Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Antidiabetic Properties of Medicinal Mushrooms with Special Reference to Phellinus Species: A Review

Author(s): Thekkuttuparambil A. Ajith* and Kainoor K. Janardhanan

Volume 11, Issue 2, 2021

Published on: 24 January, 2020

Page: [120 - 126] Pages: 7

DOI: 10.2174/2210315510666200124124540

Price: $65

Abstract

Diabetes remains the major public health challenge to the 21st century. It is strongly related to lifestyle changes. Most chronic complications of diabetes are macrovascular and microvascular diseases resulting from the existing hyperglycemic status. After the failure of first-line therapy, which is based on diet modifications and exercise, conventional treatment using antihyperglycemic agents with different mechanisms of action will be implemented for type II diabetes in modern medicine. Higher Basidiomycetes mushrooms are highly praised for their nutritional value and pharmacological properties. They have long been used traditionally for the maintenance of health, prevention and treatment of various human ailments. Reports indicate the beneficial effects of medicinal mushrooms in diabetes treatments. However, scientific evidence are insufficient to make definitive conclusions on the efficacy of individual medicinal mushrooms. Mushrooms belong to the genera Phellinus such as Phellinus linteus, Phellinus ribis, Phellinus rimosus and Phellinus igniarius. They possess a significant hypoglycemic effect in experimental diabetic models. However, well-designed controlled clinical trials are needed to establish their safety and bioactivity.

Keywords: Antihyperglycemic agents, basidiomycetes, diabetes mellitus, Ganoderma lucidum, medicinal mushrooms, Phellinus rimosus.

Graphical Abstract

[1]
Zanariah, H.; Chandran, L.R. wan Mohamad WB, wan Nazaimoon WM, Letchuman GR, Jamaiyah H, Fatanah I, Nurain MN, Helen Tee GH, Mohd Rodi I. DWP1-3 Prevalence of diabetes mellitus in Malaysia in 2006-Results of the 3rd National Health and Morbidity Survey (NHMS III). Diabetes Res. Clin. Pract., 2008, 79, S21.
[http://dx.doi.org/10.1016/S0168-8227(08)70699-5]
[2]
Hu, F.B. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care, 2011, 34(6), 1249-1257.
[http://dx.doi.org/10.2337/dc11-0442]
[3]
Nathan, D.M.; Bayless, M.; Cleary, P.; Genuth, S.; Gubitosi-Klug, R.; Lachin, J.M.; Lorenzi, G.; Zinman, B. DCCT/EDIC Research Group. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes, 2013, 62(12), 3976-3986.
[http://dx.doi.org/10.2337/db13-1093]
[5]
American Diabetes Association. Standards of medical care in diabetes--2011. Diab. Care, 2011, 34(Suppl. 1), S11-S61.
[http://dx.doi.org/10.2337/dc11-S011]
[6]
Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral hypoglycemic drugs: pathophysiological basis of their mechanism of action. Pharm. (Basel), 2010, 3(9), 3005-3020.
[http://dx.doi.org/10.3390/ph3093005]
[7]
Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol., 2017, 8, 436.
[http://dx.doi.org/10.3389/fphar.2017.00436]
[8]
World Health Organization. World Health Organization: Geneva, Switzerland., 1994, 844, 78-79.
[9]
Ríos, J.L.; Francini, F.; Schinella, G.R. Natural products for the treatment of type 2 Diabetes mellitus. Planta Med., 2015, 81(12-13), 975-994.
[http://dx.doi.org/10.1055/s-0035-1546131]
[10]
Wasser, S.P.; Weis, A.L. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit. Rev. Immunol., 1999, 19(1), 65-96.
[11]
Demain, A.L.; Sanchez, S. Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo), 2009, 62(1), 5-16.
[http://dx.doi.org/10.1038/ja.2008.16]
[12]
Miles, Chang ST. Mushroom biology concise basics and current developments; World Scientific: Singapore, 1997, pp. 194-197.
[13]
Chang, S.T.; Quimio, T.H., Eds.; Introduction to mushroom Science. Tropical mushrooms: biological nature and cultivation methods; Chinese University Press.: Hongkong, 1982.
[14]
Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Li, Y.; Tang, Q.; Han, G.; Liu, A.; Feng, C.; Li, C.; Su, Y.; Su, Z.; Chen, D. Nutritional composition of boletus mushrooms from Southwest China and their antihyperglycemic and antioxidant activities. Food Chem., 2016, 211, 83-91.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.032]
[15]
Wasser, S.P.; Nevo, E.; Sokolov, D.; Timor-Tismenetsky, M. The regulation of dietary supplements from medicinal mushrooms.Science and Cultivation of Edible Fungi, Van Griensven (ed.); , 2000.
[16]
Wasser, S.P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol., 2011, 89(5), 1323-1332.
[http://dx.doi.org/10.1007/s00253-010-3067-4]
[17]
Hsu, C.H.; Liao, Y.L.; Lin, S.C.; Hwang, K.C.; Chou, P. The mushroom Agaricus Blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J. Altern. Complement. Med., 2007, 13(1), 97-102.
[http://dx.doi.org/10.1089/acm.2006.6054]
[18]
Zhang, J.; Zhao, X.; Zhao, L.Q.; Zhao, J.; Qi, Z.; Wang, L.A. A primary study of the antioxidant, hypoglycemic, hypolipidemic, and antitumor activities of ethanol extract of brown slimecap mushroom, Chroogomphus rutilus (Agaricomycetes). Int. J. Med. Mushrooms, 2017, 19(10), 905-913.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2017024564]
[19]
Nyam, K.L.; Chow, C.F.; Tan, C.S.; Ng, S.T. Antidiabetic properties of the Tiger’s milk medicinal mushroom, Lignosus rhinocerotis (Agaricomycetes), in streptozotocin-induced diabetic rats. Int. J. Med. Mushrooms, 2017, 19(7), 607-617.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2017021186]
[20]
Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Hu, Y.; Duan, X.; Liu, A.; Chen, H.; Hu, X.; Chen, S.; Li, C.; Chen, D. Structural characterization and antidiabetic activity of a glucopyranose-rich heteropolysaccharide from Catathelasma ventricosum. Carbohydr. Polym., 2016, 149, 399-407.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.106]
[21]
Zhou, S.; Liu, Y.; Yang, Y.; Tang, Q.; Zhang, J. Hypoglycemic activity of polysaccharide from fruiting bodies of the shaggy ink cap medicinal mushroom, Coprinus comatus (Higher Basidiomycetes), on mice induced by alloxan and its potential mechanism. Int. J. Med. Mushrooms, 2015, 17(10), 957-964.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i10.50]
[22]
Xiao, C.; Wu, Q.; Xie, Y.; Zhang, J.; Tan, J. Hypoglycemic effects of grifola frondosa (Maitake) polysaccharides F2 and F3 through improvement of insulin resistance in diabetic rats. Food Funct., 2015, 6(11), 3567-3575.
[http://dx.doi.org/10.1039/C5FO00497G]
[23]
Singh, V.; Bedi, G.K.; Shri, R. in vitro and in vivo antidiabetic evaluation of selected culinary-medicinal mushrooms (Agaricomycetes). Int. J. Med. Mushrooms, 2017, 19(1), 17-25.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i1.20]
[24]
Asrafuzzaman, M.; Rahman, M.M.; Mandal, M.; Marjuque, M.; Bhowmik, A.; Rokeya, B.; Hassan, Z.; Faruque, M.O. Oyster mushroom functions as an anti-hyperglycaemic through phosphorylation of AMPK and increased expression of GLUT4 in type 2 diabetic model rats. J. Taibah Univ. Med. Sci., 2018, 13(5), 465-471.
[http://dx.doi.org/10.1016/j.jtumed.2018.02.009]
[25]
Kanagasabapathy, G.; Chua, K.H.; Malek, S.N.; Vikineswary, S.; Kuppusamy, U.R. AMP-activated protein kinase mediates insulin-like and lipo-mobilising effects of β-glucan-rich polysaccharides isolated from Pleurotus sajor-caju (Fr.), Singer mushroom, in 3T3-L1 cells. Food Chem., 2014, 145, 198-204.
[http://dx.doi.org/10.1016/j.foodchem.2013.08.051]
[26]
McGee, S.L.; van Denderen, B.J.; Howlett, K.F.; Mollica, J.; Schertzer, J.D.; Kemp, B.E.; Hargreaves, M. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes, 2008, 57(4), 860-867.
[http://dx.doi.org/10.2337/db07-0843]
[27]
Subramaniam, S.; Raman, J.; Sabaratnam, V.; Heng, C.K.; Kuppusamy, U.R. Functional properties of partially characterized polysaccharide from the medicinal mushroom Ganoderma neo-japonicum (Agaricomycetes). Int. J. Med. Mushrooms, 2017, 19(10), 849-859.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2017024355]
[28]
Chen, S.D.; Yong, T.Q.; Zhang, Y.F.; Hu, H.P.; Xie, Y.Z. Inhibitory effect of five ganoderma species (Agaricomycetes) against key digestive enzymes related to type 2 diabetes mellitus. Int. J. Med. Mushrooms, 2019, 21(7), 703-711.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v21.i7.70]
[29]
Liu, Y.; Zeng, S.; Liu, Y.; Wu, W.; Shen, Y.; Zhang, L.; Li, C.; Chen, H.; Liu, A.; Shen, L.; Hu, B.; Wang, C. Synthesis and antidiabetic activity of selenium nanoparticles in the presence of polysaccharides from Catathelasma ventricosum. Int. J. Biol. Macromol., 2018, 114, 632-639.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.161]
[30]
Huang, H.T.; Wang, S.L.; Nguyen, V.B.; Kuo, Y.H. Isolation and identification of potent antidiabetic compounds from Antrodia cinnamomea an edible Taiwanese mushroom. Molecules, 2018, 23(11), E2864.
[http://dx.doi.org/10.3390/molecules23112864]
[31]
Chen, X.Q.; Zhao, J.; Chen, L.X.; Wang, S.F.; Wang, Y.; Li, S.P. Lanostane triterpenes from the mushroom Ganoderma resinaceum and their inhibitory activities against α-glucosidase. Phytochemistry, 2018, 149, 103-115.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.007]
[32]
Wang, K.; Bao, L.; Xiong, W.; Ma, K.; Han, J.; Wang, W.; Yin, W.; Liu, H. Lanostane triterpenes from the tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. J. Nat. Prod., 2015, 78(8), 1977-1989.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00331]
[33]
Tao, Q.Q.; Ma, K.; Bao, L.; Wang, K.; Han, J.J.; Zhang, J.X.; Huang, C.Y.; Liu, H.W. New sesquiterpenoids from the edible mushroom Pleurotus cystidiosus and their inhibitory activity against α-glucosidase and PTP1B. Fitoterapia, 2016, 111, 29-35.
[http://dx.doi.org/10.1016/j.fitote.2016.04.007]
[34]
Xiong, M.; Huang, Y.; Liu, Y.; Huang, M.; Song, G.; Ming, Q.; Ma, X.; Yang, J.; Deng, S.; Wen, Y.; Shen, J.; Liu, Q.H.; Zhao, P.; Yang, X. Antidiabetic activity of ergosterol from Pleurotus Ostreatus in KK-Ay mice with spontaneous Type 2 diabetes mellitus. Mol. Nutr. Food Res., 2018, 62(3)
[http://dx.doi.org/10.1002/mnfr.201700444]
[35]
Chen, L.; Li, Z.H.; Yao, J.N.; Peng, Y.L.; Huang, R.; Feng, T.; Liu, J.K. Isoindolinone-containing meroterpenoids with α-glucosidase inhibitory activity from mushroom Hericium caput-medusae. Fitoterapia, 2017, 122, 107-114.
[http://dx.doi.org/10.1016/j.fitote.2017.08.017]
[36]
Aoki, H.; Hanayama, M.; Mori, K.; Sato, R. Grifola frondosa (Maitake) extract activates PPARδ and improves glucose intolerance in high-fat diet-induced obese mice. Biosci. Biotechnol. Biochem., 2018, 82(9), 1550-1559.
[http://dx.doi.org/10.1080/09168451.2018.1480348]
[37]
Cho, E.J.; Hwang, H.J.; Kim, S.W.; Oh, J.Y.; Baek, Y.M.; Choi, J.W.; Bae, S.H.; Yun, J.W. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl. Microbiol. Biotechnol., 2007, 75(6), 1257-1265.
[http://dx.doi.org/10.1007/s00253-007-0972-2]
[38]
Kim, Y.S.; Park, K.S.; Pak, H.K.; Kim, S.W. Compositional sugar analysis of antitumor polysaccharides by high performance liquid chromatography and gas chromatography. Arch. Pharm. Res., 1996, 17, 337-342.
[http://dx.doi.org/10.1007/BF02974173]
[39]
Ying, J.Z.; Mao, X.L.; Ma, Q.M.; Zong, S.C.; Wen, H.A. Illustrations of Chinese medicinal fungi; Science Press: Beijing, 1987, p. 579.
[40]
Han, S.B.; Lee, C.W.; Jeon, Y.J.; Hong, N.D.; Yoo, I.D.; Yang, K.H.; Kim, H.M. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immunopharmacology, 1999, 41(2), 157-164.
[http://dx.doi.org/10.1016/S0162-3109(98)00063-0]
[41]
Song, Y.S.; Kim, S.H.; Sa, J.H.; Jin, C.; Lim, C.J.; Park, E.H. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J. Ethnopharmacol., 2003, 88(1), 113-116.
[http://dx.doi.org/10.1016/S0378-8741(03)00178-8]
[42]
Hwang, H.J.; Kim, S.W.; Lim, J.M.; Joo, J.H.; Kim, H.O.; Kim, H.M.; Yun, J.W. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats. Life Sci., 2005, 76(26), 3069-3080.
[http://dx.doi.org/10.1016/j.lfs.2004.12.019]
[43]
Feng, H.; Zhang, S.; Wan, J.M.; Gui, L.; Ruan, M.; Li, N.; Zhang, H.; Liu, Z.; Wang, H. Polysaccharides extracted from Phellinus linteus ameliorate high-fat high-fructose diet induced insulin resistance in mice. Carbohydr. Polym., 2018, 200, 144-153.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.086]
[44]
Yamac, M.; Zeytinoglu, M.; Senturk, H.; Kartkaya, K.; Kanbak, G.; Bayramoglu, G.; Oglakci, A.; Van Griensven, L.J. Effects of black hoof medicinal mushroom, Phellinus linteus (Agaricomycetes), polysaccharide extract in streptozotocin-induced diabetic rats. Int. J. Med. Mushrooms, 2016, 18(4), 301-311.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v18.i4.30]
[45]
Liu, Y.; Wang, C.; Li, J.; Mei, Y.; Liang, Y. Hypoglycemic and hypolipidemic effects of Phellinus Linteus Mycelial extract from solid-state culture in a rat model of type 2 diabetes. Nutrients, 2019, 11(2), E296.
[http://dx.doi.org/10.3390/nu11020296]
[46]
Lee, I.K.; Yun, B.S. Styrylpyrone-class compounds from medicinal fungi Phellinus and Inonotus spp., and their medicinal importance. J. Antibiot. (Tokyo), 2011, 64(5), 349-359.
[http://dx.doi.org/10.1038/ja.2011.2]
[47]
Chen, W.; Tan, H.; Liu, Q.; Zheng, X.; Zhang, H.; Liu, Y.; Xu, L.A Review: The bioactivities and pharmacological applications of Phellinus linteus. Molecules, 2019, 24(10), 1888.
[http://dx.doi.org/10.3390/molecules24101888]
[48]
Ajith, T.A.; Janardhanan, K.K. Antioxidant and antihepatotoxic activities of Phellinus rimosus (Berk). Pilat. J. Ethnopharmacol., 2002, 81(3), 387-391.
[http://dx.doi.org/10.1016/S0378-8741(02)00042-9]
[49]
Rony, K.A.; Ajith, T.A.; Mathew, J.; Janardhanan, K.K. The medicinal cracked-cap polypore mushroom Phellinus rimosus (higher Basidiomycetes) attenuates alloxan-induced hyperglycemia and oxidative stress in rats. Int. J. Med. Mushrooms, 2013, 15(3), 287-300.
[http://dx.doi.org/10.1615/IntJMedMushr.v15.i3.60]
[50]
Ajith, T.A.; Janardhanan, K.K. Antioxidant and anti-inflammatory activities of methanol extract of Phellinus rimosus (Berk). Pilat. Indian J. Exp. Biol., 2001, 39(11), 1166-1169.
[51]
Ajith, T.A.; Jose, N.; Janardhanan, K.K. Amelioration of cisplatin induced nephrotoxicity in mice by ethyl acetate extract of a polypore fungus, Phellinus rimosus. J. Exp. Clin. Cancer Res., 2002, 21(2), 213-217.
[52]
Ajith, T.A.; Janardhanan, K.K. Cytotoxic and antitumor activities of a polypore macrofungus, Phellinus rimosus (Berk). Pilat. J. Ethnopharmacol., 2003, 84(2-3), 157-162.
[http://dx.doi.org/10.1016/S0378-8741(02)00292-1]
[53]
Ajith, T.A.; Janardhanan, K.K. Chemopreventive activity of a macrofungus Phellinus rimosus against N-nitrosodiethylamine induced hepatocellular carcinoma in rat. J. Exp. Ther. Oncol., 2006, 5(4), 309-321.
[54]
Ajith, T.A.; Sheena, N.; Janardhanan, K.K. Phellinus rimosus protects carbon tetrachloride induced chronic hepatotoxicity in rat: Antioxidant defense mechanism. Pharm. Biol., 2006, 44, 1-8.
[http://dx.doi.org/10.1080/13880200600798569]
[55]
Ajith, T.A.; Janardhanan, K.K. Antimutagenic effect of Phellinus rimosus (Berk) Pilat against chemical induced mutations of histidine dependent Salmonella typhimurium strains. Food Chem. Toxicol., 2011, 49(10), 2676-2680.
[http://dx.doi.org/10.1016/j.fct.2011.07.022]
[56]
Ajith, T.A.; Janardhanan, K.K. Cracked-Cap Medicinal Mushroom Phellinus rimosus (Higher Basidiomycetes) attenuate the ethanol induced lipid peroxidation in mice. Int. J. Med. Mushrooms, 2015, 17, 1061-1067.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v17.i11.60]
[57]
Joseph, J.; Smina, T.P.; Janardhanan, K.K. Polysaccharide protein complex isolated from mushroom Phellinus rimosus (berk.) Pilat alleviates γ radiation-induced toxicity in mice. Cancer Biother. Radiopharm., 2011, 26(3), 299-308.
[http://dx.doi.org/10.1089/cbr.2010.0905]
[58]
Joseph, J.; Panicker, S.N.; Janardhanan, K.K. Protective effect of polysaccharide-protein complex from a polypore mushroom, Phellinus rimosus against radiation-induced oxidative stress. Redox Rep., 2012, 17(1), 22-27.
[http://dx.doi.org/10.1179/1351000211Y.0000000018]
[59]
Meera, C.R.; Janardhanan, K.K. Antitumor activity of a polysaccharide-protein complex isolated from a wood-rotting polypore macro fungus Phellinus rimosus (Berk). Pilat. J. Environ. Pathol. Toxicol. Oncol., 2012, 31(3), 223-232.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i3.40]
[60]
Rony, K.A.; Ajith, T.A.; Nima, N.; Janardhanan, K.K. Hypolipidemic activity of Phellinus rimosus against triton WR-1339 and high cholesterol diet induced hyperlipidemic rats. Environ. Toxicol. Pharmacol., 2014, 37(2), 482-492.
[http://dx.doi.org/10.1016/j.etap.2014.01.004]
[61]
Wasser, S.P. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory Activities: A Review. Int. J. Med. Mushrooms, 2017, 19(4), 279-317.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v19.i4.10]
[62]
Lo, H.C.; Wasser, S.P. Medicinal mushrooms for glycemic control in diabetes mellitus: history, current status, future perspectives, and unsolved problems (review). Int. J. Med. Mushrooms, 2011, 13(5), 401-426.
[http://dx.doi.org/10.1615/IntJMedMushr.v13.i5.10]
[64]
Zheng, S.; Deng, S.; Huang, Y.; Huang, M.; Zhao, P.; Ma, X.; Wen, Y.; Wang, Q.; Yang, X. Anti-diabetic activity of a polyphenol-rich extract from Phellinus igniarius in KK-Ay mice with spontaneous type 2 diabetes mellitus. Food Funct., 2018, 9(1), 614-623.
[http://dx.doi.org/10.1039/C7FO01460K]
[65]
Yang, B-K.; Kim, D-H.; Jeong, S-C.; Das, S.; Choi, Y.S.; Shin, J.S.; Lee, S.C.; Song, C.H. Hypoglycemic effect of a Lentinus edodes exo-polymer produced from a submerged mycelial culture. Biosci. Biotechnol. Biochem., 2002, 66(5), 937-942.
[http://dx.doi.org/10.1271/bbb.66.937]
[66]
Lee, I.K.; Han, M.S.; Lee, M.S.; Kim, Y.S.; Yun, B.S. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties. Bioorg. Med. Chem. Lett., 2010, 20(18), 5459-5461.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.093]
[67]
Shon, M.Y.; Kim, T.H.; Sung, N.J. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem., 2003, 82, 593-597.
[http://dx.doi.org/10.1016/S0308-8146(03)00015-3]
[68]
Wu, C.S.; Lin, Z.M.; Wang, L.N.; Guo, D.X.; Wang, S.Q.; Liu, Y.Q.; Yuan, H.Q.; Lou, H.X. Phenolic compounds with NF-κB inhibitory effects from the fungus Phellinus baumii. Bioorg. Med. Chem. Lett., 2011, 21(11), 3261-3267.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.025]
[69]
Zhang, H.N.; Lin, Z.B. Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta Pharmacol. Sin., 2004, 25(2), 191-195.
[70]
Xiao, C.; Wu, Q.P.; Cai, W.; Tan, J.B.; Yang, X.B.; Zhang, J.M. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch. Pharm. Res., 2012, 35(10), 1793-1801.
[http://dx.doi.org/10.1007/s12272-012-1012-z]
[71]
Wang, C.D.; Teng, B.S.; He, Y.M.; Wu, J.S.; Pan, D.; Pan, L.F.; Zhang, D.; Fan, Z.H.; Yang, H.J.; Zhou, P. Effect of a novel proteoglycan PTP1B inhibitor from Ganoderma lucidum on the amelioration of hyperglycaemia and dyslipidaemia in db/db mice. Br. J. Nutr., 2012, 108(11), 2014-2025.
[http://dx.doi.org/10.1017/S0007114512000153]
[72]
Zheng, J.; Yang, B.; Yu, Y.; Chen, Q.; Huang, T.; Li, D. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting β-cells. Comb. Chem. High Throughput Screen., 2012, 15(7), 542-550.
[http://dx.doi.org/10.2174/138620712801619168]
[73]
Hikino, H.; Ishiyama, M.; Suzuki, Y.; Konno, C. Mechanisms of hypoglycemic activity of ganoderan B: a glycan of Ganoderma lucidum fruit bodies. Planta Med., 1989, 55(5), 423-428.
[http://dx.doi.org/10.1055/s-2006-962057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy