Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Green Chemistry Approaches to the Synthesis of Coumarin Derivatives

Author(s): Maja Molnar*, Melita Lončarić and Marija Kovač

Volume 24, Issue 1, 2020

Page: [4 - 43] Pages: 40

DOI: 10.2174/1385272824666200120144305

Abstract

This review is a compilation of the green synthetic methods used in the synthesis of coumarin derivatives. Coumarins are a class of compounds with a pronounced wide range of biological activities, which have found their application in medicine, pharmacology, cosmetics and food industry. Their biological activity and potential application are highly dependent on their structure. Therefore, many researchers have been performing the synthesis of coumarin derivatives on a daily basis. High demands for their synthesis often result in an increased generation of different waste chemicals. In order to minimize the utilization and generation of toxic organic substances, green synthetic methods are applied in this manner. These methods are getting more attention in the last few decades. Green chemistry methods cover a wide range of methods, including the application of ultrasound and microwaves, ionic liquids and deep eutectic solvents, solvent-free synthesis, mechanosynthesis and multicomponent reactions. All typical condensation reactions for coumarin synthesis like Knoevenagel, Perkin, Kostanecki-Robinson, Pechmann and Reformansky reactions, have been successfully performed using these green synthetic methods. According to the authors mentioned in this review, not only these methods reduce the utilization and generation of toxic chemicals, but they can also enhance the reaction performance in terms of product yields, purity, energy consumption and post-synthetic procedures when compared to the conventional methods. Due to the significance of coumarins as biologically active systems and the recent demands of reducing toxic solvents, catalysts and energy consumption, this review provides a first full literature overview on the application of green synthetic methods in the coumarin synthesis. It covers a literature search over the period from 1995-2019. The importance of this work is its comprehensive literature survey on a specific class of heterocyclic compounds, and those researchers working on the coumarin synthesis can find very useful information on the green synthetic approaches to their synthesis. There are some reviews on the coumarin synthesis, but most of them cover only specific reactions on coumarin synthesis and none of them the whole range of green chemistry methods.

Keywords: Coumarin derivatives, green methods, deep eutectis solvents, ionic liquids, solvent-free, mechanosynthesis.

Graphical Abstract

[1]
Ojala, T. Biological Screening of Plant Coumarins., PhD Thesis, University of Helsinki: Helsinki. 2001.
[2]
O’Kennedy, R.; Thornes, R.D. Coumarins: Biology, Applications and Mode of Action, 1st ed.; Wiley & Sons: New York. 1997.
[3]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072 ]
[4]
Razavi, S. Plant coumarins as allelopathic agents. Int. J. Biol. Chem., 2011, 5, 86-90.
[http://dx.doi.org/10.3923/ijbc.2011.86.90]
[5]
Kai, K.; Shimizu, B.; Mizutani, M.; Watanabe, K.; Sakata, K. Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry, 2006, 67(4), 379-386.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.006] [PMID: 16405932 ]
[6]
Wu, C-R.; Huang, M-Y.; Lin, Y-T.; Ju, H-Y.; Ching, H. Antioxidant properties of cortex Fraxini and its simple coumarins. Food Chem., 2007, 104(4), 1464-1471.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.023]
[7]
Wang, Z. Comprehensive Organic Name Reactions and Reagents, 1st ed; Wiley & Sons: New York, 2009.
[8]
Rosen, T. The Perkin reaction. Comprehensive organic synthesis; Winterfeldt, E, 2nd Ed; Elsevier Science: Oxford, 1991, Vol. 1-2, pp. 395-407.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00034-2]
[9]
Potdar, M.K.; Mohile, S.S.; Salunkhe, M.M. Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett., 2001, 42, 9285-9287.
[http://dx.doi.org/10.1016/S0040-4039(01)02041-X]
[10]
Abdel-Wahab, B.F.; Mohamed, H.A.; Farhat, A.A. Ethyl coumarin-3-carboxylate. Synthesis and chemical properties. Org. Comm, 2014, 7(1), 1-27.
[11]
Bigi, F.; Chesini, L.; Maggi, R.; Sartori, G. Montmorillonite KSF as an inorganic, water stable, and reusable catalyst for the knoevenagel synthesis of coumarin-3-carboxylic acids. J. Org. Chem., 1999, 64(3), 1033-1035.
[http://dx.doi.org/10.1021/jo981794r] [PMID: 11674183]
[12]
Ouellette, R.J.; Rawn, J.D. Aldehydes and ketones: nucleophilic addition reactions. Organic Chemistry; Elsevier: Oxford, 2018, pp. 595-623.
[http://dx.doi.org/10.1016/B978-0-12-812838-1.50020-7]
[13]
Valizadeh, H.; Vaghefi, S. One-pot wittig and knoevenagel reactions in ionic liquid as convenient methods for the synthesis of coumarin derivatives. Synth. Commun., 2009, 39(9), 1666-1678.
[http://dx.doi.org/10.1080/00397910802573163]
[14]
Dittmer, D.C.; Li, Q.; Avilov, D.V. Synthesis of coumarins, 4-hydroxycoumarins, and 4-hydroxyquinolinones by tellurium-triggered cyclizations. J. Org. Chem., 2005, 70(12), 4682-4686.
[http://dx.doi.org/10.1021/jo050070u] [PMID: 15932305 ]
[15]
Clarke, C.J.; Tu, W-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087 ]
[16]
Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data, 2006, 35(4), 1475-1517.
[http://dx.doi.org/10.1063/1.2204959]
[17]
Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep Eutectic Solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq., 2016, 215, 345-386.
[http://dx.doi.org/10.1016/j.molliq.2015.12.015]
[18]
Handy, S. Ionic Liquids: Classes and Properties; IntechOpen: Rijeka, 2011.
[http://dx.doi.org/10.5772/853]
[19]
Su, C.; Chen, Z-C.; Zheng, Q-G. Organic reactions in ionic liquids: knoevenagel condensation catalyzed by ethylenediammonium diacetate. Synthesis, 2003, 4, 555-559.
[20]
Shaabani, A.; Ghadari, R.; Rahmati, A.; Rezayan, A.H. Coumarin synthesis via knoevenagel condensation reaction in 1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate ionic liquid. J. Iran. Chem. Soc., 2009, 6(4), 710-714.
[http://dx.doi.org/10.1007/BF03246160]
[21]
Harjani, J.R.; Nara, S.J.; Salunkhe, M.M. Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the knoevenagel condensation. Tetrahedron Lett., 2002, 43(6), 1127-1130.
[http://dx.doi.org/10.1016/S0040-4039(01)02341-3]
[22]
Verdía, P.; Santamarta, F.; Tojo, E. Knoevenagel reaction in [MMIm][MSO4]: synthesis of coumarins. Molecules, 2011, 16(6), 4379-4388.
[http://dx.doi.org/10.3390/molecules16064379] [PMID: 21623309 ]
[23]
Bao, W.; Wang, Z.; Li, Y. Coumarin synthesis via knoevenagel condensation in moisture stable room temperature ionic liquids. J. Chem. Res., 2003, 2003(5), 294-295.
[http://dx.doi.org/10.3184/030823403103173868]
[24]
Heravi, M.; Ansari, P.; Saeedi, M.; Tavakoli-Hosseini, N.; Karimi, N. Green and practical synthesis of benzopyran and 3-sunstituted coumarin derivatives by Brønsted acid ionic liquid [(CH2)4SO3HMIM]. [HSO4].. Bull. Chem. Soc. Ethiop., 2011, 25(2), 315-320.
[http://dx.doi.org/10.4314/bcse.v25i2.65915]
[25]
Shaterian, H.R.; Aghakhanizadeh, M. Ionic-liquid-catalyzed green synthesis of coumarin derivatives under solvent-free conditions. Chin. J. Catal., 2013, 34(9), 1690-1696.
[http://dx.doi.org/10.1016/S1872-2067(12)60654-8]
[26]
Das, S.; Majee, A.; Hajra, A. A convenient synthesis of coumarins using reusable ionic liquid as catalyst. Green Chem. Lett. Rev., 2011, 4(4), 349-353.
[http://dx.doi.org/10.1080/17518253.2011.572296]
[27]
Kumar, V.; Tomar, S.; Patel, R.; Yousaf, A.; Parmar, V.S.; Malhotra, S.V. FeCl3-catalyzed Pechmann synthesis of coumarins in ionic liquids. Synth. Commun., 2008, 38(15), 2646-2654.
[http://dx.doi.org/10.1080/00397910802219569]
[28]
Dong, F.; Jian, C.; Kai, G.; Qunrong, S.; Zuliang, L. Synthesis of coumarins via Pechmann reaction in water catalyzed by acyclic acidic ionic liquids. Catal. Lett., 2008, 121(3), 255-259.
[http://dx.doi.org/10.1007/s10562-007-9325-0]
[29]
Zhang, Y.; Zhu, A.; Li, Q.; Li, L.; Zhao, Y.; Wang, J. Cholinium ionic liquids as cheap and reusable catalysts for the synthesis of coumarins via Pechmann reaction under solvent-free conditions. RSC Advances, 2014, 4(44), 22946-22950.
[http://dx.doi.org/10.1039/C4RA02227K]
[30]
Potdar, M.K.; Rasalkar, M.S.; Mohile, S.S.; Salunkhe, M.M. Convenient and efficient protocols for coumarin synthesis via Pechmann condensation in neutral ionic liquids. J. Mol. Catal. Chem., 2005, 235(1), 249-252.
[http://dx.doi.org/10.1016/j.molcata.2005.04.007]
[31]
Lakouraj, M.M.; Bagheri, N.; Hasantabar, V. Synthesis and application of nanocrystalline-cellulose-supported acid ionic liquid catalyst in Pechmann reaction. Int. J. Carbohydr. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/452580]
[32]
Mayank; Kaur Billing, B.; Agnihotri, P. K.; Kaur, N.; Singh, N.; Jang, D. O. Ionic liquid-coated carbon nanotubes as efficient metal-free catalysts for the synthesis of chromene derivatives. ACS Sustain. Chem.& Eng., 2018, 6(3), 3714-3722.
[http://dx.doi.org/10.1021/acssuschemeng.7b04048]
[33]
Mahato, S.; Santra, S.; Chatterjee, R.; Zyryanov, G.V.; Hajra, A.; Majee, A. Brønsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-c]coumarins under solvent-free conditions bearing lower E-factors. Green Chem., 2017, 19(14), 3282-3295.
[http://dx.doi.org/10.1039/C7GC01158J]
[34]
Liu, P.; Hao, J-W.; Mo, L-P.; Zhang, Z-H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5(60), 48675-48704.
[http://dx.doi.org/10.1039/C5RA05746A]
[35]
Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: the organic reaction medium of the century. Eur. J. Org. Chem., 2016, 2016(4), 612-632.
[http://dx.doi.org/10.1002/ejoc.201501197]
[36]
Harishkumar, H.N.; Mahadevan, K.M.; Kumar, C.K.; Satyanarayan, N.D.A. Facile, choline chloride/urea catalyzed solid phase synthesis of coumarins via knoevenagel condensation. Org. Commun., 2011, 4(2), 26-32.
[37]
Keshavarzipour, F.; Tavakol, H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc., 2016, 13(1), 149-153.
[http://dx.doi.org/10.1007/s13738-015-0722-9]
[38]
Phadtare, S.B.; Jarag, K.J.; Shankarling, G.S. Greener protocol for one pot synthesis of coumarin styryl dyes. Dyes Pigments, 2013, 97(1), 105-112.
[http://dx.doi.org/10.1016/j.dyepig.2012.12.001]
[39]
Molnar, M.; Periš, I.; Komar, M. Choline chloride based deep eutectic solvents as a tuneable medium for synthesis of coumarinyl 1,2,4‐triazoles: effect of solvent type and temperature. Eur. J. Org. Chem., 2019, 2019, 2688-2694.
[http://dx.doi.org/10.1002/ejoc.201900249]
[40]
Molnar, M.; Komar, M.; Brahmbhatt, H.; Babić, J.; Jokić, S.; Rastija, V. Deep eutectic solvents as convenient media for synthesis of novel coumarinyl schiff bases and their QSAR studies. Molecules, 2017, 22(9), 1482-1497.
[http://dx.doi.org/10.3390/molecules22091482] [PMID: 28872604 ]
[41]
Nain, S.; Singh, R.; Ravichandran, S. Importance of microwave heating in organic synthesis. Adv. J. Chem, 2019, 2(2), 94-104.
[42]
Bogdał, D. Coumarins: Fast synthesis by knoevenagel condensation under microwave irradiation. J. Chem. Res., 1998, 8, 468-469.
[http://dx.doi.org/10.1039/a801724g]
[43]
Balalaie, S.; Nemati, N. One-pot preparation of coumarins by knoevenagel condensation in solvent-free condition under microwave irradiation. Heterocycl. Commun., 2001, 7(1), 67-72.
[http://dx.doi.org/10.1515/HC.2001.7.1.67]
[44]
Kumar, B.V.; Naik, H.S.B.; Girija, D.; Kumar, B.V. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through knoevenagel condensation. J. Chem. Sci., 2011, 123(5), 615-621.
[http://dx.doi.org/10.1007/s12039-011-0133-0]
[45]
Mirjafary, Z.; Saeidian, H.; Matloubi Moghaddam, F. Microwave-assisted synthesis of 3-substituted coumarins using ZrOCl2.8H2O as an effective catalyst. Sci. Iran., 2009, 16(1), 12-16.
[46]
Valizadeh, H.; Gholipur, H.; Shockravi, A. Microwave assisted synthesis of coumarins via potassium carbonate catalyzed knoevenagel condensation in 1-n-butyl-3-methylimidazolium bromide ionic liquid. J. Heterocycl. Chem., 2007, 44, 867-870.
[http://dx.doi.org/10.1002/jhet.5570440419]
[47]
Martínez, J.; Sánchez, L.; Pérez, F.J.; Carranza, V.; Delgado, F.; Reyes, L.; Miranda, R. Uncatalysed production of coumarin-3-carboxylic acids: a green approach. J. Chem., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/4678107]
[48]
Chaudhary, R.; Datta, M. Synthesis of coumarin derivatives: a green process. Eur. Chem. Bull., 2014, 3(1), 63-69.
[49]
Vahabi, V.; Hatamjafari, F. Microwave assisted convenient one-pot synthesis of coumarin derivatives via Pechmann condensation catalyzed by FeF3 under solvent-free conditions and antimicrobial activities of the products. Molecules, 2014, 19(9), 13093-13103.
[http://dx.doi.org/10.3390/molecules190913093] [PMID: 25255747 ]
[50]
Naik, M.A.; Mishra, B.G.; Dubey, A. Combustion synthesized WO3–ZrO2 nanocomposites as catalyst for the solvent-free synthesis of coumarins. Colloids Surf. Physicochem. Eng. Asp., 2008, 317(1–3), 234-238.
[http://dx.doi.org/10.1016/j.colsurfa.2007.10.019]
[51]
Manhas, M.S.; Ganguly, S.N.; Mukherjee, S.; Jain, A.K.; Bose, A.K. Microwave initiated reactions: Pechmann coumarin synthesis, Biginelli reaction, and acylation. Tetrahedron Lett., 2006, 47(14), 2423-2425.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.147]
[52]
Singh, V.; Kaur, S.; Sapehiyia, V.; Singh, J.; Kad, G.L. Microwave accelerated preparation of [bmim][HSO4] ionic liquid: an acid catalyst for improved synthesis of coumarins. Catal. Commun., 2005, 6(1), 57-60.
[http://dx.doi.org/10.1016/j.catcom.2004.10.011]
[53]
Rad-Moghadam, K.; Montazeri, N. Coumarin synthesis via Pechmann condensation on silica- supported sulfuric acid under microwave irradiation. Asian J. Chem., 2009, 21(1), 499-503.
[54]
Liu, S.J.; Li, Y.P.; Yang, X.M.; Jiang, Q.M. Synthesis of 7-hydroxy-4-methyl coumarin with microwave radiation catalyzed by zirconium sulfate tetrahydrate. Adv. Mat. Res., 2013, 671-674, 2692-2696.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.671-674.2692]
[55]
Rajita, B.; Kumar, N.V.; Someshwar, P.; Madhav, V.J.; Reddy, N.P.; Reddy, T.Y. Dipyridine copper chloride catalyzed coumarin synthesis via Pechmann condensation under conventional heating and microwave irradiation. ARKIVOC, 2006, 2006(12), 23-27.
[http://dx.doi.org/10.3998/ark.5550190.0007.c02]
[56]
Frère, S.; Thiéry, V.; Besson, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7-aminocoumarins. Tetrahedron Lett., 2001, 42(15), 2791-2794.
[http://dx.doi.org/10.1016/S0040-4039(01)00295-7]
[57]
Konrádová, D.; Kozubíková, H.; Doležal, K.; Pospíšil, J. Microwave-assisted synthesis of phenylpropanoids and coumarins: total synthesis of osthol. Eur. J. Org. Chem., 2017, 2017(35), 5204-5213.
[http://dx.doi.org/10.1002/ejoc.201701021]
[58]
Mangasuli, S.N.; Hosamani, K.M.; Satapute, P.; Joshi, S.D. Synthesis, molecular docking studies and biological evaluation of potent coumarin-carbonodithioate hybrids via microwave irradiation. Chem. Data Collect., 2018, 15, 115-125.
[http://dx.doi.org/10.1016/j.cdc.2018.04.001]
[59]
Vieira, L.C.C.; Paixão, M.W.; Corrêa, A.G. Green synthesis of novel chalcone and coumarin derivatives via suzuki coupling reaction. Tetrahedron Lett., 2012, 53(22), 2715-2718.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.079]
[60]
Helmy, M.M.; Abdellattif, M.H.; Eldeab, H.A. New methodology for synthesis of coumarin derivatives as potent antimicrobial agents. Int. J. Adv. Pharm. Biol. Chem., 2014, 3, 983-990.
[61]
Helmy, M.M.; Moustafa, M.H.; Eldeab, H.A. Microwave-assisted synthesis of new series some acetyl coumarin derivatives and studying of some their pharmacological activities. J. Pharm. Sci. Res., 2015, 7, 83-88.
[62]
Desai, N.C.; Satodiya, H.M.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V. A microwave-assisted facile synthesis of novel coumarin derivatives containing cyanopyridine and furan as antimicrobial agents. J. Saudi Chem. Soc., 2017, 21, S153-S162.
[http://dx.doi.org/10.1016/j.jscs.2013.12.005]
[63]
Kumbar, M.N.; Kamble, R.R.; Kamble, A.A.; Salian, S.R.; Kumari, S.; Nair, R.; Kalthur, G.; Adiga, S.K.; Prasad, D.J. Design and microwave assisted synthesis of coumarin derivatives as PDE inhibitors. Int. J. Med. Chem., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/9890630] [PMID: 26998358 ]
[64]
Satyanarayana, V.S.V.; Sreevani, P.; Sivakumar, A.; Vijayakumar, V. Synthesis and antimicrobial activity of new schiff bases containing coumarin moiety and their spectral characterization. ARKIVOC, 2009, 2008(17), 221-233.
[http://dx.doi.org/10.3998/ark.5550190.0009.h21]
[65]
Chavan, R.R.; Hosamani, K.M. Microwave-assisted synthesis, computational studies and antibacterial/ anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R. Soc. Open Sci., 2018, 5(5) 172435
[http://dx.doi.org/10.1098/rsos.172435] [PMID: 29892430 ]
[66]
Chavan, O. S.; Chavan, S. B.; Baseer, M. A. An efficient synthesis of formyl coumarins by microwave irradiation method Duff formylation., 2015, 6(7), 74-77.
[67]
Kahveci, B.; Yılmaz, F.; Menteşe, E.; Ülker, S. Microwave-assisted synthesis of some new coumarin derivatives including 1,2,4-triazol-3-one and investigation of their biological activities. Chem. Heterocycl. Compd., 2015, 51(5), 447-456.
[http://dx.doi.org/10.1007/s10593-015-1714-5]
[68]
Ajani, O.O.; Ayayi, O.; Adekoya, J.A.; Owoeye, T.F.; Durodola, B.M.; Ogunleye, O.M. Comparative study of microwave-assisted and conventional synthesis of 3-[1-(s-phenylimino) ethyl]-2H-chromen-2-ones and selected hydrazone derivatives. Journa Appl. Sci., 2016, 16(3), 77-87.
[http://dx.doi.org/10.3923/jas.2016.77.87]
[69]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M.; Ni, N. Microwave-assisted synthesis and antitumor evaluation of a new series of thiazolylcoumarin derivatives. EXCLI J., 2017, 16, 1114-1131.
[PMID: 29285008 ]
[70]
Yilmaz, F. Microwave-assisted synthesis and biological evaluation of some coumarin hydrazides. J. Turk. Chem. Soc. Sect. Chem., 2018, 5(2), 551-568.
[71]
Ashok, D.; Lakshmi, B.; Ravi, S.; Ganesh, A. Microwave-assisted synthesis of some new coumarin-pyrazoline hybrids and their antimicrobial activity. J. Serb. Chem. Soc., 2015, 80(3), 305-313.
[http://dx.doi.org/10.2298/JSC140021101A]
[72]
Sashidhara, K.V.; Palnati, G.R.; Singh, L.R.; Upadhyay, A.; Avula, S.R.; Kumar, A.; Kant, R. Molecular iodine catalysed one-pot synthesis of chromeno [4,3-b] quinolin-6-ones under microwave irradiation. Green Chem., 2015, 17(7), 3766-3770.
[http://dx.doi.org/10.1039/C5GC00756A]
[73]
Knochel, P. Modern Solvents in Organic Synthesis; Springer: Berlin, 2003.
[74]
Scott, J.L.; Raston, C.L. Solvent-free synthesis of 3-carboxycoumarins. Green Chem., 2000, 2(5), 245-247.
[http://dx.doi.org/10.1039/b006704k]
[75]
Karade, N.N.; Gampawar, S.V.; Shinde, S.V.; Jadhav, W.N. L‐Proline catalyzed solvent‐free knoevenagel condensation for the synthesis of 3‐substituted coumarins. Chin. J. Chem., 2007, 25(11), 1686-1689.
[http://dx.doi.org/10.1002/cjoc.200790311]
[76]
Schijndel, J. van; Molendijk, D.; Canalle, L.A.; Meuldijk, E.T.R. Curr. Org. Synth., 2019, 16(1), 130-135.
[http://dx.doi.org/10.2174/1570179415666180924124134]
[77]
Abbasi, Z.; Rezayati, S.; Bagheri, M.; Hajinasiri, R. Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solventand halogen-free protocol for the synthesis of coumarin derivatives. Chin. Chem. Lett., 2017, 28, 75-82.
[http://dx.doi.org/10.1016/j.cclet.2016.06.022]
[78]
Maheswara, M.; Siddaiah, V.; Damu, G.L.V.; Rao, Y.K.; Rao, C.V. A solvent-free synthesis of coumarins via Pechmann condensation using heterogeneous catalyst. J. Mol. Catal. Chem., 2006, 255(1-2), 49-52.
[http://dx.doi.org/10.1016/j.molcata.2006.03.051]
[79]
Keri, R.S.; Hosamani, K.M.; Seetharama Reddy, H.R. Solvent-free synthesis of coumarins using phosphotungstic acid as catalyst. Catal. Lett., 2009, 131, 321-327.
[http://dx.doi.org/10.1007/s10562-009-9940-z]
[80]
Romanelli, G.P.; Bennardi, D.; Ruiz, D.M.; Baronetti, G.; Thomas, H.J.; Autino, J.C. A solvent-free synthesis of coumarins using a wells–dawson heteropolyacid as catalyst. Tetrahedron Lett., 2004, 45(48), 8935-8939.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.183]
[81]
Chavan, O.S.; Chavan, S.B.; Jadhav, S.A.; Shioorkar, M.G.; Baseer, M.A. A solvent-free synthesis of coumarins via pechmann condensation using PMA: silica supported BF3:OEt2 Catalyst. Der Chemica Sininca, 2015, 6(4), 96-99.
[82]
Shinde, D.B.; Kotharkar, S.A.; Nagawade, R.R. Zirconyl(IV) chloride catalyzed solvent-free von Pechmann synthesis of coumarins. Org. Chem. Ind. J., 2006, 2, 17-20.
[83]
Smitha, G.; Reddy, S. ZrCl4-catalyzed Pechmann reaction: synthesis of coumarins under solvent-free conditions. Synth. Commun., 2004, 34(21), 3997-4003.
[http://dx.doi.org/10.1081/SCC-200034821]
[84]
Reddy, B.M.; Thirupathi, B.; Patil, M.K. One-pot synthesis of substituted coumarins catalyzed by silica gel supported sulfuric acid under solvent-free conditions. Open Catal. J., 2009, 2(1), 33-39.
[http://dx.doi.org/10.2174/1876214X00902010033]
[85]
Narwal, J.K.; Malik, R.K.; Kumari, N. An efficient solvent free synthesis of coumarins via solid phase Pechmann reaction. Chem. Sci. Trans., 2015, 4(4), 1092-1094.
[86]
Gangadasu, B.; Narender, P.; Raju, B.C.; Rao, V.J. ZrCl4 catalysed solvent free synthesis of coumarins. J. Chem. Res., 2004, 480-481
[http://dx.doi.org/10.3184/0308234042037194]
[87]
Kalita, P.; Kumar, R. Solvent-free coumarin synthesis via Pechmann reaction using solid catalysts. Microporous Mesoporous Mater., 2012, 149(1), 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2011.08.004]
[88]
Peng, Y.; Song, G.; Dou, R. Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano [2,3-c] pyrazoles in aqueous media. Green Chem., 2006, 8(6), 573-575.
[http://dx.doi.org/10.1039/b601209d]
[89]
Bouasla, S.; Amaro-Gahete, J.; Esquivel, D.; López, M.I.; Jiménez-Sanchidrián, C.; Teguiche, M.; Romero-Salguero, F.J. Coumarin derivatives solvent-free synthesis under microwave irradiation over heterogeneous solid catalysts. Molecules, 2017, 22(12), 2072-2080.
[http://dx.doi.org/10.3390/molecules22122072] [PMID: 29182553 ]
[90]
Hussien, F.A.; Merza, J.; Karam, A. Eco-friendly synthesis of coumarin derivatives via Pechmann condensation using heterogeneous catalysis. Int. Lett. Chem. Phys. Astronom., 2016, 69, 66-73.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.69.66]
[91]
Sabetpoor, S.; Hatamjafari, F. Synthesis of coumarin derivatives using glutamic acid under solvent-free conditions. Orient. J. Chem., 2014, 30(2), 863-865.
[http://dx.doi.org/10.13005/ojc/300265]
[92]
Dengale, R.A. Thopate, N. M. T. and S. R. L-ascorbic acid: a green and competent promoter for solvent-free synthesis of flavones and coumarins under conventional as well as microwave heating. Lett. Org. Chem., 2016, 13, 734-741.
[http://dx.doi.org/10.2174/1570178614666161116125148]
[93]
Monga, P.K.; Sharma, D.; Bhasin, S.; Dubey, A. Environmentally positive and energy proficient synthesis of coumarin by the Pechmann reaction via microwave irradiation. Indian J. Chem. Technol., 2017, 24, 447-451.
[94]
Shaabani, A.; Ghadari, R.; Rezayan, A.H. Synthesis of functionalized coumarins. Iran J. Chem. Chem. Eng., 2011, 30(4), 19-22.
[95]
Jadhav, S.A.; Shioorkar, M.G.; Chavan, O.S.; Chavan, R.V.; Pardeshi, R.K. An eco-friendly solvent-free one-pot multi-component synthesis of coumarin thiazolidinone derivatives. Pharma Chem., 2015, 7(5), 329-334.
[96]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano [2,3-c] chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H]
[97]
D’Ambrosio, G.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. TBAF-catalyzed [3+ 2] cycloaddition of TMSN 3 to 3-nitrocoumarins under SFC: an effective green route to chromeno [3,4-d][1,2,3] triazol-4(3H)-ones. Green Chem., 2005, 7(12), 874-877.
[http://dx.doi.org/10.1039/b509863g]
[98]
Parumala, S.K.R.; Peddinti, R.K. Iodine catalyzed cross-dehydrogenative C–S coupling by C(Sp2)–H bond activation: direct access to aryl sulfides from aryl thiols. Green Chem., 2015, 17(7), 4068-4072.
[http://dx.doi.org/10.1039/C5GC00403A]
[99]
Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Applications of ultrasound in organic synthesis - a green approach. Curr. Org. Chem., 2013, 17(16), 1790-1828.
[http://dx.doi.org/10.2174/13852728113179990018]
[100]
Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: a rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem, 2018, 40(Pt A), 78-83.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485 ]
[101]
Prousis, K.C.; Avlonitis, N.; Heropoulos, G.A.; Calogeropoulou, T. FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason. Sonochem., 2014, 21(3), 937-942.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.018] [PMID: 24262761 ]
[102]
Gutiérrez-Sánchez, C.; Calvino-Casilda, V.; Pérez-Mayoral, E.; Martín-Aranda, R.M.; López-Peinado, A.J.; Bejblová, M.; Čejka, J. Coumarins preparation by Pechmann reaction under ultrasound irradiation. synthesis of hymecromone as insecticide intermediate. Catal. Lett., 2008, 128(3), 318-322.
[103]
Khaligh, N.G. Ultrasound-assisted one-pot synthesis of substituted coumarins catalyzed by poly(4-vinylpyridinium) hydrogen sulfate as an efficient and reusable solid acid catalyst. Ultrason. Sonochem., 2013, 20(4), 1062-1068.
[http://dx.doi.org/10.1016/j.ultsonch.2013.01.001] [PMID: 23395258 ]
[104]
Sripathi, S.K.; Logeeswari, K. Synthesis of 3-aryl coumarin derivatives using ultrasound. Int. J. Org. Chem. (Irvine), 2013, 3(1), 42-47.
[http://dx.doi.org/10.4236/ijoc.2013.31004]
[105]
Katkar, D.J.; Sonawale, S.B. Synthesis of 3-phenyl coumarins by using ionic liquid as green solvent. Int. J. Sci. Res. Sci. Technol., 2018, 4(2), 924-927.
[106]
Gomha, S.M.; Khalil, K.D. A convenient ultrasound-promoted synthesis of some new thiazole derivatives bearing a coumarin nucleus and their cytotoxic activity. Molecules, 2012, 17(8), 9335-9347.
[http://dx.doi.org/10.3390/molecules17089335] [PMID: 22864241 ]
[107]
Al-Kadasi, A.M.A.; Nazeruddin, G.M. Ultrasound assisted catalyst-free one-pot synthesis of bis-coumarins in neat water. Int. J. Chem. Sci., 2012, 10(1), 324-330.
[108]
Yu, L.; Gao, J-F.; Cao, L-H. Ultrasound assisted synthesis of coumarin thioglycopyranoside derivatives. J. Chin. Chem. Soc. (Taipei), 2009, 56(6), 1175-1179.
[http://dx.doi.org/10.1002/jccs.200900169]
[109]
Dubois, J.; Colaco, M.O.; Wouters, J. Mechanosynthesis, a method of choice in solid state synthesis. Chim. Nouv., 2014, 117, 21-30.
[110]
Sugino, T.; Tanaka, K. Solvent-free coumarin synthesis. Chem. Lett., 2001, 30(2), 110-111.
[http://dx.doi.org/10.1246/cl.2001.110]
[111]
Kantharaju, K.; Khatavi, S.Y. Mechanochemical synthesis of coumarin-3-carboxylic acid using water extract of papaya. Int. J. Eng. Technol. Sci. Res., 2017, 4(9), 510-513.
[112]
Sharma, D.; Kumar, S.; Makrandi, J.K. Modified Pechmann condensation using grinding technique under solvent-free condition at room temperature. Green Chem. Lett. Rev., 2011, 4(2), 127-129.
[http://dx.doi.org/10.1080/17518253.2010.517785]
[113]
Chavan, O.S.; Baseer, M.A. Comparative study of various synthetic methods of 7-hydroxy-4-methyl coumarins via Pechmann reaction. Der Chemica Sinica, 2014, 5(5), 67-70.
[114]
Jain, A.K.; Carpenter, N.; Bose, A.K. Environmentally benign, energy efficient synthesis of coumarin by the Pechmann reaction using grindstone and microwave “jump start”chemistry. J. Environ. Res. Dev., 2006, 1(1), 1-4.
[115]
Jakhar, K.; Makrandi, J. A green synthesis and antibacterial activity of 2-aryl-5-(coumarin-3-Yl)-thiazolo [3,2-b][1,2,4] triazoles. NISCAIR-CSIR, 2012, 51B, 1511-1516.
[116]
Abdel-Aziem, A.; Rashdan, H.R.M.; Mohamed Ahmed, E.; Shabaan, S.N. Synthesis and cytotoxic activity of some novel benzocoumarin derivatives under solvent free conditions. Green Chem. Lett. Rev., 2019, 12(1), 9-18.
[http://dx.doi.org/10.1080/17518253.2018.1556743]
[117]
Srikrishna, D.; Dubey, P.K. Microwave-assisted efficient and convenient one-pot synthesis of novel 3-(4-aminothieno[2,3-d] pyrimidin-5-Yl) coumarins under solvent-free conditions. Chem. Heterocycl. Compd., 2018, 54(7), 736-743.
[http://dx.doi.org/10.1007/s10593-018-2340-9]
[118]
Saha, A.; Payra, S.; Banerjee, S. One-pot multicomponent synthesis of highly functionalized bio-active pyrano [2,3-c] pyrazole and benzylpyrazolyl coumarin derivatives using ZrO2 nanoparticles as a reusable catalyst. Green Chem., 2015, 17(5), 2859-2866.
[http://dx.doi.org/10.1039/C4GC02420F]
[119]
Viradiya, D.J.; Kotadiya, V.C.; Khunt, M.D.; Baria, B.H.; Bhoya, U.C. PEG mediated eco-friendly one pot synthesis of benzylamine coumarin derivatives using multicomponent reactant. Int. Lett. Chem. Phys. Astron., 2014, 30, 177-184.
[http://dx.doi.org/10.18052/www.scipress.com/ILCPA.30.177]
[120]
Ghosh, P.P.; Das, A.R. Nano crystalline ZnO: a competent and reusable catalyst for one-pot synthesis of novel benzylamino coumarin derivatives in aqueous media. Tetrahedron Lett., 2012, 53(25), 3140-3143.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.033]
[121]
Shaikh, M.A.; Farooqui, M.; Abed, S. Morpholinium glycolate catalyzed: one-pot green synthesis of coumarin linked pyrazoline derivatives via in situ-developed cinnamoyl coumarins under solvent-free conditions. Chem. Biol. Interact., 2017, 7(6), 359-367.
[122]
Olyaei, A.; Javarsineh, S.; Sadeghpour, M. Sci-Hub | Green synthesis and Z/E-isomerization of novel coumarin enamines induced by organic solvents. Chem. Heterocycl. Compd., 2018, 54(10), 934-939.
[http://dx.doi.org/10.1007/s10593-018-2376-x]
[123]
Ghosh, P.P.; Pal, G.; Paul, S.; Das, A.R. Design and synthesis of benzylpyrazolyl coumarin derivatives via a four-component reaction in water: investigation of the weak interactions accumulating in the crystal structure of a signified compound. Green Chem., 2012, 14(10), 2691-2698.
[http://dx.doi.org/10.1039/c2gc36021g]
[124]
Khodabakhshi, S.; Marahel, F.; Rashidi, A.; Abbasabadi, M.K. A green synthesis of substituted coumarins using nano graphene oxide as recyclable catalyst. J. Chin. Chem. Soc. (Taipei), 2015, 62(5), 389-392.
[http://dx.doi.org/10.1002/jccs.201400349]
[125]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055 ]
[126]
Omar, A.; Ablajan, K. Efficient one-pot catalyst-free synthesis of novel coumarin- spiro[indoline-3,4′-pyran] conjugates via three-component domino reaction in aqueous medium. Green Chem. Lett. Rev., 2019, 12(1), 1-8.
[http://dx.doi.org/10.1080/17518253.2018.1556744]
[127]
Kavitha, K.; Srikrishna, D.; Dubey, P.K.; Aparna, P. Tetrabutylammonium tribromide: an effective green reagent for the one-pot reaction of 3-acetyl-2H-chromen-2-ones with o-phenylenediamines. ARKIVOC, 2018, 2018(7), 172-185.
[http://dx.doi.org/10.24820/ark.5550190.p010.655]
[128]
Soumya, T.V.; Thasnim, P.; Bahulayan, D. Step-economic and cost effective synthesis of coumarin based blue emitting fluorescent dyes. Tetrahedron Lett., 2014, 55(33), 4643-4647.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.071]
[129]
Anand, A.; Yenagi, J.; Tonannavar, J.; Kulkarni, M.V. Cyclopropanes in water: a diastereoselective synthesis of substituted 2H-chromen-2-one and quinolin-2(1H)-one linked cyclopropanes. Green Chem., 2016, 18(7), 2201-2205.
[http://dx.doi.org/10.1039/C5GC02443A]
[130]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 57(43), 4795-4798.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.023]
[131]
Chavan, H.V.; Bandgar, B.P. Aqueous extract of acacia concinna pods: an efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via knoevenagel condensation. ACS Sustain. Chem.& Eng., 2013, 1(8), 929-936.
[http://dx.doi.org/10.1021/sc4000237]
[132]
Patil, M.M.; Bagul, S.D.; Rajput, J.D.; Bendre, R.S. Sci-Hub | Clean synthesis of coumarin-3-carboxylic acids in water extract rice (WERS). Green Mater., 2018, 6(4), 143-148.
[http://dx.doi.org/10.1680/jgrma.18.00007]
[133]
Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori, G. Uncatalysed reactions in water: Part 2. Preparation of 3-carboxycoumarins. Green Chem., 2001, 3(4), 173-174.
[http://dx.doi.org/10.1039/b101822c]
[134]
Brahmachari, G. Room temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: a practical method for the large-scale synthesis. ACS Sustain. Chem.& Eng., 2015, 3(9), 2350-2358.
[http://dx.doi.org/10.1021/acssuschemeng.5b00826]
[135]
Anthony, A.R.; Choudhary, A.; Gajbhiye, S.P. An efficient catalyzed green synthesis of substituted coumarins using potassium dihydrogen phosphate catalyst and studies their anti-microbial activities. IOSR J. Appl. Chem., 2014, 7, 22-27.
[http://dx.doi.org/10.9790/5736-7912227]
[136]
Ramani, A.; Chanda, B.M.; Velu, S.; Sivasanker, S. One-pot synthesis of coumarins. Catalysis by the solid base, calcined Mg-Al hydrotalcite. Green Chem., 1999, 1(3), 163-165.
[http://dx.doi.org/10.1039/a903173a]
[137]
Gunnewegh, E.A.; Hoefnagel, A.J.; van Bekkum, H. Zeolite catalysed synthesis of coumarin derivatives. J. Mol. Catal. Chem., 1995, 100(1-3), 87-92.
[http://dx.doi.org/10.1016/1381-1169(95)00156-5]
[138]
Belavagi, N.S.; Deshapande, N.; Sunagar, M.G.; Khazi, I.A.M. A practical one-pot synthesis of coumarins in aqueous sodium bicarbonate via intramolecular wittig reaction at room temperature. RSC Advances, 2014, 4(75), 39667-39671.
[http://dx.doi.org/10.1039/C4RA06996J]
[139]
Sangshetti, J.N.; Kokare, N.D.; Shinde, D.B. Water mediated efficient one-pot synthesis of bis-(4-hydroxycoumarin) methanes. Green Chem. Lett. Rev., 2009, 2(4), 233-235.
[http://dx.doi.org/10.1080/17518250903393874]
[140]
Paul, S.; Das, A.R. An efficient green protocol for the synthesis of coumarin fused highly decorated indenodihydropyridyl and dihydropyridyl derivatives. Tetrahedron Lett., 2012, 53(17), 2206-2210.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.077]
[141]
Paul, S.; Lee, Y.R. Eco-friendly construction of highly functionalized chromenopyridinones by an organocatalyzed solid-state melt reaction and their optical properties. Green Chem., 2016, 18(6), 1488-1494.
[http://dx.doi.org/10.1039/C5GC02658J]
[142]
Wang, H.; Liu, X.; Feng, X.; Huang, Z.; Shi, D. GAP chemistry for pyrrolyl coumarin derivatives: a highly efficient one-pot synthesis under catalyst-free conditions. Green Chem., 2013, 15, 3307-3311.
[http://dx.doi.org/10.1039/c3gc41799a]
[143]
Chen, Z.; Liu, N-W.; Bolte, M.; Ren, H.; Manolikakes, G. Visible-light mediated 3-component synthesis of sulfonylated coumarins from sulfur dioxide. Green Chem., 2018, 20(13), 3059-3070.
[http://dx.doi.org/10.1039/C8GC00838H]
[144]
Shen, S-C.; Sun, X-W.; Lin, G-Q. An eco-benign and highly efficient access to 3-heterocyclic-substituted isoindolinones in ammonia water. Green Chem., 2013, 15(4), 896-900.
[http://dx.doi.org/10.1039/c3gc40162f]
[145]
Shafiee, B.; Duffield, J.; Timm, R.; Liyanage, R.; Lay, J.O.; Khosropour, A.R.; Rudbari, H.A.; Beyzavi, M.H. Metal-free and benign approach for the synthesis of dihydro-5′H-spiro[benzo[c]chromene-8,4′-oxazole]-5′,6(7H)-dione Scaffolds as masked amino acids. Green Chem., 2019, 21(10), 2656-2661.
[http://dx.doi.org/10.1039/C9GC00428A]
[146]
Ni, S.; Cao, J.; Mei, H.; Han, J.; Li, S.; Pan, Y. Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins. Green Chem., 2016, 18(14), 3935-3939.
[http://dx.doi.org/10.1039/C6GC01027J]
[147]
Yadav, L.D.S.; Singh, S.; Rai, V.K. Catalyst-free, step and pot economic, efficient mercaptoacetylative cyclisation in H2O: synthesis of 3-mercaptocoumarins. Green Chem., 2009, 11(6), 878-882.
[http://dx.doi.org/10.1039/b904655k]
[148]
Kumar, A.; Kumar, M.; Gupta, M.K. Catalyst-free hydroarylation of in situ generated ortho-Quinone Methide (o-QM) with electron rich arenes in water. Green Chem., 2012, 14(10), 2677-2681.
[http://dx.doi.org/10.1039/c2gc35741k]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy