Abstract
Objective: Herein, we reported a simple and effective approach to synthesis of pure and Ni2+ doped TiO2 nanorods by a photon-induced method (PIM) followed by calcination at 850 ºC in air atmosphere.
Methods: Basically, the PIM was used to tuning the properties of as-prepared TiO2 photocatalyst. These obtained samples were further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and UV-visible diffuse reflectance spectroscopy (UV-vis DRS) analysis. XRD results reveals that the both pure TiO2 and Ni doped TiO2 nanorods has anatase phase up to 850°C.
Results: The HR-TEM analysis indicates that doping Ni is favourable to the formation of rod-like TiO2 sample. Also, the observed photocatalytic results demonstrates that the Ni doped TiO2 can be achieved a complete degradation of methylene blue (MB) within 30 min under direct sunlight irradiation as compared to pure TiO2.
Conclusion: Therefore, this work revealing the doped Ni has a good potential to modification of TiO2 with an excellent photocatalytic activity for water treatment applications.
Keywords: Degradation, methylene blue, Ni doped TiO2 nanorods, photocatalysts, photon induced method, sun-light irradiation.
Graphical Abstract
[http://dx.doi.org/10.1021/cr100454n] [PMID: 22107071]
[http://dx.doi.org/10.1002/adfm.201401636]
[http://dx.doi.org/10.1016/j.cej.2018.10.024]
[http://dx.doi.org/10.1016/j.apsusc.2009.04.124]
[http://dx.doi.org/10.1016/j.molliq.2017.11.030]
[http://dx.doi.org/10.1016/j.jphotochem.2019.111907]
[http://dx.doi.org/10.1021/cr1001645] [PMID: 21062099]
[http://dx.doi.org/10.1039/C6QI00609D]
[http://dx.doi.org/10.1016/j.optmat.2017.01.025]
[http://dx.doi.org/10.1016/S0022-3697(98)00264-9]
[http://dx.doi.org/10.1039/C4EE00612G]
[http://dx.doi.org/10.1016/j.jallcom.2018.01.409]
[http://dx.doi.org/10.1016/j.jpcs.2017.06.012]
[http://dx.doi.org/10.1557/JMR.1996.0392]
[http://dx.doi.org/10.1016/j.jhazmat.2008.07.078] [PMID: 18755539]
[http://dx.doi.org/10.1016/j.cej.2008.12.015]
[http://dx.doi.org/10.1016/j.matchemphys.2010.08.007]
[http://dx.doi.org/10.1016/j.susc.2005.08.016]
[http://dx.doi.org/10.1080/02772248809357253]
[http://dx.doi.org/10.1038/srep03018]
[http://dx.doi.org/10.1007/s10854-017-8386-0]
[http://dx.doi.org/10.1016/j.apt.2019.03.014]
[http://dx.doi.org/10.3390/catal8090392]
[http://dx.doi.org/10.1016/j.ceramint.2019.06.093]
[http://dx.doi.org/10.1039/c1jm10859j]
[http://dx.doi.org/10.1016/j.jcis.2017.04.087] [PMID: 28477466]
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.056]
[http://dx.doi.org/10.1016/j.materresbull.2018.01.023]
[http://dx.doi.org/10.1016/j.optmat.2019.04.046]
[http://dx.doi.org/10.1100/2012/127326] [PMID: 22619580]