Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Osteoporosis Entwined with Cardiovascular Disease: The Implication of Osteoprotegerin and the Example of Statins

Author(s): Maria V. Deligiorgi*, Mihalis I. Panayiotidis, Gerasimos Siasos and Dimitrios T. Trafalis

Volume 28, Issue 7, 2021

Published on: 23 January, 2020

Page: [1443 - 1467] Pages: 25

DOI: 10.2174/0929867327666200123151132

Price: $65

Abstract

Beyond being epiphenomenon of shared epidemiological factors, the integration of Osteoporosis (OP) with Cardiovascular Disease (CVD) - termed “calcification paradox” - reflects a continuum of aberrant cardiometabolic status. The present review provides background knowledge on “calcification paradox”, focusing on the endocrine aspect of vasculature orchestrated by the osteoblastic molecular fingerprint of vascular cells, acquired via imbalance among established modulators of mineralization. Osteoprotegerin (OPG), the well-established osteoprotective cytokine, has recently been shown to exert a vessel-modifying role. Prompted by this notion, the present review interrogates OPG as the potential missing link between OP and CVD. However, so far, the confirmation of this hypothesis is hindered by the equivocal role of OPG in CVD, being both proatherosclerotic and antiatherosclerotic. Further research is needed to illuminate whether OPG could be a biomarker of the “calcification paradox”. Moreover, the present review brings into prominence the dual role of statins - cardioprotective and osteoprotective - as a potential illustration of the integration of CVD with OP. Considering that the statins-induced modulation of OPG is central to the statins-driven osteoprotective signalling, statins could be suggested as an illustration of the role of OPG in the bone/vessels crosstalk, if further studies consolidate the contribution of OPG to the cardioprotective role of statins. Another outstanding issue that merits further evaluation is the inconsistency of the osteoprotective role of statins. Further understanding of the varying bone-modifying role of statins, likely attributed to the unique profile of different classes of statins defined by distinct physicochemical characteristics, may yield tangible benefits for treating simultaneously OP and CVD.

Keywords: Osteoporosis, cardiovascular disease (CVD), osteoprotegerin, calcification paradox, statins, bone.

« Previous
[1]
Baird, J.; Jacob, C.; Barker, M.; Fall, C.H.; Hanson, M.; Harvey, N.C.; Inskip, H.M.; Kumaran, K.; Cooper, C. Developmental origins of health and disease: a lifecourse approach to the prevention of non-communicable diseases. Healthcare (Basel), 2017, 5(1)e14
[http://dx.doi.org/10.3390/healthcare5010014] [PMID: 28282852]
[2]
Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; Fullerton, H.J.; Gillespie, C.; Hailpern, S.M.; Heit, J.A.; Howard, V.J.; Huffman, M.D.; Kissela, B.M.; Kittner, S.J.; Lackland, D.T.; Lichtman, J.H.; Lisabeth, L.D.; Magid, D.; Marcus, G.M.; Marelli, A.; Matchar, D.B.; McGuire, D.K.; Mohler, E.R.; Moy, C.S.; Mussolino, M.E.; Nichol, G.; Paynter, N.P.; Schreiner, P.J.; Sorlie, P.D.; Stein, J.; Turan, T.N.; Virani, S.S.; Wong, N.D.; Woo, D.; Turner, M.B. Executive summary: heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation, 2013, 127(1), 143-152.
[http://dx.doi.org/10.1161/CIR.0b013e318282ab8f] [PMID: 23283859]
[3]
Gaziano, T.A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol., 2010, 35(2), 72-115.
[http://dx.doi.org/10.1016/j.cpcardiol.2009.10.002] [PMID: 20109979]
[4]
Wu, M.; Rementer, C.; Giachelli, C.M. Vascular calcification: an update on mechanisms and challenges in treatment. Calcif. Tissue Int., 2013, 93(4), 365-373.
[http://dx.doi.org/10.1007/s00223-013-9712-z] [PMID: 23456027]
[5]
Curtis, E.M.; Moon, R.J.; Harvey, N.C.; Cooper, C. Reprint of: the impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Int. J. Orthop. Trauma Nurs., 2017, 26, 7-17.
[http://dx.doi.org/10.1016/j.ijotn.2017.04.004] [PMID: 28578992]
[6]
Nordström, A.; Eriksson, M.; Stegmayr, B.; Gustafson, Y.; Nordström, P. Low bone mineral density is an independent risk factor for stroke and death. Cerebrovasc. Dis., 2010, 29(2), 130-136.
[http://dx.doi.org/10.1159/000262308] [PMID: 19955736]
[7]
Choi, K.; Kennedy, M.; Kazarov, A.; Papadimitriou, J.C.; Keller, G. A common precursor for hematopoietic and endothelial cells. Development, 1998, 125(4), 725-732.
[PMID: 9435292]
[8]
Ramasamy, S.K.; Kusumbe, A.P.; Wang, L.; Adams, R.H. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature, 2014, 507(7492), 376-380.
[http://dx.doi.org/10.1038/nature13146] [PMID: 24647000]
[9]
Persy, V.; D’Haese, P. Vascular calcification and bone disease: the calcification paradox. Trends Mol. Med., 2009, 15(9), 405-416.
[http://dx.doi.org/10.1016/j.molmed.2009.07.001] [PMID: 19733120]
[10]
McFarlane, S.I.; Muniyappa, R.; Shin, J.J.; Bahtiyar, G.; Sowers, J.R. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine, 2004, 23(1), 1-10.
[http://dx.doi.org/10.1385/ENDO:23:1:01] [PMID: 15034190]
[11]
Baud’huin, M.; Duplomb, L.; Teletchea, S.; Lamoureux, F.; Ruiz-Velasco, C.; Maillasson, M.; Redini, F.; Heymann, M.F.; Heymann, D. Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev., 2013, 24(5), 401-409.
[http://dx.doi.org/10.1016/j.cytogfr.2013.06.001] [PMID: 23827649]
[12]
Riggs, B.L.; Baron, R.; Boyle, W.J.; Drezner, M.; Manolagas, S.; Martin, T.J.; Stewart, A.F.; Suda, T.; Yasuda, H.; Aubin, J.; Goltzman, D. Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J. Bone Miner. Res., 2000, 15(12), 2293-2296.
[http://dx.doi.org/10.1359/jbmr.2000.15.12.2293] [PMID: 11127193]
[13]
Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; Shimamoto, G.; DeRose, M.; Elliott, R.; Colombero, A.; Tan, H.L.; Trail, G.; Sullivan, J.; Davy, E.; Bucay, N.; Renshaw-Gegg, L.; Hughes, T.M.; Hill, D.; Pattison, W.; Campbell, P.; Sander, S.; Van, G.; Tarpley, J.; Derby, P.; Lee, R.; Boyle, W.J. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2), 309-319.
[http://dx.doi.org/10.1016/S0092-8674(00)80209-3] [PMID: 9108485]
[14]
Yamaguchi, K.; Kinosaki, M.; Goto, M.; Kobayashi, F.; Tsuda, E.; Morinaga, T.; Higashio, K. Characterization of structural domains of human osteoclastogenesis inhibitory factor. J. Biol. Chem., 1998, 273(9), 5117-5123.
[http://dx.doi.org/10.1074/jbc.273.9.5117] [PMID: 9478964]
[15]
Emery, J.G.; McDonnell, P.; Burke, M.B.; Deen, K.C.; Lyn, S.; Silverman, C.; Dul, E.; Appelbaum, E.R.; Eichman, C.; DiPrinzio, R.; Dodds, R.A.; James, I.E.; Rosenberg, M.; Lee, J.C.; Young, P.R. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J. Biol. Chem., 1998, 273(23), 14363-14367.
[http://dx.doi.org/10.1074/jbc.273.23.14363] [PMID: 9603945]
[16]
Wiley, S.R.; Schooley, K.; Smolak, P.J.; Din, W.S.; Huang, C.P.; Nicholl, J.K.; Sutherland, G.R.; Smith, T.D.; Rauch, C.; Smith, C.A.; Goodwin, R.G. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995, 3(6), 673-682.
[http://dx.doi.org/10.1016/1074-7613(95)90057-8] [PMID: 8777713]
[17]
Pitti, R.M.; Marsters, S.A.; Ruppert, S.; Donahue, C.J.; Moore, A.; Ashkenazi, A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J. Biol. Chem., 1996, 271(22), 12687-12690.
[http://dx.doi.org/10.1074/jbc.271.22.12687] [PMID: 8663110]
[18]
Azijli, K.; Weyhenmeyer, B.; Peters, G.J.; de Jong, S.; Kruyt, F.A. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: discord in the death receptor family. Cell Death Differ., 2013, 20(7), 858-868.
[http://dx.doi.org/10.1038/cdd.2013.28] [PMID: 23579241]
[20]
Johnson, R.C.; Leopold, J.A.; Loscalzo, J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ. Res., 2006, 99(10), 1044-1059.
[http://dx.doi.org/10.1161/01.RES.0000249379.55535.21] [PMID: 17095733]
[21]
Boström, K.; Watson, K.E.; Horn, S.; Wortham, C.; Herman, I.M.; Demer, L.L. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest., 1993, 91(4), 1800-1809.
[http://dx.doi.org/10.1172/JCI116391] [PMID: 8473518]
[22]
Kuwana, M.; Okazaki, Y.; Kodama, H.; Izumi, K.; Yasuoka, H.; Ogawa, Y.; Kawakami, Y.; Ikeda, Y. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J. Leukoc. Biol., 2003, 74(5), 833-845.
[http://dx.doi.org/10.1189/jlb.0403170] [PMID: 12960274]
[23]
Tintut, Y.; Abedin, M.; Cho, J.; Choe, A.; Lim, J.; Demer, L.L. Regulation of RANKL-induced osteoclastic differentiation by vascular cells. J. Mol. Cell. Cardiol., 2005, 39(2), 389-393.
[http://dx.doi.org/10.1016/j.yjmcc.2005.03.019] [PMID: 15893766]
[24]
Dorai, H.; Vukicevic, S.; Sampath, T.K. Bone morphogenetic protein-7 (osteogenic protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of markers that are characteristic of SMC phenotype in vitro. J. Cell. Physiol., 2000, 184(1), 37-45.
[http://dx.doi.org/10.1002/(SICI)1097-4652(200007)184: 1<37:AID-JCP4>3.0.CO;2-M] [PMID: 10825232]
[25]
Sirard, C.; Kim, S.; Mirtsos, C.; Tadich, P.; Hoodless, P.A.; Itié, A.; Maxson, R.; Wrana, J.L.; Mak, T.W. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J. Biol. Chem., 2000, 275(3), 2063-2070.
[http://dx.doi.org/10.1074/jbc.275.3.2063] [PMID: 10636910]
[26]
Nakashima, K.; Zhou, X.; Kunkel, G.; Zhang, Z.; Deng, J.M.; Behringer, R.R.; de Crombrugghe, B. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 2002, 108(1), 17-29.
[http://dx.doi.org/10.1016/S0092-8674(01)00622-5] [PMID: 11792318]
[27]
Giachelli, C.M. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J. Am. Soc. Nephrol., 2003, 14(9)(Suppl. 4), S300-S304.
[http://dx.doi.org/10.1097/01.ASN.0000081663.52165.66] [PMID: 12939385]
[28]
Li, X.; Yang, H.Y.; Giachelli, C.M. Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification. Circ. Res., 2006, 98(7), 905-912.
[http://dx.doi.org/10.1161/01.RES.0000216409.20863.e7] [PMID: 16527991]
[29]
Dellegrottaglie, S.; Sanz, J.; Rajagopalan, S. Molecular determinants of vascular calcification: a bench to bedside view. Curr. Mol. Med., 2006, 6(5), 515-524.
[http://dx.doi.org/10.2174/156652406778018653] [PMID: 16918372]
[30]
Cannata-Andia, J.B.; Roman-Garcia, P.; Hruska, K. The connections between vascular calcification and bone health. Nephrol. Dial. Transplant., 2011, 26(11), 3429-3436.
[http://dx.doi.org/10.1093/ndt/gfr591] [PMID: 22039012]
[31]
Rennenberg, R.J.M.W.; Schurgers, L.J.; Kroon, A.A.; Stehouwer, C.D.A. Arterial calcifications. J. Cell. Mol. Med., 2010, 14(9), 2203-2210.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01139.x] [PMID: 20716128]
[32]
Martin, T.J. Historically significant events in the discovery of RANK/RANKL/OPG. World J. Orthop., 2013, 4(4), 186-197.
[http://dx.doi.org/10.5312/wjo.v4.i4.186] [PMID: 24147254]
[33]
Panizo, S.; Cardus, A.; Encinas, M.; Parisi, E.; Valcheva, P.; López-Ongil, S.; Coll, B.; Fernandez, E.; Valdivielso, J.M. RANKL increases vascular smooth muscle cell calcification through a RANK-BMP4-dependent pathway. Circ. Res., 2009, 104(9), 1041-1048.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.189001] [PMID: 19325147]
[34]
Deuell, K.A.; Callegari, A.; Giachelli, C.M.; Rosenfeld, M.E.; Scatena, M. RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-α. J. Vasc. Res., 2012, 49(6), 510-521.
[http://dx.doi.org/10.1159/000341216] [PMID: 22948607]
[35]
Kaden, J.J.; Bickelhaupt, S.; Grobholz, R.; Haase, K.K.; Sarikoç, A.; Kiliç, R.; Brueckmann, M.; Lang, S.; Zahn, I.; Vahl, C.; Hagl, S.; Dempfle, C.E.; Borggrefe, M. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulate aortic valve calcification. J. Mol. Cell. Cardiol., 2004, 36(1), 57-66.
[http://dx.doi.org/10.1016/j.yjmcc.2003.09.015] [PMID: 14734048]
[36]
Morony, S.; Tintut, Y.; Zhang, Z.; Cattley, R.C.; Van, G.; Dwyer, D.; Stolina, M.; Kostenuik, P.J.; Demer, L.L. Osteoprotegerin inhibits vascular calcification without affecting atherosclerosis in ldlr(-/-) mice. Circulation, 2008, 117(3), 411-420.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.707380] [PMID: 18172035]
[37]
Vassalle, C.; Mazzone, A. Bone loss and vascular calcification: a bi-directional interplay? Vascul. Pharmacol., 2016, 86, 77-86.
[http://dx.doi.org/10.1016/j.vph.2016.07.003] [PMID: 27389001]
[38]
Chen, Z.; Yu, Y. Aortic calcification was associated with risk of fractures: a meta-analysis. J. Back Musculoskelet Rehabil., 2016, 29(4), 635-642.
[http://dx.doi.org/10.3233/BMR-160700] [PMID: 27232081]
[39]
Román-García, P.; Carrillo-López, N.; Fernández-Martín, J.L.; Naves-Díaz, M.; Ruiz-Torres, M.P.; Cannata-Andía, J.B. High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone, 2010, 46(1), 121-128.
[http://dx.doi.org/10.1016/j.bone.2009.09.006] [PMID: 19772957]
[40]
Proudfoot, D.; Skepper, J.N.; Hegyi, L.; Bennett, M.R.; Shanahan, C.M.; Weissberg, P.L. Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ. Res., 2000, 87(11), 1055-1062.
[http://dx.doi.org/10.1161/01.RES.87.11.1055] [PMID: 11090552]
[41]
Marulanda, J.; Gao, C.; Roman, H.; Henderson, J.E.; Murshed, M. Prevention of arterial calcification corrects the low bone mass phenotype in MGP-deficient mice. Bone, 2013, 57(2), 499-508.
[http://dx.doi.org/10.1016/j.bone.2013.08.021] [PMID: 23994172]
[42]
Zannettino, A.C.; Holding, C.A.; Diamond, P.; Atkins, G.J.; Kostakis, P.; Farrugia, A.; Gamble, J.; To, L.B.; Findlay, D.M.; Haynes, D.R. Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J. Cell. Physiol., 2005, 204(2), 714-723.
[http://dx.doi.org/10.1002/jcp.20354] [PMID: 15799029]
[43]
Shahbazi, S.; Lenting, P.J.; Fribourg, C.; Terraube, V.; Denis, C.V.; Christophe, O.D. Characterization of the interaction between von Willebrand factor and osteoprotegerin. J. Thromb. Haemost., 2007, 5(9), 1956-1962.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02681.x] [PMID: 17723135]
[44]
Davenport, C.; Harper, E.; Rochfort, K.D.; Forde, H.; Smith, D.; Cummins, P.M. RANKL inhibits the production of osteoprotegerin from smooth muscle cells under basal conditions and following exposure to cyclic strain. J. Vasc. Res., 2018, 55(2), 111-123.
[http://dx.doi.org/10.1159/000486787] [PMID: 29635231]
[45]
Ovchinnikova, O.; Gylfe, A.; Bailey, L.; Nordström, A.; Rudling, M.; Jung, C.; Bergström, S.; Waldenström, A.; Hansson, G.K.; Nordström, P. Osteoprotegerin promotes fibrous cap formation in atherosclerotic lesions of ApoE-deficient mice-brief report. Arterioscler. Thromb. Vasc. Biol., 2009, 29(10), 1478-1480.
[http://dx.doi.org/10.1161/ATVBAHA.109.188185] [PMID: 19592469]
[46]
Olesen, P.; Ledet, T.; Rasmussen, L.M. Arterial osteoprotegerin: increased amounts in diabetes and modifiable synthesis from vascular smooth muscle cells by insulin and TNF-alpha. Diabetologia, 2005, 48(3), 561-568.
[http://dx.doi.org/10.1007/s00125-004-1652-8] [PMID: 15700136]
[47]
Bennett, B.J.; Scatena, M.; Kirk, E.A.; Rattazzi, M.; Varon, R.M.; Averill, M.; Schwartz, S.M.; Giachelli, C.M.; Rosenfeld, M.E. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler. Thromb. Vasc. Biol., 2006, 26(9), 2117-2124.
[http://dx.doi.org/10.1161/01.ATV.0000236428.91125.e6] [PMID: 16840715]
[48]
Bucay, N.; Sarosi, I.; Dunstan, C.R.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; Boyle, W.J.; Simonet, W.S. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev., 1998, 12(9), 1260-1268.
[http://dx.doi.org/10.1101/gad.12.9.1260] [PMID: 9573043]
[49]
Price, P.A.; June, H.H.; Buckley, J.R.; Williamson, M.K. Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D. Arterioscler. Thromb. Vasc. Biol., 2001, 21(10), 1610-1616.
[http://dx.doi.org/10.1161/hq1001.097102] [PMID: 11597934]
[50]
Weiss, R.M.; Lund, D.D.; Chu, Y.; Brooks, R.M.; Zimmerman, K.A.; El Accaoui, R.; Davis, M.K.; Hajj, G.P.; Zimmerman, M.B.; Heistad, D.D. Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One, 2013, 8(6)e65201
[http://dx.doi.org/10.1371/journal.pone.0065201] [PMID: 23762316]
[51]
Vik, A.; Mathiesen, E.B.; Brox, J.; Wilsgaard, T.; Njølstad, I.; Jørgensen, L.; Hansen, J.B. Relation between serum osteoprotegerin and carotid intima media thickness in a general population - the Tromsø study. J. Thromb. Haemost., 2010, 8(10), 2133-2139.
[http://dx.doi.org/10.1111/j.1538-7836.2010.03990.x] [PMID: 20738762]
[52]
Andersen, G.Ø.; Knudsen, E.C.; Aukrust, P.; Yndestad, A.; Oie, E.; Müller, C.; Seljeflot, I.; Ueland, T. Elevated serum osteoprotegerin levels measured early after acute ST-elevation myocardial infarction predict final infarct size. Heart, 2011, 97(6), 460-465.
[http://dx.doi.org/10.1136/hrt.2010.206714] [PMID: 21270073]
[53]
Løgstrup, B.B.; Høfsten, D.E.; Christophersen, T.B.; Møller, J.E.; Bjerre, M.; Flyvbjerg, A.; Bøtker, H.E.; Egstrup, K. Microvascular dysfunction is associated with plasma osteoprotegerin levels in patients with acute myocardial infarction. Coron. Artery Dis., 2013, 24(6), 487-492.
[http://dx.doi.org/10.1097/MCA.0b013e328363242e] [PMID: 23777975]
[54]
Makarović, S.; Makarović, Z.; Bilić-Ćurčić, I.; Milas-Ahić, J.; Mihaljević, I.; Franceschi, M.; Jukić, T. Serum osteoprotegerin in patients with calcified aortic valve stenosis in relation to heart failure. Acta Clin. Croat., 2017, 56(4), 733-741.
[http://dx.doi.org/10.20471/acc.2017.56.04.22] [PMID: 29590730]
[55]
Ueland, T.; Dahl, C.P.; Kjekshus, J.; Hulthe, J.; Böhm, M.; Mach, F.; Goudev, A.; Lindberg, M.; Wikstrand, J.; Aukrust, P.; Gullestad, L. Osteoprotegerin predicts progression of chronic heart failure: results from CORONA. Circ Heart Fail, 2011, 4(2), 145-152.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.110.957332] [PMID: 21216833]
[56]
Bjerre, M.; Hilden, J.; Kastrup, J.; Skoog, M.; Hansen, J.F.; Kolmos, H.J.; Jensen, G.B.; Kjøller, E.; Winkel, P.; Flyvbjerg, A.; Gluud, C. Osteoprotegerin independently predicts mortality in patients with stable coronary artery disease: the CLARICOR trial. Scand. J. Clin. Lab. Invest., 2014, 74(8), 657-664.
[http://dx.doi.org/10.3109/00365513.2014.930510] [PMID: 25026506]
[57]
Mogelvang, R.; Haahr-Pedersen, S.; Bjerre, M.; Frystyk, J.; Iversen, A.; Galatius, S.; Flyvbjerg, A.; Jensen, J.S. Osteoprotegerin improves risk detection by traditional cardiovascular risk factors and hsCRP. Heart, 2013, 99(2), 106-110.
[http://dx.doi.org/10.1136/heartjnl-2012-302240] [PMID: 23135978]
[58]
Omland, T.; Drazner, M.H.; Ueland, T.; Abedin, M.; Murphy, S.A.; Aukrust, P.; de Lemos, J.A. Plasma osteoprotegerin levels in the general population: relation to indices of left ventricular structure and function. Hypertension, 2007, 49(6), 1392-1398.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.087742] [PMID: 17470718]
[59]
Sandberg, W.J.; Yndestad, A.; Øie, E.; Smith, C.; Ueland, T.; Ovchinnikova, O.; Robertson, A.K.; Müller, F.; Semb, A.G.; Scholz, H.; Andreassen, A.K.; Gullestad, L.; Damås, J.K.; Frøland, S.S.; Hansson, G.K.; Halvorsen, B.; Aukrust, P. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4), 857-863.
[http://dx.doi.org/10.1161/01.ATV.0000204334.48195.6a] [PMID: 16424351]
[60]
Golledge, J.; McCann, M.; Mangan, S.; Lam, A.; Karan, M. Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke, 2004, 35(7), 1636-1641.
[http://dx.doi.org/10.1161/01.STR.0000129790.00318.a3] [PMID: 15143295]
[61]
Semb, A.G.; Ueland, T.; Aukrust, P.; Wareham, N.J.; Luben, R.; Gullestad, L.; Kastelein, J.J.; Khaw, K.T.; Boekholdt, S.M. Osteoprotegerin and soluble receptor activator of nuclear factor-kappaB ligand and risk for coronary events: a nested case-control approach in the prospective EPIC-Norfolk population study 1993-2003. Arterioscler. Thromb. Vasc. Biol., 2009, 29(6), 975-980.
[http://dx.doi.org/10.1161/ATVBAHA.109.184101] [PMID: 19325145]
[62]
Tschiderer, L.J.; Willeit, J.; Schett, G.; Kiechl, S.; Willeit, P. Osteoprotegerin concentration and risk of cardiovascular outcomes in nine general population studies: literature-based meta-analysis involving 26,442 participants. PLoS One, 2017, 12(8)e0183910
[http://dx.doi.org/10.1371/journal.pone.0183910]] [PMID: 28837646]
[63]
Tschiderer, L.; Klingenschmid, G.; Nagrani, R.; Willeit, J.; Laukkanen, J.A.; Schett, G.; Kiechl, S.; Willeit, P. Osteoprotegerin and cardiovascular events in high-risk populations: meta-analysis of 19 prospective studies involving 27450 participants. J. Am. Heart Assoc., 2018, 7(16)e009012
[http://dx.doi.org/10.1161/JAHA.118.009012] [PMID: 30369329]
[64]
Song, D.H.; Zhou, P.Z.; Xiu, X.L.; Zhou, G.H.; Sun, Y.X.; Song, C. Relationships of OPG genetic polymorphisms with susceptibility to cardiovascular disease: a meta-analysis. Med. Sci. Monit., 2016, 22, 1223-1231.
[http://dx.doi.org/10.12659/MSM.895434] [PMID: 27068490]
[65]
Lin, J-F.; Wu, S.; Juang, J-M.J.; Chiang, F-T.; Hsu, L-A.; Teng, M-S.; Cheng, S-T.; Huang, H-L.; Ko, Y-L. Osteoprotegerin and osteopontin levels, but not gene polymorphisms, predict mortality in cardiovascular diseases. Biomark Med., 2019, 13(9), 751-760.
[http://dx.doi.org/10.2217/bmm-2018-0458] [PMID: 31157557]
[66]
McGonigle, J.S.; Giachelli, C.M.; Scatena, M. Osteoprotegerin and RANKL differentially regulate angiogenesis and endothelial cell function. Angiogenesis, 2009, 12(1), 35-46.
[http://dx.doi.org/10.1007/s10456-008-9127-z] [PMID: 19105036]
[67]
Kobayashi-Sakamoto, M.; Isogai, E.; Holen, I. Osteoprotegerin induces cytoskeletal reorganization and activates FAK, Src, and ERK signaling in endothelial cells. Eur. J. Haematol., 2010, 85(1), 26-35.
[http://dx.doi.org/10.1111/j.1600-0609.2010.01446.x] [PMID: 20331738]
[68]
Pritzker, L.B.; Scatena, M.; Giachelli, C.M. The role of osteoprotegerin and TNF-related apoptosis inducing ligand in human microvascular endothelial cell survival. Mol. Biol. Cell, 2004, 15, 2834-2841.
[http://dx.doi.org/10.1091/mbc.e04-01-0059] [PMID: 15064358]
[69]
Mangan, S.H.; Campenhout, A.V.; Rush, C.; Golledge, J. Osteoprotegerin upregulates endothelial cell adhesion molecule response to tumor necrosis factor-α associated with induction of angiopoietin-2. Cardiovasc. Res., 2007, 76(3), 494-505.
[http://dx.doi.org/10.1016/j.cardiores.2007.07.017] [PMID: 17706953]
[70]
Zauli, G.; Corallini, F.; Bossi, F.; Fischetti, F.; Durigutto, P.; Celeghini, C.; Tedesco, F.; Secchiero, P. Osteoprotegerin increases leukocyte adhesion to endothelial cells both in vitro and in vivo. Blood, 2007, 110(2), 536-543.
[http://dx.doi.org/10.1182/blood-2007-01-068395] [PMID: 17363729]
[71]
Cartland, S.P.; Genner, S.W.; Martínez, G.J.; Robertson, S.; Kockx, M.; Lin, R.C.; O'Sullivan, J.F.; Koay, Y.C.; Cholan, P.M.; Kebede, M.A.; Murphy, A.J.; Masters, S.; Bennett, M.R.; Jessup, W.; Kritharides, L.; Geczy, C.; Patel, S.; Kavurma, M.M. 2019.
[72]
Toffoli, B.; Pickering, R.J.; Tsorotes, D.; Wang, B.; Bernardi, S.; Kantharidis, P.; Fabris, B.; Zauli, G.; Secchiero, P.; Thomas, M.C. Osteoprotegerin promotes vascular fibrosis via a TGF-β1 autocrine loop. Atherosclerosis, 2011, 218(1), 61-68.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.05.019] [PMID: 21679949]
[73]
Heymann, M.F.; Herisson, F.; Davaine, J.M.; Charrier, C.; Battaglia, S.; Passuti, N.; Lambert, G.; Gouëffic, Y.; Heymann, D. Role of the OPG/RANK/RANKL triad in calcifications of the atheromatous plaques: comparison between carotid and femoral beds. Cytokine, 2012, 58(2), 300-306.
[http://dx.doi.org/10.1016/j.cyto.2012.02.004] [PMID: 22402034]
[74]
Sato, K.; Niessner, A.; Kopecky, S.L.; Frye, R.L.; Goronzy, J.J.; Weyand, C.M. TRAIL-expressing T cells induce apoptosis of vascular smooth muscle cells in the atherosclerotic plaque. J. Exp. Med., 2006, 203(1), 239-250.
[http://dx.doi.org/10.1084/jem.20051062] [PMID: 16418392]
[75]
Callegari, A.; Coons, M.L.; Ricks, J.L.; Rosenfeld, M.E.; Scatena, M. Increased calcification in osteoprotegerin-deficient smooth muscle cells: dependence on receptor activator of NF-κB ligand and interleukin 6. J. Vasc. Res., 2014, 51(2), 118-131.
[http://dx.doi.org/10.1159/000358920]] [PMID: 24642764]
[76]
Yun, T.J.; Tallquist, M.D.; Aicher, A.; Rafferty, K.L.; Marshall, A.J.; Moon, J.J.; Ewings, M.E.; Mohaupt, M.; Herring, S.W.; Clark, E.A. Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J. Immunol., 2001, 166(3), 1482-1491.
[http://dx.doi.org/10.4049/jimmunol.166.3.1482] [PMID: 11160187]
[77]
Di Bartolo, B.A.; Schoppet, M.; Mattar, M.Z.; Rachner, T.D.; Shanahan, C.M.; Kavurma, M.M. Calcium and osteoprotegerin regulate IGF1R expression to inhibit vascular calcification. Cardiovasc. Res., 2011, 91(3), 537-545.
[http://dx.doi.org/10.1093/cvr/cvr084] [PMID: 21447702]
[78]
Abedin, M.; Tintut, Y.; Demer, L.L. Vascular calcification: mechanisms and clinical ramifications. Arterioscler. Thromb. Vasc. Biol., 2004, 24(7), 1161-1170.
[http://dx.doi.org/10.1161/01.ATV.0000133194.94939.42] [PMID: 15155384]
[79]
de Ciriza, C.P.; Lawrie, A.; Varo, N. Osteoprotegerin in cardiometabolic disorders. Int. J. Endocrinol., 2015, 2015564934
[http://dx.doi.org/10.1155/2015/564934] [PMID: 26078757]
[80]
Secchiero, P.; Candido, R.; Corallini, F.; Zacchigna, S.; Toffoli, B.; Rimondi, E.; Fabris, B.; Giacca, M.; Zauli, G. Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation, 2006, 114(14), 1522-1530.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.643841] [PMID: 17000905]
[81]
Kavurma, M.M.; Schoppet, M.; Bobryshev, Y.V.; Khachigian, L.M.; Bennett, M.R. TRAIL stimulates proliferation of vascular smooth muscle cells via activation of NF-kappaB and induction of insulin-like growth factor-1 receptor. J. Biol. Chem., 2008, 283(12), 7754-7762.
[http://dx.doi.org/10.1074/jbc.M706927200] [PMID: 18178561]
[82]
Secchiero, P.; Gonelli, A.; Carnevale, E.; Milani, D.; Pandolfi, A.; Zella, D.; Zauli, G. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation, 2003, 107(17), 2250-2256.
[http://dx.doi.org/10.1161/01.CIR.0000062702.60708.C4] [PMID: 12668516]
[83]
Pérez de Ciriza, C.; Lawrie, A.; Varo, N. Influence of pre-analytical and analytical factors on osteoprotegerin measurements. Clin. Biochem., 2014, 47(13-14), 1279-1285.
[http://dx.doi.org/10.1016/j.clinbiochem.2014.05.006] [PMID: 24845712]
[84]
Nybo, M.; Rasmussen, L.M. Osteoprotegerin released from the vascular wall by heparin mainly derives from vascular smooth muscle cells. Atherosclerosis, 2008, 201(1), 33-35.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.03.026] [PMID: 18490020]
[85]
Vik, A.; Brodin, E.; Sveinbjørnsson, B.; Hansen, J.B. Heparin induces mobilization of osteoprotegerin into the circulation. Thromb. Haemost., 2007, 98(1), 148-154.
[PMID: 17598007]
[86]
Szulc, P.; Chapurlat, R.; Hofbauer, L.C. Prediction of fractures and major cardiovascular events in men using serum osteoprotegerin levels: the prospective STRAMBO study. J. Bone Miner. Res., 2017, 32(11), 2288-2296.
[http://dx.doi.org/10.1002/jbmr.3213] [PMID: 28677166]
[87]
Kiechl, S.; Schett, G.; Wenning, G.; Redlich, K.; Oberhollenzer, M.; Mayr, A.; Santer, P.; Smolen, J.; Poewe, W.; Willeit, J. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation, 2004, 109(18), 2175-2180.
[http://dx.doi.org/10.1161/01.CIR.0000127957.43874.BB] [PMID: 15117849]
[88]
Bäck, M.; Aranyi, T.; Cancela, M.L.; Carracedo, M.; Conceição, N.; Leftheriotis, G.; Macrae, V.; Martin, L.; Nitschke, Y.; Pasch, A.; Quaglino, D.; Rutsch, F.; Shanahan, C.; Sorribas, V.; Szeri, F.; Valdivielso, P.; Vanakker, O.; Kempf, H. Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front. Cardiovasc. Med., 2019, 5, 196.
[http://dx.doi.org/10.3389/fcvm.2018.00196] [PMID: 30713844]
[89]
Abu El-Asrar, A.M.; Struyf, S.; Mohammad, G.; Gouwy, M.; Rytinx, P.; Siddiquei, M.M.; Hernández, C.; Alam, K.; Mousa, A.; De Hertogh, G.; Opdenakker, G.; Simó, R. Osteoprotegerin is a new regulator of inflammation and angiogenesis in proliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2017, 58(7), 3189-3201.
[http://dx.doi.org/10.1167/iovs.16-20993] [PMID: 28654984]
[90]
Demková, K.; Kozárová, M.; Malachovská, Z.; Javorský, M.; Tkáč, I. Osteoprotegerin concentration is associated with the presence and severity of peripheral arterial disease in type 2 diabetes mellitus. Vasa, 2018, 47(2), 131-135.
[http://dx.doi.org/10.1024/0301-1526/a000682] [PMID: 29313442]
[91]
Daniele, G.; Winnier, D.; Mari, A.; Bruder, J.; Fourcaudot, M.; Pengou, Z.; Hansis-Diarte, A.; Jenkinson, C.; Tripathy, D.; Folli, F. The potential role of the osteopontin-osteocalcin-osteoprotegerin triad in the pathogenesis of prediabetes in humans. Acta Diabetol., 2018, 55(2), 139-148.
[http://dx.doi.org/10.1007/s00592-017-1065-z] [PMID: 29151224]
[92]
Giovannini, S.; Tinelli, G.; Biscetti, F.; Straface, G.; Angelini, F.; Pitocco, D.; Mucci, L.; Landolfi, R.; Flex, A. Serum high mobility group box-1 and osteoprotegerin levels are associated with peripheral arterial disease and critical limb ischemia in type 2 diabetic subjects. Cardiovasc. Diabetol., 2017, 16(1), 99.
[http://dx.doi.org/10.1186/s12933-017-0581-z] [PMID: 28789654]
[93]
Chae, S.Y.; Chung, W.; Kim, Y.H.; Oh, Y.K.; Lee, J.; Choi, K.H.; Ahn, C.; Kim, Y.S. The correlation of serum osteoprotegerin with non-traditional cardiovascular risk factors and arterial stiffness in patients with pre-dialysis chronic kidney disease: results from the KNOW-CKD study. J. Korean Med. Sci., 2018, 33(53)e322
[http://dx.doi.org/10.3346/jkms.2018.33.e322] [PMID: 30595681]
[94]
Fekih, O.; Triki, H.; Triki, S.; Neffati, F.; Chouchane, S.; Guediche, M.N.; Najjar, M.F. Osteoprotegerin as a marker of cardiovascular risk in children and adolescents with type 1 diabetes. Pediatr. Diabetes, 2017, 18(3), 230-236.
[http://dx.doi.org/10.1111/pedi.12379] [PMID: 27111559]
[95]
Bozic, M.; Méndez-Barbero, N.; Gutiérrez-Muñoz, C.; Betriu, A.; Egido, J.; Fernández, E.; Martín-Ventura, J.L. Valdivielso. J.M.; Blanco-Colio, L.M. Investigators from the NEFRONA study. Combination of biomarkers of vascular calcification and sTWEAK to predict cardiovascular events in chronic kidney disease. Atherosclerosis, 2018, 270, 13-20.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.011] [PMID: 29407881]
[96]
Elsaeed, A.M.; Ibrahiem, A.H.; Ali, A.A. Matrix metalloproteinase 2 and osteoprotegrin as new markers of increased atherosclerotic risk in Egyptian patients with chronic kidney disease. Egypt. J. Immunol., 2017, 24(1), 153-164.
[PMID: 29120587]
[97]
Collado, S.; Coll, E.; Nicolau, C.; Azqueta, M.; Pons, M.; Cruzado, J.M.; de la Torre, B.; Deulofeu, R.; Mojal, S.; Pascual, J.; Cases, A. Serum osteoprotegerin in prevalent hemodialysis patients: associations with mortality, atherosclerosis and cardiac function. BMC Nephrol., 2017, 18(1), 290.
[http://dx.doi.org/10.1186/s12882-017-0701-8] [PMID: 28882110]
[98]
Nakahara, T.; Kawai-Kowase, K.; Matsui, H.; Sunaga, H.; Utsugi, T.; Iso, T.; Arai, M.; Tomono, S.; Kurabayashi, M. Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells. Atherosclerosis, 2016, 253, 102-110.
[http://dx.doi.org/10.1016/j.atherosclerosis.2016.08.010] [PMID: 27599364]
[99]
Olauson, H.; Vervloet, M.G.; Cozzolino, M.; Massy, Z.A.; Torres, P.U.; Larsson, T.E. New insights into the FGF23-Klotho axis. Semin. Nephrol., 2014, 34(6), 586-597.
[http://dx.doi.org/10.1016/j.semnephrol.2014.09.005] [PMID: 25498378]
[100]
Stöhr, R.; Schuh, A.; Heine, G.H.; Brandenburg, V. FGF23 in cardiovascular disease: innocent bystander or active mediator? Front. Endocrinol. (Lausanne), 2018, 9, 351.
[http://dx.doi.org/10.3389/fendo.2018.00351] [PMID: 30013515]
[101]
Beckwitt, C.H.; Brufsky, A.; Oltvai, Z.N.; Wells, A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res., 2018, 20(1), 144.
[http://dx.doi.org/10.1186/s13058-018-1066-z] [PMID: 30458856]
[102]
Endo, A. The discovery and development of HMG-CoA reductase inhibitors. J. Lipid Res., 1992, 33(11), 1569-1582.
[http://dx.doi.org/10.1016/S0022-2275(20)41379-3] [PMID: 1464741]
[103]
Alagona, P., Jr Pitavastatin: evidence for its place in treatment of hypercholesterolemia. Core Evid., 2010, 5, 91-105.
[http://dx.doi.org/10.2147/CE.S8008] [PMID: 21468365]
[104]
Bolli, R.; Dawn, B. The cornucopia of “pleiotropic” actions of statins: myogenesis as a new mechanism for statin-induced benefits? Circ. Res., 2009, 104(2), 144-146.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192500] [PMID: 19179666]
[105]
Zhou, Q.; Liao, J.K. Statins and cardiovascular diseases: from cholesterol lowering to pleiotropy. Curr. Pharm. Des., 2009, 15(5), 467-478.
[http://dx.doi.org/10.2174/138161209787315684] [PMID: 19199975]
[106]
Meier, C.R.; Schlienger, R.G.; Kraenzlin, M.E.; Schlegel, B.; Jick, H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA, 2000, 283(24), 3205-3210.
[http://dx.doi.org/10.1001/jama.283.24.3205] [PMID: 10866867]
[107]
Wang, P.S.; Solomon, D.H.; Mogun, H.; Avorn, J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA, 2000, 283(24), 3211-3216.
[http://dx.doi.org/10.1001/jama.283.24.3211] [PMID: 10866868]
[108]
Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science, 1999, 286(5446), 1946-1949.
[http://dx.doi.org/10.1126/science.286.5446.1946] [PMID: 10583956]
[109]
Gonyeau, M.J. Statins and osteoporosis: a clinical review. Pharmacotherapy, 2005, 25(2), 228-243.
[http://dx.doi.org/10.1592/phco.25.2.228.56954] [PMID: 15767237]
[110]
Ruiz-Gaspa, S.; Nogues, X.; Enjuanes, A.; Monllau, J.C.; Blanch, J.; Carreras, R.; Mellibovsky, L.; Grinberg, D.; Balcells, S.; Díez-Perez, A.; Pedro-Botet, J. Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J. Cell. Biochem., 2007, 101(6), 1430-1438.
[http://dx.doi.org/10.1002/jcb.21259] [PMID: 17252541]
[111]
Pagkalos, J.; Cha, J.M.; Kang, Y.; Heliotis, M.; Tsiridis, E.; Mantalaris, A. Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J. Bone Miner. Res., 2010, 25(11), 2470-2478.
[http://dx.doi.org/10.1002/jbmr.163] [PMID: 20564244]
[112]
Gutierrez, G.E.; Edwards, J.R.; Garrett, I.R.; Nyman, J.S.; McCluskey, B.; Rossini, G.; Flores, A.; Neidre, D.B.; Mundy, G.R. Transdermal lovastatin enhances fracture repair in rats. J. Bone Miner. Res., 2008, 23(11), 1722-1730.
[http://dx.doi.org/10.1359/jbmr.080603] [PMID: 18597639]
[113]
El-Nabarawi, N.; El-Wakd, M.; Salem, M. Atorvastatin, a double weapon in osteoporosis treatment: an experimental and clinical study. Drug Des. Devel. Ther., 2017, 11, 1383-1391.
[http://dx.doi.org/10.2147/DDDT.S133020] [PMID: 28496308]
[114]
Weivoda, M.M.; Hohl, R.J. Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation. Endocrinology, 2011, 152(8), 3113-3122.
[http://dx.doi.org/10.1210/en.2011-0016] [PMID: 21586555]
[115]
Itzstein, C.; Coxon, F.P.; Rogers, M.J. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases, 2011, 2(3), 117-130.
[http://dx.doi.org/10.4161/sgtp.2.3.16453] [PMID: 21776413]
[116]
Maeda, T.; Matsunuma, A.; Kurahashi, I.; Yanagawa, T.; Yoshida, H.; Horiuchi, N. Induction of osteoblast differentiation indices by statins in MC3T3-E1 cells. J. Cell. Biochem., 2004, 92(3), 458-471.
[http://dx.doi.org/10.1002/jcb.20074] [PMID: 15156558]
[117]
Chen, P.Y.; Sun, J.S.; Tsuang, Y.H.; Chen, M.H.; Weng, P.W.; Lin, F.H. Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr. Res., 2010, 30(3), 191-199.
[http://dx.doi.org/10.1016/j.nutres.2010.03.004] [PMID: 20417880]
[118]
Tsubaki, M.; Satou, T.; Itoh, T.; Imano, M.; Yanae, M.; Kato, C.; Takagoshi, R.; Komai, M.; Nishida, S. Bisphosphonate- and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol. Cell. Endocrinol., 2012, 361(1-2), 219-231.
[http://dx.doi.org/10.1016/j.mce.2012.05.002] [PMID: 22579611]
[119]
Lee, W.S.; Lee, E.G.; Sung, M.S.; Choi, Y.J.; Yoo, W.H. Atorvastatin inhibits osteoclast differentiation by suppressing NF-κB and MAPK signaling during IL-1β-induced osteoclastogenesis. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.), 2018, 33(2), 397-406.
[http://dx.doi.org/10.3904/kjim.2015.244] [PMID: 28352062]
[120]
Moon, H.J.; Kim, S.E.; Yun, Y.P.; Hwang, Y.S.; Bang, J.B.; Park, J.H.; Kwon, I.K. Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species. Exp. Mol. Med., 2011, 43(11), 605-612.
[http://dx.doi.org/10.3858/emm.2011.43.11.067] [PMID: 21832867]
[121]
Callaway, D.A.; Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab., 2015, 33(4), 359-370.
[http://dx.doi.org/10.1007/s00774-015-0656-4] [PMID: 25804315]
[122]
Davignon, J.; Jacob, R.F.; Mason, R.P. The antioxidant effects of statins. Coron. Artery Dis., 2004, 15(5), 251-258.
[http://dx.doi.org/10.1097/01.mca.0000131573.31966.34] [PMID: 15238821]
[123]
Ahn, K.S.; Sethi, G.; Chaturvedi, M.M.; Aggarwal, B.B. Simvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, suppresses osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand through modulation of NF-kappaB pathway. Int. J. Cancer, 2008, 123(8), 1733-1740.
[http://dx.doi.org/10.1002/ijc.23745] [PMID: 18688862]
[124]
Jimi, E.; Hirata, S.; Shin, M.; Yamazaki, M.; Fukushima, H. Molecular mechanisms of BMP-induced bone formation: cross-talk between BMP and NF-κB signaling pathways in osteoblastogenesis. Jpn. Dent. Sci. Rev., 2010, 46(1), 33-42.
[http://dx.doi.org/10.1016/j.jdsr.2009.10.003]
[125]
Lin, T-K.; Chou, P.; Lin, C-H.; Hung, Y-J.; Jong, G-P. Long-term effect of statins on the risk of new-onset osteoporosis: a nationwide population-based cohort study. PLoS One, 2018, 13(5)e0196713
[http://dx.doi.org/10.1371/journal.pone.0196713]] [PMID: 29723231]
[126]
An, T.; Hao, J.; Sun, S.; Li, R.; Yang, M.; Cheng, G.; Zou, M. Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos. Int., 2017, 28(1), 47-57.
[http://dx.doi.org/10.1007/s00198-016-3844-8] [PMID: 27888285]
[127]
Wang, Z.; Li, Y.; Zhou, F.; Piao, Z.; Hao, J. Effects of statins on bone mineral density and fracture risk: a PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore), 2016, 95(22)e3042
[http://dx.doi.org/10.1097/MD.0000000000003042] [PMID: 27258488]
[128]
Jin, S.; Jiang, J.; Bai, P.; Zhang, M.; Tong, X.; Wang, H.; Lu, Y. Statin use and risk of fracture: a meta-analysis. Int. J. Clin. Exp. Med., 2015, 8(5), 8269-8275.
[PMID: 26221409]
[129]
Hatzigeorgiou, C.; Jackson, J.L. Hydroxymethylglutaryl-coenzyme A reductase inhibitors and osteoporosis: a meta-analysis. Osteoporos. Int., 2005, 16(8), 990-998.
[http://dx.doi.org/10.1007/s00198-004-1793-0] [PMID: 15744453]
[130]
Liu, J.; Zhu, L.P.; Yang, X.L.; Huang, H.L.; Ye, D.Q. HMG-CoA reductase inhibitors (statins) and bone mineral density: a meta-analysis. Bone, 2013, 54(1), 151-156.
[http://dx.doi.org/10.1016/j.bone.2013.01.044] [PMID: 23388418]
[131]
Uzzan, B.; Cohen, R.; Nicolas, P.; Cucherat, M.; Perret, G.Y. Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone, 2007, 40(6), 1581-1587.
[http://dx.doi.org/10.1016/j.bone.2007.02.019] [PMID: 17409043]
[132]
Toh, S.; Hernández-Díaz, S. Statins and fracture risk. A systematic review. Pharmacoepidemiol. Drug Saf., 2007, 16(6), 627-640.
[http://dx.doi.org/10.1002/pds.1363] [PMID: 17286319]
[133]
Bauer, D.C.; Mundy, G.R.; Jamal, S.A.; Black, D.M.; Cauley, J.A.; Ensrud, K.E.; van der Klift, M.; Pols, H.A. Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch. Intern. Med., 2004, 164(2), 146-152.
[http://dx.doi.org/10.1001/archinte.164.2.146] [PMID: 14744837]
[134]
Reid, I.R.; Hague, W.; Emberson, J.; Baker, J.; Tonkin, A.; Hunt, D.; MacMahon, S.; Sharpe, N. Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial. Long-term intervention with pravastatin in ischaemic disease. Lancet, 2001, 357(9255), 509-512.
[http://dx.doi.org/10.1016/S0140-6736(00)04042-3] [PMID: 11229669]
[135]
Peña, J.M.; Aspberg, S.; MacFadyen, J.; Glynn, R.J.; Solomon, D.H.; Ridker, P.M. Statin therapy and risk of fracture: results from the JUPITER randomized clinical trial. JAMA Intern. Med., 2015, 175(2), 171-177.
[http://dx.doi.org/10.1001/jamainternmed.2014.6388] [PMID: 25437881]
[136]
Pedersen, T.R.; Kjekshus, J. Statin drugs and the risk of fracture. JAMA, 2000, 284(15), 1921-1922.
[http://dx.doi.org/10.1001/jama.284.15.1921]]
[137]
Wada, Y.; Nakamura, Y.; Koshiyama, H. Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch. Intern. Med., 2000, 160(18), 2865.
[http://dx.doi.org/10.1001/archinte.160.18.2865] [PMID: 11025797]
[138]
Jadhav, S.B.; Jain, G.K. Statins and osteoporosis: new role for old drugs. J. Pharm. Pharmacol., 2006, 58(1), 3-18.
[http://dx.doi.org/10.1211/jpp.58.1.0002] [PMID: 16393459]
[139]
Maeda, T.; Kawane, T.; Horiuchi, N. Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation. Endocrinology, 2003, 144(2), 681-692.
[http://dx.doi.org/10.1210/en.2002-220682] [PMID: 12538631]
[140]
Monjo, M.; Rubert, M.; Ellingsen, J.E.; Lyngstadaas, S.P. Rosuvastatin promotes osteoblast differentiation and regulates SLCO1A1 transporter gene expression in MC3T3-E1 cells., 2010.
[http://dx.doi.org/10.1159/000322332 ] [PMID: 21063102]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy