succinates of glucose and its uses in the cosmetics, dermatological, opthalmological and/or pharmaceutical fields. US6,461,625 B1 (1999).
[125]
Arumugham, R; Upadhyay, AK Ophthalmic compositions and methods of use. US20,190,008,920 A1 (2018).
[126]
Sasaki, K; Okumura, T; Hattori, M Ophthalmic composition including high sorbability vitamin a-including nanoemulsion particle and method for producing the same. JP2,013,253,063 A (2012).
[127]
Carrimilan, F; Schmidt, BR; Chieri, E Ophthalmic oil-in-water emulsion containing prostaglandin. JP5,452,472 B2 (2007).
[128]
Bokyung, FY; Ho, CG Ophthalmic nano-emulsion composition containing cyclosporin for the treatment of dry-eye-syndrome. KR1,01,008,189 B1 (2010).
[129]
GmbH. Micro- or nano-emulsion for ophthalmic use. DE2,02,014,010,412 U1 (2014).
[130]
Lee, JHY; Lee, JS; Lee, GY; Choi, S-II Opthalmic composition in form of nanoemulsion. KR1,01,151,235 B1 (2011).
[131]
Mitra, AK; Velagaleti, PR; Grau, UM Topical drug delivery systems for ophthalmic use. WO20,101,441,94A1 (2010).
[132]
Maitra, A; Gupta, AK; Majumdar, D; Madan, S Sustained release and long residing ophthalmic formulation and the process of preparing the same. US6,579,519 B2 (2001).
[133]
Chauhan, A; Gulsen, D Ophthalmic drug delivery system. US8,273,366 B2 (2004).
[134]
Awwad, S.; Mohamed Ahmed, A.H.A.; Sharma, G.; Heng, J.S.; Khaw, P.T.; Brocchini, S.; Lockwood, A. Principles of pharmacology in the eye. Br. J. Pharmacol., 2017, 174(23), 4205-4223.
[http://dx.doi.org/10.1111/bph.14024] [PMID: 28865239]
[135]
First Clinical Program Initiated Using Nanoparticles to Treat Retinitis Pigmentosa. 2C Tech, Inc. Completes $8 Million Series B Funding to Further Develop Novel Therapeutic Quantum Dots Treatment for Photovoltaic Stimulation of the Neural Retina Available at:. globenewswire.com/news-release/2019/04/23/1808104/0/en/First-Clinical-Program Initiated-Using-Nanoparticles-to-Treat-Retinitis-Pigmentosa.html (Accessed on: January 15, 2020)
[136]
Eldien, H.M.S. A Randomized Controlled Trial Comparing Urea Loaded Nanoparticles to Placebo: A New Concept for Cataract Management., https:// clinicaltrials.gov/ct2/show/NCT03001466
[137]
Olencki, T. Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Patients With Metastatic Melanoma of the Eye That Cannot Be Removed By Surgery., https:// clinicaltrials.gov/ct2/ show/NCT00738361
[138]
Prow, T.W. Toxicity of nanomaterials to the eye. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(4), 317-333.
[http://dx.doi.org/10.1002/wnan.65] [PMID: 20077524]
[139]
Patel, S.R.; Berezovsky, D.E.; McCarey, B.E.; Zarnitsyn, V.; Edelhauser, H.F.; Prausnitz, M.R. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest. Ophthalmol. Vis. Sci., 2012, 53(8), 4433-4441.
[http://dx.doi.org/10.1167/iovs.12-9872] [PMID: 22669719]
[140]
Patel, S.R.; Lin, A.S.; Edelhauser, H.F.; Prausnitz, M.R. Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res., 2011, 28(1), 166-176.
[http://dx.doi.org/10.1007/s11095-010-0271-y] [PMID: 20857178]
[141]
Jiang, J.; Moore, J.S.; Edelhauser, H.F.; Prausnitz, M.R. Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res., 2009, 26(2), 395-403.
[http://dx.doi.org/10.1007/s11095-008-9756-3] [PMID: 18979189]
[142]
Ocugen. Study of Brimonidine Tartrate Nanoemulsion Eye Drops in Patients with Ocular Graft-v/s-Host Disease (oGVHD) https://clinicaltrials.gov/ct2/show/NCT03591874
[143]
Ocugen. A Phase 3 Randomized, Placebo-Controlled, Double- Masked, Multicenter, Safety and Efficacy Study of Brimonidine Tartrate 0.2% Nanoemulsion Eye Drops in Patients with Dry Eye Disease (DED) https://clinicaltrials.gov/ct2/history/NCT03785340?V_2=View
[144]
Ocugen. A Randomized, Placebo-Controlled, Double-Blind, Multicenter, Proof-of-Concept Study of Brimonidine Eye Drops for the Treatment of Dry Eye Disease (DED) https://clinicaltrials.gov/ ct2/show/NCT03418727
[145]
Dry eye therapy utilizing cationic Novasorb® technology available soon from OCuSOFT®. Available at: http://www.prnewswire.com/ news-releases/dry-eye-therapy-utilizing-cationic-novasorb-technology-available-soon-from-ocusoft 123820724.html2019].
[146]
In Site vision introduces DuraSite2® ophthalmic drug delivery system. Available at: http://phx.corporateir.net/phoenix.zhtml?c=86061&p=irolnewsArticle&ID=1731 15& highlight.html (Accessed on: June 24 2019)
[147]
Kuno, N.; Fujii, S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging, 2010, 27(2), 117-134.
[http://dx.doi.org/10.2165/11530970-000000000-00000] [PMID: 20104938]
[148]
Driot, J.Y.; Novack, G.D.; Rittenhouse, K.D.; Milazzo, C.; Pearson, P.A. Ocular pharmacokinetics of fluocinolone acetonide after Retisert intravitreal implantation in rabbits over a 1-year period. J. Ocul. Pharmacol. Ther., 2004, 20(3), 269-275.
[http://dx.doi.org/10.1089/1080768041223611] [PMID: 15279731]

© 2024 Bentham Science Publishers | Privacy Policy