Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Green Synthesis of Silver Nanoparticles Using Artocarpus hirsutus Seed Extract and its Antibacterial Activity

Author(s): Sampath Shobana, Sunderam Veena, S.S.M. Sameer, K. Swarnalakshmi and L.A. Vishal*

Volume 21, Issue 10, 2020

Page: [980 - 989] Pages: 10

DOI: 10.2174/1389201021666200107115849

Price: $65

Abstract

Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis.

Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes.

Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria.

Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM.

Results: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall.

Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.

Keywords: Artocarpus hirsutus, moraceae, silver nanoparticles, gastro-intestinal bacteria, SEM, seed extract.

Graphical Abstract

[1]
Geethalakshmi, R.; Sarada, D.V.L. 23 Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti-microbial activities. Int. J. Eng. Sci. Technol., 2010, 2(5), 970-975.
[2]
Sunderam, V.; Thiyagarajan, D.; Lawrence, A.V.; Mohammed, S.S.S.; Selvaraj, A. In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J. Biol. Sci., 2019, 26(3), 455-459.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.001] [PMID: 30899157]
[3]
Lediga, M.E.; Malatjie, T.S.; Olivier, D.K.; Ndinteh, D.T.; van Vuuren, S.F. Biosynthesis and characterisation of antimicrobial silver nanoparticles from a selection of fever-reducing medicinal plants of South Africa. S. Afr. J. Bot., 2018, 119, 172-180.
[http://dx.doi.org/10.1016/j.sajb.2018.08.022]
[4]
Vijay Kumar, P.P.N.; Pammi, S.V.N.; Kollu, P.; Satyanarayana, K.V.V.; Shameem, U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod., 2014, 52, 562-566.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.050]
[5]
Bello, B.A.; Khan, S.A.; Khan, J.A.; Syed, F.Q.; Mirza, M.B.; Shah, L.; Khan, S.B. Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun., 2017, 490(3), 889-894.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.136] [PMID: 28648600]
[6]
Ramesh, P.S.; Kokila, T.; Geetha, D. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 142, 339-343.
[http://dx.doi.org/10.1016/j.saa.2015.01.062] [PMID: 25710891]
[7]
Sigamoney, M.; Shaik, S.; Govender, P.; Krishna, S.B.N. Sershen. African leafy vegetables as bio-factories for silver nanoparticles: A case study on Amaranthus dubius C Mart. Ex Thell. S. Afr. J. Bot., 2016, 103, 230-240.
[http://dx.doi.org/10.1016/j.sajb.2015.08.022]
[8]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[9]
Lokina, S.; Stephen, A.; Kaviyarasan, V.; Arulvasu, C.; Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem., 2014, 76, 256-263.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.010] [PMID: 24583606]
[10]
Kanmani, P.; Lim, S.T. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem., 2013, 48(7), 1099-1106.
[http://dx.doi.org/10.1016/j.procbio.2013.05.011]
[11]
Ghaffari-Moghaddam, M.; Hadi-Dabanlou, R. Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J. Ind. Eng. Chem., 2014, 20(2), 739-744.
[http://dx.doi.org/10.1016/j.jiec.2013.09.005]
[12]
Fafal, T.; Taştan, P.; Tüzün, B.S.; Ozyazici, M.; Kivcak, B. Synthesis, Characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus brot. aerial part extract. S. Afr. J. Bot., 2017, 112, 346-353.
[http://dx.doi.org/10.1016/j.sajb.2017.06.019]
[13]
Veena, S.; Devasena, T.; Sathak, S.S.M.; Yasasve, M.; Vishal, L.A. Green synthesis of gold nanoparticles from Vitex negundo leaf extract: Characterization and in vitro evaluation of antioxidant–antibacterial activity. J. Cluster Sci., 2019. 0123456789
[http://dx.doi.org/10.1007/s10876-019-01601-z]
[14]
Kannan, R.R.R.; Stirk, W.A.; Van Staden, J. Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S. Afr. J. Bot., 2013, 86, 1-4.
[http://dx.doi.org/10.1016/j.sajb.2013.01.003]
[15]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[16]
Chauhan, N.; Tyagi, A.K.; Kumar, P.; Malik, A. Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front. Microbiol., 2016, 7(NOV), 1748.
[http://dx.doi.org/10.3389/fmicb.2016.01748] [PMID: 27877160]
[17]
Ansari, M.A.; Alzohairy, M.A. One-pot facile green synthesis of silver nanoparticles using seed extract of Phoenix dactylifera and their bactericidal potential against MRSA. Evid. Based Complement. Alternat. Med., 2018, 2018, 1860280.
[http://dx.doi.org/10.1155/2018/1860280] [PMID: 30046333]
[18]
Saravanakumar, K.; Chelliah, R.; Shanmugam, S.; Varukattu, N.B.; Oh, D.H.; Kathiresan, K.; Wang, M.H. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J. Photochem. Photobiol. B, 2018, 185, 126-135.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.032] [PMID: 29886331]
[19]
Kaminidevi, S. Phytochemical screening of Artocarpus hirsutus and its antimicrobial potential. Asian J. Pharm. Clin. Res., 2017, 10(6), 298-302.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i6.17669]
[20]
Davin-Regli, A.; Pagès, J.M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol., 2015, 6, 392.
[http://dx.doi.org/10.3389/fmicb.2015.00392] [PMID: 26042091]
[21]
Thakur, M.; Asrani, R.K.; Patial, V. Listeria monocytogenes: A Food-Borne Pathogen; Elsevier Inc., 2018.
[22]
Gnanadesigan, M.; Anand, M.; Ravikumar, S.; Maruthupandy, M.; Ali, M.S.; Vijayakumar, V.; Kumaraguru, A.K. Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina. Mangrove Plant, 2012, 143–147.
[http://dx.doi.org/10.1007/s13204-011-0048-6]
[23]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[24]
Rout, Y. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob., 2014, 4(6), 103-109.
[http://dx.doi.org/10.5897/JMA11.060]
[25]
Patil, S.S.; Mali, M.G.; Tamboli, M.S.; Patil, D.R.; Kulkarni, M.V.; Yoon, H.; Kim, H.; Al-Deyab, S.S.; Yoon, S.S.; Kolekar, S.S. Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today, 2016, 260, 126-134.
[http://dx.doi.org/10.1016/j.cattod.2015.06.004]
[26]
Chiang, T.H.; Yeh, H.C. Synthesis of silver particle onto bamboo charcoal by tripropylene glycol and the composites characterization. Materials (Basel), 2014, 7(2), 742-750.
[http://dx.doi.org/10.3390/ma7020742] [PMID: 28788485]
[27]
Jain, D.; Daima, H.K.; Kachhwala, S.; Kothari, S.L. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig. J. Nanomater. Biostruct., 2009, 4(3), 557-563.
[28]
Sudha, A.; Jeyakanthan, J.; Srinivasan, P. Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour. Technol., 2017, 3(4), 506-515.
[http://dx.doi.org/10.1016/j.reffit.2017.07.002]
[29]
Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Front. Microbiol., 2018, 9, 1555.
[http://dx.doi.org/10.3389/fmicb.2018.01555] [PMID: 30061871]
[30]
Kora, A.J.; Arunachalam, J. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action. World J. Microbiol. Biotechnol., 2011, 27(5), 1209-1216.
[http://dx.doi.org/10.1007/s11274-010-0569-2]
[31]
Sui, Z.M.; Chen, X.; Wang, L.Y.; Xu, L.M.; Zhuang, W.C.; Chai, Y.C.; Yang, C.J. Capping effect of CTAB on positively charged Ag nanoparticles. Physica E, 2006, 33(2), 308-314.
[http://dx.doi.org/10.1016/j.physe.2006.03.151]
[32]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[33]
Yuan, Z.; Li, J.; Cui, L.; Xu, B.; Zhang, H.; Yu, C.P. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere, 2013, 90(4), 1404-1411.
[http://dx.doi.org/10.1016/j.chemosphere.2012.08.032] [PMID: 22985593]
[34]
Duncan, T.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J. Colloid Interface Sci., 2011, 363(1), 1-24.
[http://dx.doi.org/10.1016/j.jcis.2011.07.017] [PMID: 21824625]
[35]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy