Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Facile Synthesis of Anatase Ni2+ Doped TiO2 Nanorods with Highly Improved Visible-Light Photocatalytic Performance

Author(s): G. Nagaraj*, R.A. Senthil, Rajender Boddula and K. Ravichandaran

Volume 17, Issue 2, 2021

Published on: 08 January, 2020

Page: [279 - 284] Pages: 6

DOI: 10.2174/1573411016666200108143913

Price: $65

Abstract

Objective: Herein, we reported a simple and effective approach to synthesis of pure and Ni2+ doped TiO2 nanorods by a photon-induced method (PIM) followed by calcination at 850 ºC in air atmosphere.

Methods: Basically, the PIM was used to tuning the properties of as-prepared TiO2 photocatalyst. These obtained samples were further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS) analysis. XRD results reveals that the both pure TiO2 and Ni doped TiO2 nanorods has anatase phase up to 850°C.

Results: The HR-TEM analysis indicates that doping Ni is favourable to the formation of rod-like TiO2 sample. Also, the observed photocatalytic results demonstrates that the Ni doped TiO2 can be achieved a complete degradation of methylene blue (MB) within 30 min under direct sunlight irradiation as compared to pure TiO2.

Conclusion: Therefore, this work revealing the doped Ni has a good potential to modification of TiO2 with an excellent photocatalytic activity for water treatment applications.

Keywords: Degradation, methylene blue, Ni doped TiO2 nanorods, photocatalysts, photon induced method, sun-light irradiation.

« Previous
Graphical Abstract

[1]
Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev., 2012, 112(3), 1555-1614.
[http://dx.doi.org/10.1021/cr100454n] [PMID: 22107071]
[2]
Li, H.; Zhou, Y.; Tu, W.; Ye, J.; Zou, Z. State-of-the-art progress in diverse hetero-structured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater., 2015, 25, 998-1013.
[http://dx.doi.org/10.1002/adfm.201401636]
[3]
Ki, S.J.; Park, Y.K.; Kim, J.S.; Lee, W.J.; Lee, H.; Jung, S.C. Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate. Chem. Eng. J., 2019, 377120087
[http://dx.doi.org/10.1016/j.cej.2018.10.024]
[4]
Yoshida, T.; Toyoyama, H.; Umezu, I.; Sugimura, A. Synthesis of Ni-doped InTaO4 nanocrystallites by reactive pulsed laser ablation for application to visible-light-operating photocatalysts. Appl. Surf. Sci., 2009, 255, 9634-9637.
[http://dx.doi.org/10.1016/j.apsusc.2009.04.124]
[5]
Khakia, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Wan Daud, W.M.A. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J. Molecul. Liq., 2018, 258, 354-365.
[http://dx.doi.org/10.1016/j.molliq.2017.11.030]
[6]
Pereira, L.O.; Sales, I.M.; Zampiere, L.P.; Vieira, S.S.; Guimaraes, I.R.; Magalhaes, F. Preparation of magnetic photocatalysts from TiO2, activated carbon and iron nitrate for environmental remediation. J. Photochem. Photobiol. Chem., 2019, 382111907
[http://dx.doi.org/10.1016/j.jphotochem.2019.111907]
[7]
Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11), 6503-6570.
[http://dx.doi.org/10.1021/cr1001645] [PMID: 21062099]
[8]
Bin, G.; Tao, W.; Xiaoli, F.; Hao, G.; Hu, G.; Wei, X.; Yaya, F.; Xianli, H.; Jianping, H. Synthesis of yellow mesoporous Ni-doped TiO2 with enhanced photoelectrochemical performance under visible light. Inorg. Chem. Front., 2017, 4, 898-906.
[http://dx.doi.org/10.1039/C6QI00609D]
[9]
Senthil, R.A.; Theerthagiri, J.; Selvi, A. Madhavan, Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation. Opt. Mater., 2017, 64, 533-539.
[http://dx.doi.org/10.1016/j.optmat.2017.01.025]
[10]
Rahman, M.M.; Krishna, K.M.; Soga, T.; Jimbo, T.; Umeno, M. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J. Phys. Chem. Solids, 1999, 60, 201-210.
[http://dx.doi.org/10.1016/S0022-3697(98)00264-9]
[11]
Kumar, P.S.; Sundaramurthy, J.; Sundarrajan, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci., 2014, 7, 3192-3222.
[http://dx.doi.org/10.1039/C4EE00612G]
[12]
Mehmood, F.; Iqbal, J.; Ismail, M.; Mehmood, A. Ni doped WO3 nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd., 2018, 746, 729-738.
[http://dx.doi.org/10.1016/j.jallcom.2018.01.409]
[13]
Varshney, M.; Sharma, A.; Shin, H.J.; Lee, H.H.; Jeon, T.Y.; Lee, B.H.; Chae, K.H.; Won, S.O. Influence of Ni doping on PtNi nanoparticles: Synthesis, electronic/atomic structure and photocatalyst investigations. J. Phys. Chem. Solids, 2017, 110, 187-194.
[http://dx.doi.org/10.1016/j.jpcs.2017.06.012]
[14]
Rulison, A.J.; Miquel, P.F.; Katz, J.L. Titania and silica powders produced in a counterflow diffusion flame. J. Mater. Res., 1996, 12, 3083.
[http://dx.doi.org/10.1557/JMR.1996.0392]
[15]
Khan, R.; Kim, T.J. Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J. Hazard. Mater., 2009, 163(2-3), 1179-1184.
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.078] [PMID: 18755539]
[16]
Tsenga, H.H.; Wei, M.C.; Hsiung, S.F.; Chiou, C.W. Degradation of xylene vapor over Ni-doped TiO2 photocatalysts prepared by polyol-mediated synthesis. Chem. Eng. J., 2009, 150, 160-167.
[http://dx.doi.org/10.1016/j.cej.2008.12.015]
[17]
Nakhate, G.G.; Nikam, V.S.; Kanade, K.G.; Arbuj, S.; Kale, B.B.; Baeg, J.O. Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation. Mater. Chem. Phys., 2010, 124, 976-981.
[http://dx.doi.org/10.1016/j.matchemphys.2010.08.007]
[18]
Liu, B.S.; Zhao, X.J.; Zhang, N.Z. Photocatalytic mechanism of TiO2-CeO2 films prepared by magnetron sputtering under UV and visible light. Surf. Sci., 2005, 595, 203-211.
[http://dx.doi.org/10.1016/j.susc.2005.08.016]
[19]
Augugliaro, V.; Palmisano, L.; Sclafani, A. Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions. Toxicol. Environ. Chem., 1988, 16, 89-95.
[http://dx.doi.org/10.1080/02772248809357253]
[20]
Shao, X.; Lu, W.; Zhang, R.; Pan, F. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation. Sci. Rep., 2013, 3018, 1-3.
[http://dx.doi.org/10.1038/srep03018]
[21]
Nagaraj, G.; Dhayal Raj, A.; Albert Irudayaraj, A. Next generation of pure titania nanoparticles for enhanced solar-light photocatalytic activity. J. Mater. Sci. Mater. Electron., 2018, 29, 4373-4381.
[http://dx.doi.org/10.1007/s10854-017-8386-0]
[22]
Feizpoor, S.; Yangjeh, A.H.; Ahadzadeh, I.; Yubuta, K. Oxygen-rich TiO2 decorated with C-Dots: Highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Adv. Powder Technol., 2019, 30, 1183-1196.
[http://dx.doi.org/10.1016/j.apt.2019.03.014]
[23]
Sun, M.; Senthil, R.A.; Pan, J.; Osman, S.; Khan, A. A facile synthesis of visible-light driven rod-on-rod like α-FeOOH/α-AgVO3 nanocomposite as greatly enhanced photocatalyst for degradation of Rhodamine B. Catalysts, 2018, 8, 392.
[http://dx.doi.org/10.3390/catal8090392]
[24]
Senthil, R.A.; Osman, S.; Pan, J.; Sun, Y.; Rajesh Kumar, T. Manikandan, A. A facile hydrothermal synthesis of visible-light responsive BiFeWO6/MoS2 composite as superior photocatalyst for degradation of organic pollutants. Ceram. Int., 2019, 45, 18683-18690.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.093]
[25]
Kumar, P.S.; Nizar, S.A.S.; Sundaramurthy, J.; Ragupathy, P.; Thavasi, V.; Mhaisalkar, S.G. Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis. J. Mater. Chem., 2011, 21, 9784-9790.
[http://dx.doi.org/10.1039/c1jm10859j]
[26]
Miao, X.; Ji, Z.; Wu, J.; Shen, X.; Wang, J.; Kong, L.; Liu, M.; Song, C. g-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst. J. Colloid Interface Sci., 2017, 502, 24-32.
[http://dx.doi.org/10.1016/j.jcis.2017.04.087] [PMID: 28477466]
[27]
Senthil, R.A.; Osman, S.; Pan, J.; Sun, M.; Khan, A.; Yang, V.; Sun, Y. A facile single-pot synthesis of WO3/AgCl composite with enhanced photocatalytic and photoelectrochemical performance under visible-light irradiation. Colloids Surf. A Physicochem. Eng. Asp., 2019, 567, 171-183.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.056]
[28]
Yu, X.; Gao, L.; Huang, J.; Li, W.; Liu, G.; Li, Z.; Liu, J.; Hu, P.A. Construction of hybrid Ag2CO3/AgVO3 nanowires with enhanced visible light photocatalytic activity. Mater. Res. Bull., 2018, 101, 246-252.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.023]
[29]
Senthil, R.A.; Sun, M.; Pan, J.; Osman, S.; Khan, A.; Sun, Y. Facile fabrication of a new BiFeWO6/α-AgVO3 composite with efficient visible-light photocatalytic activity for dye-degradation. Opt. Mater., 2019, 92, 284-293.
[http://dx.doi.org/10.1016/j.optmat.2019.04.046]
[30]
Ganesh, I.; Gupta, A.K.; Kumar, P.P.; Sekhar, P.S.C.; Radha, K.; Padmanabham, G.; Sundararajan, G. Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications. ScientificWorldJournal, 2012, 2012127326
[http://dx.doi.org/10.1100/2012/127326] [PMID: 22619580]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy