Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery

Author(s): Maryam Shabbir*, Uzair Nagra, Muhammad Zaman, Asif Mahmood and Kashif Barkat

Volume 26, Issue 18, 2020

Page: [2149 - 2166] Pages: 18

DOI: 10.2174/1381612826666200114090659

Price: $65

Abstract

The delivery of drugs, via different layers of skin, is challenging because it acts as a natural barrier and exerts hindrance against molecules to permeate into or through it. To overcome such obstacles, different noninvasive methods, like vehicle-drug interaction, modifications of the horny layer and nanoparticles have been suggested. The aim of the present review is to highlight some of the non-invasive methods for topical, diadermal and transdermal delivery of drugs. Special emphasis has been made on the information available in numerous research articles that put efforts in overcoming obstacles associated with barrier functions imposed by various layers of skin. Advances have been made in improving patient compliance that tends to avoid hitches involved in oral administration. Of particular interest is the use of lipid-based vesicles and nanoparticles for dermatological applications. These particulate systems can effectively interact and penetrate into the stratum corneum via lipid exchange and get distributed in epidermis and dermis. They also have the tendency to exert a systemic effect by facilitating the absorption of an active moiety into general circulation.

Keywords: Diadermal, lipid vesicles, nanoparticles, non-invasive, topical, transdermal.

[1]
Ahmad Z, Stride E, Edirisinghe M. Novel preparation of transdermal drug-delivery patches and functional wound healing materials. J Drug Target 2009; 17(9): 724-9.
[http://dx.doi.org/10.3109/10611860903085386] [PMID: 19845489]
[2]
Uchechi O, Ogbonna JD, Attama AA. Nanoparticles for dermal and transdermal drug delivery. Application of Nanotechnology in Drug Delivery: InTech 2014.
[http://dx.doi.org/10.5772/58672]
[3]
Elnaggar YS, El-Massik MA, Abdallah OY. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int J Nanomedicine 2011; 6: 3195-205.
[http://dx.doi.org/10.2147/IJN.S25825] [PMID: 22238508]
[4]
Al-Qallaf B, Das DB, Mori D, Cui Z. Modelling transdermal delivery of high molecular weight drugs from microneedle systems. Philos Trans- Royal Soc, Math Phys Eng Sci 2007; 365(1861): 2951-67.
[http://dx.doi.org/10.1098/rsta.2007.0003] [PMID: 17890186]
[5]
Cai B, Söderkvist K, Engqvist H, Bredenberg S. A new drug release method in early development of transdermal drug delivery systems. Pain Res Treat 2012; 2012: 953140
[http://dx.doi.org/10.1155/2012/953140]
[6]
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008; 26(11): 1261-8.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[7]
Trommer H, Neubert RH. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 2006; 19(2): 106-21.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[8]
Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 2000; 9(3): 165-9.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[9]
Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 2010; 1(1): 109-31.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]
[10]
Lee RW, Shenoy DB, Sheel R. Micellar nanoparticles: applications for topical and passive transdermal drug delivery Handbook of non-invasive drug delivery systems. Elsevier 2010; pp. 37-58.
[http://dx.doi.org/10.1016/B978-0-8155-2025-2.10002-2]
[11]
Abd E, Yousef SA, Pastore MN, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol 2016; 8: 163-76.
[http://dx.doi.org/10.2147/CPAA.S64788] [PMID: 27799831]
[12]
Lu M, Xing H, Chen X, Xian L, et al. Advance in bioequivalence assessment of topical dermatological products. Asian J Pharm Sci 2016; 11(6): 700-7.
[13]
Raney SG, Franz TJ, Lehman PA, Lionberger R, Chen M-L. Pharmacokinetics-based approaches for bioequivalence evaluation of topical dermatological drug products. Clin Pharmacokinet 2015; 54(11): 1095-106.
[http://dx.doi.org/10.1007/s40262-015-0292-0] [PMID: 26063051]
[14]
Yacobi A, Shah VP, Bashaw ED, et al. Current challenges in bioequivalence, quality, and novel assessment technologies for topical products. Pharm Res 2014; 31(4): 837-46.
[http://dx.doi.org/10.1007/s11095-013-1259-1] [PMID: 24395404]
[15]
Erdő F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release 2016; 233: 147-61.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.035] [PMID: 27196741]
[16]
Patel P, Schmieder S, Krishnamurthy K. Research techniques made simple: drug delivery techniques, part 2: commonly used techniques to assess topical drug bioavailability. J Invest Dermatol 2016; 136(5): e43-9.
[http://dx.doi.org/10.1016/j.jid.2016.03.010] [PMID: 27107377]
[17]
Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Dermatopharmacokinetic prediction of topical drug bioavailability in vivo. J Invest Dermatol 2007; 127(4): 887-94.
[http://dx.doi.org/10.1038/sj.jid.5700642] [PMID: 17139266]
[18]
Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 2001; 14(2): 101-14.
[http://dx.doi.org/10.1016/S0928-0987(01)00167-1] [PMID: 11500256]
[19]
Xie J, Ji Y, Xue W, Ma D, Hu Y. Hyaluronic acid-containing ethosomes as a potential carrier for transdermal drug delivery. Colloids Surf B Biointerfaces 2018; 172: 323-9.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.061] [PMID: 30176512]
[20]
Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 2010; 27(7): 247-59.
[http://dx.doi.org/10.3109/09687688.2010.522203] [PMID: 21028936]
[21]
Nam SH, Xu YJ, Nam H, et al. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int J Pharm 2011; 419(1-2): 114-20.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.027] [PMID: 21807082]
[22]
Benson HA. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2005; 2(1): 23-33.
[http://dx.doi.org/10.2174/1567201052772915] [PMID: 16305405]
[23]
Lobo S, Li H, Farhan N, Yan G. Evaluation of diclofenac prodrugs for enhancing transdermal delivery. Drug Dev Ind Pharm 2014; 40(3): 425-32.
[http://dx.doi.org/10.3109/03639045.2013.767828] [PMID: 24517636]
[24]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2012; 64: 175-93.
[http://dx.doi.org/10.1016/j.addr.2012.09.018] [PMID: 11104900]
[25]
Negi P, Singh B, Sharma G, Beg S, Raza K, Katare OP. Phospholipid microemulsion-based hydrogel for enhanced topical delivery of lidocaine and prilocaine: QbD-based development and evaluation. Drug Deliv 2016; 23(3): 951-67.
[http://dx.doi.org/10.3109/10717544.2014.923067] [PMID: 24892623]
[26]
Üstündağ Okur N, Çağlar EŞ, Arpa MD, Karasulu HY. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Pharm Dev Technol 2017; 22(4): 500-10.
[http://dx.doi.org/10.3109/10837450.2015.1131716] [PMID: 26738443]
[27]
Alexander A, Dwivedi S, Ajazuddin , et al. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release 2012; 164(1): 26-40.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.017] [PMID: 23064010]
[28]
Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech 2017; 18(6): 1960-71.
[http://dx.doi.org/10.1208/s12249-016-0667-z] [PMID: 27914040]
[29]
Somagoni J, Boakye CH, Godugu C, et al. Nanomiemgel--a novel drug delivery system for topical application--in vitro and in vivo evaluation. PLoS One 2014; 9(12): e115952
[http://dx.doi.org/10.1371/journal.pone.0115952] [PMID: 25546392]
[30]
Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016; 23(2): 564-78.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[31]
Banerjee A, Ibsen K, Iwao Y, Zakrewsky M, Mitragotri S. Transdermal protein delivery using choline and geranate (CAGE) deep eutectic solvent. Adv Healthc Mater 2017; 6(15): 1601411
[http://dx.doi.org/10.1002/adhm.201601411] [PMID: 28337858]
[32]
Herman A, Herman AP. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: a review. J Pharm Pharmacol 2015; 67(4): 473-85.
[http://dx.doi.org/10.1111/jphp.12334] [PMID: 25557808]
[33]
Nino M, Calabrò G, Santoianni P. Topical delivery of active principles: the field of dermatological research. Dermatol Online J 2010; 16(1): 4.
[PMID: 20137746]
[34]
Visscher MO, Tolia GT, Wickett RR, Hoath SB. Effect of soaking and natural moisturizing factor on stratum corneum water-handling properties. J Cosmet Sci 2003; 54(3): 289-300.
[PMID: 12858228]
[35]
Kezic S, Kammeyer A, Calkoen F, Fluhr JW, Bos JD. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol 2009; 161(5): 1098-104.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09342.x] [PMID: 19857209]
[36]
Ahad A, Al-Mohizea AM, Al-Jenoobi FI, Aqil M. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension. Drug Deliv 2016; 23(2): 579-90.
[http://dx.doi.org/10.3109/10717544.2014.942444] [PMID: 25065883]
[37]
Sharma A, Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of methotrexate. ISRN Pharm 2012; 2012: 873653
[http://dx.doi.org/10.5402/2012/873653]
[38]
Peng X, Zhou Y, Han K, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther 2015; 9: 4209-18.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[39]
Kurmi BD, Tekchandani P, Paliwal R, Paliwal SR. Transdermal drug delivery: Opportunities and challenges for controlled delivery of therapeutic agents using nanocarriers. Curr Drug Metab 2017; 18(5): 481-95.
[http://dx.doi.org/10.2174/1389200218666170222150555] [PMID: 28228076]
[40]
Jain S, Jain V, Mahajan S. Lipid based vesicular drug delivery systems. Advances in Pharmaceutics 2014; 2014: 574673
[http://dx.doi.org/10.1155/2014/574673]
[41]
de Leeuw J, de Vijlder HC, Bjerring P, Neumann HA. Liposomes in dermatology today. J Eur Acad Dermatol Venereol 2009; 23(5): 505-16.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03100.x] [PMID: 19175703]
[42]
Manca ML, Matricardi P, Cencetti C, et al. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. Int J Pharm 2016; 505(1-2): 204-11.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.008] [PMID: 27063848]
[43]
Yamazaki N, Yamakawa S, Sugimoto T, et al. Carboxylated phytosterol derivative-introduced liposomes for skin environment-responsive transdermal drug delivery system. J Liposome Res 2017; 1-10.
[PMID: 28826275]
[44]
Yamazaki N, Sugimoto T, Fukushima M, et al. Dual-stimuli responsive liposomes using pH-and temperature-sensitive polymers for controlled transdermal delivery. Polym Chem 2017; 8(9): 1507-18.
[http://dx.doi.org/10.1039/C6PY01754A]
[45]
Jose A, Labala S, Ninave KM, Gade SK, Venuganti VVK. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 2018; 19(1): 166-75.
[http://dx.doi.org/10.1208/s12249-017-0833-y] [PMID: 28639178]
[46]
Mennini N, Cirri M, Maestrelli F, Mura P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: Effect of cyclodextrin complexation. Int J Pharm 2016; 515(1-2): 684-91.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.013] [PMID: 27825863]
[47]
Kwon SS, Kim SY, Kong BJ, et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of Polygonum aviculare L. extract. Int J Pharm 2015; 483(1-2): 26-37.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.030] [PMID: 25623491]
[48]
Jose A, Mandapalli PK, Venuganti VVK. Liposomal hydrogel formulation for transdermal delivery of pirfenidone. J Liposome Res 2016; 26(2): 139-47.
[PMID: 26114208]
[49]
Guan Y, Zuo T, Chang M, et al. Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: Characterization and in vivo evaluation. Int J Pharm 2015; 487(1-2): 135-41.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.023] [PMID: 25882014]
[50]
Jeon S, Yoo CY, Park SN. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids Surf B Biointerfaces 2015; 129: 7-14.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.018] [PMID: 25819360]
[51]
Eid RK, Essa EA, El Maghraby GM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol 2019; 24(2): 157-65.
[PMID: 29441809]
[52]
Muzzalupo R, Pérez L, Pinazo A, Tavano L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int J Pharm 2017; 529(1-2): 245-52.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.083] [PMID: 28668583]
[53]
Chinembiri TN, Gerber M, du Plessis LH, du Preez JL, Hamman JH, du Plessis J. Topical delivery of Withania somnifera crude extracts in niosomes and solid lipid nanoparticles. Pharmacogn Mag 2017; 13(Suppl. 3): S663-71.
[http://dx.doi.org/10.4103/pm.pm_489_16] [PMID: 29142430]
[54]
Zidan AS, Hosny KM, Ahmed OA, Fahmy UA. Assessment of simvastatin niosomes for pediatric transdermal drug delivery. Drug Deliv 2016; 23(5): 1536-49.
[PMID: 25386740]
[55]
Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polym Bull 2016; 73(5): 1229-45.
[http://dx.doi.org/10.1007/s00289-015-1544-8]
[56]
Zhang Y, Zhang K, Wu Z, et al. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. Int J Pharm 2015; 478(1): 138-46.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.018] [PMID: 25448576]
[57]
Rajabalaya R, Leen G, Chellian J, Chakravarthi S, David SR. Tolterodine tartrate proniosomal gel transdermal delivery for overactive bladder. Pharmaceutics 2016; 8(3): 27.
[http://dx.doi.org/10.3390/pharmaceutics8030027] [PMID: 27589789]
[58]
Madan JR, Ghuge NP, Dua K. Formulation and evaluation of proniosomes containing lornoxicam. Drug Deliv Transl Res 2016; 6(5): 511-8.
[http://dx.doi.org/10.1007/s13346-016-0296-9] [PMID: 27255375]
[59]
Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 2(3) factorial design and in vivo evaluation in rabbits. Drug Deliv 2016; 23(5): 1608-22.
[http://dx.doi.org/10.3109/10717544.2015.1132797] [PMID: 26758033]
[60]
El Maghraby GM, Ahmed AA, Osman MA. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J 2015; 23(1): 67-74.
[http://dx.doi.org/10.1016/j.jsps.2014.05.001] [PMID: 25685045]
[61]
Zhang Y, Ng W, Hu J, Mussa SS, Ge Y, Xu H. Formulation and in vitro stability evaluation of ethosomal carbomer hydrogel for transdermal vaccine delivery. Colloids Surf B Biointerfaces 2018; 163: 184-91.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.031] [PMID: 29294420]
[62]
Yan Y, Zhang H, Sun J, et al. Enhanced transdermal delivery of sinomenine hydrochloride by ethosomes for anti-inflammatory treatment. J Drug Deliv Sci Technol 2016; 36: 201-7.
[http://dx.doi.org/10.1016/j.jddst.2016.10.013]
[63]
Yang L, Wu L, Wu D, Shi D, Wang T, Zhu X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int J Nanomedicine 2017; 12: 3357-64.
[http://dx.doi.org/10.2147/IJN.S134708] [PMID: 28490875]
[64]
Ma H, Guo D, Fan Y, Wang J, Cheng J, Zhang X. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules 2018; 23(7): 1756.
[http://dx.doi.org/10.3390/molecules23071756] [PMID: 30018278]
[65]
Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm 2018; 542(1-2): 36-46.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.044] [PMID: 29501737]
[66]
Zhang Z, Chen Y, Xu H, et al. 5-Aminolevulinic acid loaded ethosomal vesicles with high entrapment efficiency for in vitro topical transdermal delivery and photodynamic therapy of hypertrophic scars. Nanoscale 2016; 8(46): 19270-9.
[http://dx.doi.org/10.1039/C6NR06872C] [PMID: 27830857]
[67]
Mohammed MI, Makky AM, Teaima MH, Abdellatif MM, Hamzawy MA, Khalil MA. Transdermal delivery of vancomycin hydrochloride using combination of nano-ethosomes and iontophoresis: in vitro and in vivo study. Drug Deliv 2016; 23(5): 1558-64.
[PMID: 25726990]
[68]
Pathan IB, Jaware BP, Shelke S, Ambekar W. Curcumin loaded ethosomes for transdermal application: Formulation, optimization, in-vitro and in-vivo study. J Drug Deliv Sci Technol 2018; 44: 49-57.
[http://dx.doi.org/10.1016/j.jddst.2017.11.005]
[69]
Imam SS, Ahad A, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal. Mater Sci Eng C 2017; 75: 1198-205.
[http://dx.doi.org/10.1016/j.msec.2017.02.149] [PMID: 28415407]
[70]
Qadri GR, Ahad A, Aqil M, Imam SS, Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif Cells Nanomed Biotechnol 2017; 45(1): 139-45.
[http://dx.doi.org/10.3109/21691401.2016.1138486] [PMID: 26829018]
[71]
Kamran M, Ahad A, Aqil M, Imam SS, Sultana Y, Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: In vitro characterization and in vivo pharmacokinetic assessment. Int J Pharm 2016; 505(1-2): 147-58.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.030] [PMID: 27005906]
[72]
El-Nabarawi MA, Shamma RN, Farouk F, Nasralla SM. Dapsone-loaded invasomes as a potential treatment of acne: Preparation, characterization, and in vivo skin deposition assay. AAPS PharmSciTech 2018; 19(5): 2174-84.
[http://dx.doi.org/10.1208/s12249-018-1025-0] [PMID: 29725903]
[73]
Ahad A, Al-Saleh AA, Al-Mohizea AM, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J 2017; 25(7): 1040-6.
[http://dx.doi.org/10.1016/j.jsps.2017.01.006] [PMID: 29158713]
[74]
Chen R, Li R, Liu Q, et al. Ultradeformable liposomes: a novel vesicular carrier for enhanced transdermal delivery of procyanidins: effect of surfactants on the formation, stability, and transdermal delivery. AAPS PharmSciTech 2017; 18(5): 1823-32.
[http://dx.doi.org/10.1208/s12249-016-0661-5] [PMID: 27834056]
[75]
Ferreira H, Ribeiro A, Silva R, Cavaco-Paulo A. Deformable liposomes for the transdermal delivery of piroxicam. J Pharm Drug Deliv Res 2015; 4: 4.
[http://dx.doi.org/10.4172/2325-9604.1000139]
[76]
Morsi NM, Aboelwafa AA, Dawoud MHS. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study. J Liposome Res 2018; 28(2): 137-48.
[http://dx.doi.org/10.1080/08982104.2017.1295989] [PMID: 28264602]
[77]
Duangjit S, Nimcharoenwan T, Chomya N, Locharoenrat N, Ngawhirunpat T. Computational design strategy: an approach to enhancing the transdermal delivery of optimal capsaicin-loaded transinvasomes. Drug Dev Ind Pharm 2017; 43(1): 98-107.
[http://dx.doi.org/10.1080/03639045.2016.1220575] [PMID: 27487326]
[78]
Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Dev Technol 2016; 21(6): 706-15.
[PMID: 25996631]
[79]
Kumar P, Singh SK, Handa V, Kathuria H. Oleic acid nanovesicles of minoxidil for enhanced follicular delivery. Medicines (Basel) 2018; 5(3): 103.
[http://dx.doi.org/10.3390/medicines5030103] [PMID: 30223446]
[80]
Badie H, Abbas H. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation. Drug Dev Ind Pharm 2018; 44(12): 2013-25.
[http://dx.doi.org/10.1080/03639045.2018.1508220] [PMID: 30095009]
[81]
Salah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv 2017; 24(1): 846-56.
[http://dx.doi.org/10.1080/10717544.2017.1326539] [PMID: 28535740]
[82]
Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. J Drug Deliv Sci Technol 2018; 48: 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[83]
Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm 2018; 553(1-2): 386-97.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.057] [PMID: 30393167]
[84]
Ahirrao M, Shrotriya S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev Ind Pharm 2017; 43(10): 1686-93.
[http://dx.doi.org/10.1080/03639045.2017.1338721] [PMID: 28574732]
[85]
El-Enin HA, Al-Shanbari AH. Nanostructured liquid crystalline formulation as a remarkable new drug delivery system of anti-epileptic drugs for treating children patients. Saudi Pharm J 2018; 26(6): 790-800.
[http://dx.doi.org/10.1016/j.jsps.2018.04.004] [PMID: 30202219]
[86]
Boge L, Hallstensson K, Ringstad L, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm 2019; 134: 60-7.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.009] [PMID: 30445164]
[87]
Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm 2014; 40(4): 433-40.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[88]
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240: 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[89]
Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. J Liposome Res 2017; 27(2): 118-29.
[http://dx.doi.org/10.3109/08982104.2016.1167737] [PMID: 27079800]
[90]
Imam SS, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: in vitro characterization and in vivo pharmacokinetic study. Drug Deliv 2015; 22(8): 1059-70.
[http://dx.doi.org/10.3109/10717544.2013.870260] [PMID: 24471715]
[91]
Kumar L, Verma S, Singh K, Prasad D, Jain A. Ethanol based vesicular carriers in transdermal drug delivery: Nanoethosomes and transethosomes in focus. NanoWorld J 2016; 2(3): 41-51.
[http://dx.doi.org/10.17756/nwj.2016-030]
[92]
Kumar Sarwa K, Rudrapal M, Mazumder B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv 2015; 22(8): 1043-52.
[http://dx.doi.org/10.3109/10717544.2013.861041] [PMID: 24506573]
[93]
Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: Preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm 2016; 500(1-2): 245-54.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.017] [PMID: 26775063]
[94]
Yu Z, Lv H, Han G, Ma K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One 2016; 11(7): e0159967
[http://dx.doi.org/10.1371/journal.pone.0159967] [PMID: 27441661]
[95]
Lakshmi P, Kalpana B, Prasanthi D. Invasomes-novel vesicular carriers for enhanced skin permeation. Systematic Reviews in Pharmacy 2013; 4(1): 26.
[http://dx.doi.org/10.4103/0975-8453.135837]
[96]
Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J Liposome Res 2015; 25(1): 1-10.
[http://dx.doi.org/10.3109/08982104.2014.950276] [PMID: 25148294]
[97]
Hiruta Y, Hattori Y, Kawano K, Obata Y, Maitani Y. Novel ultra-deformable vesicles entrapped with bleomycin and enhanced to penetrate rat skin. J Control Release 2006; 113(2): 146-54.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.016] [PMID: 16793162]
[98]
Al Shuwaili AH, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm 2016; 102: 101-14.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.013] [PMID: 26925505]
[99]
Kisak ET, Coldren B, Evans CA, Boyer C, Zasadzinski JA. The vesosome-- a multicompartment drug delivery vehicle. Curr Med Chem 2004; 11(2): 199-219.
[http://dx.doi.org/10.2174/0929867043456197] [PMID: 14754417]
[100]
Mishra V, Mahor S, Rawat A, et al. Development of novel fusogenic vesosomes for transcutaneous immunization. Vaccine 2006; 24(27-28): 5559-70.
[http://dx.doi.org/10.1016/j.vaccine.2006.04.030] [PMID: 16730102]
[101]
Kumar D, Sharma D, Singh G, Singh M, Rathore MS. Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN Pharm 2012; 2012: 474830
[http://dx.doi.org/10.5402/2012/474830]
[102]
Mittal R, Sharma A, Arora S. Ufasomes mediated cutaneous delivery of dexamethasone: formulation and evaluation of anti-inflammatory activity by carrageenin-induced rat paw edema model. Journal of pharmaceutics 2012; 2013: 680580
[103]
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21(5): 789-801.
[http://dx.doi.org/10.1016/j.drudis.2016.01.004] [PMID: 26780385]
[104]
Li J-C, Zhu N, Zhu J-X, et al. Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of Paeonol. Med Sci Monit 2015; 21: 3298-310.
[http://dx.doi.org/10.12659/MSM.894484] [PMID: 26517086]
[105]
Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007; 59(6): 478-90.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[106]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[107]
Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(3): 205-18.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[108]
Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2007; 2: 147-57.
[http://dx.doi.org/10.1177/117739280700200002] [PMID: 21901071]
[109]
Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 2015; 14(4): 239-47.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[110]
Sánchez-López E, Espina M, Doktorovova S, Souto EB, García ML. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm 2017; 110: 58-69.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.013] [PMID: 27789359]
[111]
Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[112]
Chetoni P, Burgalassi S, Monti D, et al. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 2016; 109: 214-23.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[113]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[114]
Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel) 2017; 7(6): 122.
[http://dx.doi.org/10.3390/nano7060122] [PMID: 28554993]
[115]
Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces 2016; 147: 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.046] [PMID: 27478959]
[116]
Adhikari P, Pal P, Das AK, Ray S, Bhattacharjee A, Mazumder B. Nano lipid-drug conjugate: An integrated review. Int J Pharm 2017; 529(1-2): 629-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.039] [PMID: 28723407]
[117]
Lasa-Saracibar B, Estella-Hermoso de Mendoza A, Guada M, Dios-Vieitez C, Blanco-Prieto MJ. Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin Drug Deliv 2012; 9(10): 1245-61.
[http://dx.doi.org/10.1517/17425247.2012.717928] [PMID: 22950878]
[118]
Yatvin MB, Stowell MH. Covalent polar lipid-peptide conjugates for use in salves In: Google Patents 1996.
[119]
Yatvin MB, Stowell MH. Covalent polar lipid conjugates with biologically-active compounds for use in salves Google Patents 1999.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy