Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Letter Article

Biomimetic Nanofiber by Electrospinning of Snail Mucus

Author(s): Congcong Zhu, Tianyi Zhong and Baoqi Zuo*

Volume 13, Issue 1, 2021

Published on: 07 January, 2020

Page: [9 - 12] Pages: 4

DOI: 10.2174/2210315510666200108110153

Abstract

Background: Snail Mucus (SM) is secreted by the pedal gland of snails, and has a fibrous structure when it crawls upside down on the plane. It contains biologically active compounds that perform medical functions, such as glycol acid, natural antibiotics, and glycoprotein.

Methods: For this paper, we prepared fibers using electrospinning to simulate this natural fiber for the first time, and we can produce the nanofiber with mucus from a snail. The effects of dissolution time and the spun solution were also investigated.

Results: The results show that biomimetic nanofibers with different diameters can be obtained using electrospinning. When the concentration of the spun liquid was increased from 6 wt% to 8 wt%, a fiber with about a 200 nm diameter can be obtained. The adjustment of the concentration plays a crucial role in electrospinning.

Conclusion: The investigation and utilization of biomimetic nanomaterials can promote the development of tissue engineering effectively.

Keywords: Snail mucus, biomimetic, biomaterial, electrospinning, nanofiber, glycol.

Graphical Abstract

[1]
Li, C.; Vepari, C.; Jin, H.J.; Kim, H.J.; Kaplan, D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006, 27(16), 3115-3124.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.022]
[2]
Ahire, J.J.; Dicks, L.M.T. Antimicrobial hyaluronic acid–cefoxitin sodium thin films produced by electrospraying. Curr. Microbiol., 2016, 73(2), 236-241.
[http://dx.doi.org/10.1007/s00284-016-1057-1]
[3]
Ahire, J.J.; Robertson, D.D.; van Reenen, A.J.; Dicks, L.M. Polyethylene oxide (PEO)-hyaluronic acid (HA) nanofibers with kanamycin inhibits the growth of Listeria monocytogenes. Biomed. Pharmacother., 2017, 86, 143-148.
[http://dx.doi.org/10.1016/j.biopha.2016.12.006]
[4]
Ahire, J.J.; Robertson, D.D.; Neveling, D.; Reenen, A.J.V.; Dicks, L.M. Hyaluronic acid-coated poly(D,L-lactide) (PDLLA) nanofibers prepared by electrospinning and coating. RSC Advances, 2016, 6(41), 34791-34796.
[http://dx.doi.org/10.1039/C6RA01996J]
[5]
Li, S.F.; Chen, J.P.; Wu, W.T. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J. Mol. Catal., B Enzym., 2007, 47(3-4), 117-124.
[http://dx.doi.org/10.1016/j.molcatb.2007.04.010]
[6]
Kaur, S.; Sundarrajan, S.; Gopal, R.; Ramakrishna, S. Formation and characterization of polyamide composite electrospun nanofibrous membranes for salt separation. J. Appl. Polym. Sci., 2012, 124(S1), 205-215.
[http://dx.doi.org/10.1002/app.36375]
[7]
Yu, D.N.; Tian, D.; He, J.H. Snail-based nanofibers. Mater. Lett., 2018, 220, 5-7.
[http://dx.doi.org/10.1016/j.matlet.2018.02.076]
[8]
Tian, D.; Zhou, C.J.; He, J.H. Sea-silk based nanofibers and their diameter prediction. Therm. Sci., 2019, 23(4), 2253-2256.
[http://dx.doi.org/10.2298/TSCI1904253T]
[9]
Zhou, C.J.; Li, Y.; Yao, S.W. Silkworm-based silk fibers by electrospinning. Res. Phys., 2019, 15102646
[http://dx.doi.org/10.1016/j.rinp.2019.102646]
[10]
Werneke, S.W.; Swann, C.; Farquharson, L.A.; Hamilton, K.S.; Smith, A.M. The role of metals in molluscan adhesive gels. J. Exp. Biol., 2007, 210(Pt 12), 2137-2145.
[http://dx.doi.org/10.1242/jeb.006098]
[11]
Davies, M.S.; Hutchinson, S.J. Crystalline calcium in Littorinid mucus trails. Hydrobiologia, 1995, 309(1-3), 117-121.
[http://dx.doi.org/10.1007/BF00014478]
[12]
Reboreda, R.; Davies, M.S. Characterisation by X-ray microanalysis of metal granules in the mucus trails of Littorina littorea (Gastropoda) along a putative pollution gradient. Ecotoxicology, 2006, 15(5), 403-410.
[http://dx.doi.org/10.1007/s10646-006-0062-8]
[13]
Hasse, B.; Ehrenberg, H.; Marxen, J.C.; Becker, W.; Epple, M. Calcium carbonate modifications in the mineralized shell of the freshwater snail Biomphalaria glabrata. Chemistry, 2000, 6(20), 3679-3685.
[http://dx.doi.org/10.1002/1521-3765(20001016)6:20<3679:AID-CHEM3679>3.0.CO;2-#]
[14]
Quevauviller, A.; Mainil, J.; Garcet, S. The mucus of Helix pomatia L.; preparation, composition, therapeutic and pharmacodynamic properties, biologic assay. Rev. Pathol. Gen Physiol. Clin., 1953, 53(653), 1514-1538.
[15]
López Angulo, D.E.; do Amaral Sobral, P.J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int. J. Biol. Macromol., 2016, 92, 645-653.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.029]
[16]
Kantawong, F.; Thaweenan, P.; Mungkala, S.; Tamang, S.; Manaphan, R.; Wanachantararak, P. E-Kobon, T.; Chumnanpuen, P. Mucus of Achatina fulica stimulates mineralization and inflammatory response in dental pulp cells. Turk. J. Biol., 2016, 40(2), 353-359.
[http://dx.doi.org/10.3906/biy-1505-29]
[17]
Santana, W.A.; Melo, C.M.D.; Cardoso, J.C.; Pereira-Filho, R.N.; Rabelo, A.S.; Reis, F.P.; Cardoso, R.L.C.D.A. Assessment of antimicrobial activity and healing potential of mucous secretion of Achatina fulica. Int. J. Morphol., 2012, 30(2), 365-373.
[http://dx.doi.org/10.4067/S0717-95022012000200001]
[18]
Berniyanti, T.; Waskito, E.B.; Suwarno, S. Biochemical characterization of an antibacterial glycoprotein from Achatina fulica ferussac snail mucus local isolate and their implication on bacterial dental infectio. Indones. J. Biotechnol., 2007, 12(1), 943-951.
[19]
Etim, L.; Aleruchi, C.; Obande, G.A. Antibacterial properties of snail mucus on bacteria isolated from patients with wound infection. Br. Microbiol. Res. J., 2016, 11(2), 1-9.
[http://dx.doi.org/10.9734/BMRJ/2016/21731]
[20]
Zhong, T.Y.; Liu, M.; Wang, Z.Y.; Zhang, F.; Zuo, B.Q. Controlled self-assembly of glycoprotein complex in snail mucus from lubricating liquid to elastic fiber. RSC Advan, 2018, 8(25), 13806-13812.
[http://dx.doi.org/10.1039/C8RA01439F]
[21]
Buontempo, J.T.; Rice, S.A.; Winston, R. Fourier transform infrared spectrometer. Appl. Opt., 1995, 34, 7806.
[22]
Al-Hosney, H.A.; Carlos-Cuellar, S.; Baltrusaitis, J.; Grassian, V.H. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: A Knudsen cell reactor, FTIR and SEM study. Phys. Chem. Chem. Phys., 2005, 7(20), 3587-3595.
[http://dx.doi.org/10.1039/b510112c]

© 2024 Bentham Science Publishers | Privacy Policy