Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Production of Vincristine and Vinblastine by the Endophytic Fungus Botryosphaeria laricina Strain (CRS1) is Dependent on Stimulating Factors Present in Catharanthus roseus

Author(s): Chamara Janaka Bandara, Asitha Siriwardhana, Desiree Nedra Karunaratne*, Bamunuarachi Mudiyanselage Ratnayake Bandara, Anura Wickramasinghe, Shelomie Arulchelvi Krishnarajah and Veranja Karunaratne

Volume 11, Issue 2, 2021

Published on: 08 January, 2020

Page: [221 - 230] Pages: 10

DOI: 10.2174/2210315510666200108102735

Price: $65

Abstract

Aims: To isolate vinca alkaloid producing endophytic fungi from Catharanthus roseus and the evaluation of the factors which enhance the vincristine production.

Background: An endophytic fungus Botryosphaeria laricina (CRS1) isolated from Catharanthus roseus demonstrated vinca alkaloid production under certain conditions.

Objective: To Understand the conditions under which the fungus was able to produce vincristine and vinblastine.

Methods: Fungal isolates from C. roseus were grown in liquid culture and screened for alkaloid production. The strain (CRS1) producing catharanthine was sequenced and matched with GenBank. This isolated strain was studied for production of vinca alkaloids and the conditions required for vincristine and vinblastine production.

Results: Eight endophytic fungi were isolated from the fresh aerial parts of C. roseus. Only CRS1, demonstrated catharanthine production. DNA sequencing of CRS1 gave a 100% match with the GenBank accession number, KC509580.1, which is related to the Botryosphaeria laricina strain JAS6. CRS1 produced only catharanthine when cultured in Czapek’s peptone liquid medium (CZ). Addition of C. roseus fresh plant extract (8.0 mL) to the culture medium (4.0 L) stimulated the production of catharanthine (3.2 mg), catharanthinic acid (0.3 mg), N-demethyl-vinblastine (0.3 mg), vinblastine (2.8 mg) and vincristine (2.4 mg). However, if the added plant extract was preheated (80 ˚C, for 15 min), no vinca alkaloids appeared other than catharanthine. To identify the active fractions of the plant extract stimulating vinca alkaloid production, the extract was dialyzed in buffer at 4 ˚C through 20 kDa MW cutoff membrane to separate into two fractions of molecules above and below 20 kDa MW. Only the fraction containing molecules above 20 kDa was able to transform catharanthine to vincristine and vinblastine. When the dialysis was performed in water instead of buffer, the larger fraction could only produce catharanthine and vinblastine. Other conditions such as the presence of light:dark (12:12 h), fructose (30.0 g L-1), glucose (30.0 g L-1), Cu2+ (0.1 mM) ions, L-tryptophan (0.1%) and succinic acid (1%) did not induce alkaloid production.

Conclusion: The catharanthine producing fungal strain B. laricina (CRS1) could only produce the two vinca alkaloids, vinblastine and vincristine from catharanthine in the presence of active components larger than 20 kDa MW present in the plant extract of C. roseus.

Keywords: Catharanthine, catharanthinic acid, vincristine, vinblastine, N-demethyl-vinblastine, Botryosphaeria laricina, Catharanthus roseus, endophytic fungi.

Graphical Abstract

[1]
Verma, A.K.; Singh, R.R.; Singh, S. Mutation Breeding in Catharanthus roseus (L.) G. Don : An Overview. J. Pharmacogn. Phytochem., 2013, 2(1), 334-337.
[2]
Gogoi, B.; Zaman, K. Phytochemical constituents of some medicinal plant species used in recipe during ‘Bohag Bihu’ in Assam. J. Pharmacogn. Phytochem., 2011, 2(2), 30-40.
[3]
Crozier, A.; Clifford, M.N.; Ashihara, H. Plant Secondary Metabolites Occurrence, Structure and Role in the Human Diet; John Wiley & Sons, 2006.
[4]
Ting, V. The pain inducing, cancer remedy: the occurance, bioactivity, biosynthesis, and synthesis of vincristine. J. Chem., 2008, 150, 1-3.
[5]
Doudach, L.; Meddah, B.; Benbacer, L.; Chabraoui, L.; Faouzi, M.E.A.; Elomri, A.; Cherrah, Y. Phytoactifs used in anticancer therapy: A Review. Int. J. Pharm. Biol. Sci. Res. Dev., 2014, 2(1), 1-27.
[6]
Kromar, J.; Joy, P.P.; Thomas, J.; Varghese, C.S.; Indumon, S.S.; George, D. Medicinal Plants; Prir. Clovek Zdravje, 1998, p. 0484.
[7]
St-Pierre, B.; De Luca, V. A cytochrome P-450 monooxygenase catalyzes the first step in the conversion of tabersonine to vindoline in Catharanthus roseus. Plant Physiol., 1995, 109(1), 131-139.
[http://dx.doi.org/10.1104/pp.109.1.131]
[8]
Simões, C.; Albarello, N.; de Castro, T. Biotechnological Production of Plant Secondary Metabolites; Erdogan, Orhan. I, Ed.; Bentham Science Publishers, 2012.
[http://dx.doi.org/10.2174/97816080511441120101]
[9]
Ataei-Azimi, A.; Hashemloian, B.D.; Ebrahimzadeh, H.; Majd, A. High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture. Afr. J. Biotechnol., 2008, 7(16), 2834-2839.
[10]
Guo, B.; Li, H.; Zhang, L. Isolation of the fungus producing vinblastine. J. Yunnan Univ. Nat. Sci. Educ., 1998, 20, 214-215.
[11]
Zhang, L.; Guo, B.; Li, H.; Zeng, S.; Shao, H.; Gu, S.; Wei, R. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin. Tradit. Herbal Drugs, 2000, 31, 805-807.
[12]
Yang, X.; Zhang, L.; Guo, B.; Guo, S. Preliminary study of a vincristine-producing endophytic fungus isolated from leaves of Catharanthus roseus. Chin. Tradit. Herbal Drugs, 2004, 35, 79-81.
[13]
Kumar, A.; Patil, D.; Rajamohanan, P.R.; Ahmad, A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS One, 2013, 8(9), e71805
[http://dx.doi.org/10.1371/journal.pone.0071805]
[14]
Kumar, A.; Abnave, P.; Ahmad, A. Cultural, Morphological and molecular characterization of vinca alkaloids producing endophytic fungus Fusarium solani isolated from Catharanthus roseus. Int. J. Bot. Res., 2013, 3(2), 1-12.
[15]
Qiu, M.; Xie, R.S.; Shi, Y.; Zhang, H.; Chen, H.M. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Ann. Microbiol., 2010, 60(1), 143-150.
[http://dx.doi.org/10.1007/s13213-010-0016-5]
[16]
Silambarasan, S.; Abraham, J. Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One, 2013, 8(10), e77170
[http://dx.doi.org/10.1371/journal.pone.0077170]
[17]
EPPO. Botryosphaeria laricina., 1981. Available from: https://gd.eppo.int/download/doc/126_datasheet_GUIGLA.pdf
[18]
Sundberg, R.J.; Hong, J.; Smith, S.Q.; Sabat, M.; Tabakovic, I. Synthesis and oxidative fragmentation of catharanthine analogs. Comparison to the fragmentation - coupling of catharanthine and vindoline. Tetrahedron, 1998, 54(23), 6259-6292.
[http://dx.doi.org/10.1016/S0040-4020(98)00289-0]
[19]
Kuboyama, T.; Yokoshima, S.; Tokuyama, H.; Fukuyama, T. Stereocontrolled total synthesis of (+)-vincristine. Proc. Natl. Acad. Sci., 2004, 2004(Track II), 1-5.
[20]
Dubrovay, Z.; Háda, V.; Béni, Z.; Szántay, C. Jr NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities - part I. J. Pharm. Biomed. Anal., 2013, 84, 293-308.
[http://dx.doi.org/10.1016/j.jpba.2012.08.019]
[21]
Krumova, E.Ts.; Stoitsova, S.R.; Paunova-Krasteva, T.S.; Pashova, S.B.; Angelova, M.B. Copper stress and filamentous fungus Humicola lutea 103 - ultrastructural changes and activities of key metabolic enzymes. Can. J. Microbiol., 2012, 58(12), 1335-1343.
[http://dx.doi.org/10.1139/w2012-112]
[22]
De Carolis, E.; Chan, F.; Balsevich, J.; De Luca, V. Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol., 1990, 94(3), 1323-1329.
[http://dx.doi.org/10.1104/pp.94.3.1323]
[23]
Vazquez-Flota, F. A. Molecular regulation of desacetoxyvindoline 4-hydroxylase. Mol. Regul. Desacetoxyvindoline 4-Hydroxylase. 1998, 1-209.
[24]
Aslam, J.; Khan, S.H.; Siddiqui, Z.H.; Fatima, Z.; Maqsood, M.; Bhat, M.A.; Nasim, S.A.; Ilah, A.; Ahmad, I.Z.; Khan, S.A. Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharm. Glob., 2010, 01(04), 1-16.
[25]
Zhou, M.; Hou, H.; Zhu, X.; Shao, J.; Wu, Y.; Tang, Y. Molecular regulation of terpenoid indole alkaloids pathway in the medicinal plant, Catharanthus roseus. J. Med. Plants Res., 2011, 5(5), 663-676.
[26]
Sudhakar, T.; Dash, S.K.; Rao, R.R.; Srinivasan, R.; Zacharia, S.; Atmanad, M.A.; Nayak, S.; Subramaniam, B.R. Do endophytic fungi possess pathway genes for plant secondary metabolites. Curr. Sci., 2013, 104(2), 178.
[27]
Aerts, R.J.; De Luca, V. Phytochrome is involved in the light-regulation of vindoline biosynthesis in catharanthus. Plant Physiol., 1992, 100(2), 1029-1032.
[http://dx.doi.org/10.1104/pp.100.2.1029]
[28]
Vazquez-Flota, F.A.; De Luca, V.; De Luca, V. Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in catharanthus roseus (L.) G. Don. Evidence Of a multilevel regulatory mechanism. Plant Physiol., 1998, 117(4), 1351-1361.
[http://dx.doi.org/10.1104/pp.117.4.1351]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy