Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Nanotechnology-based Drug Delivery, Metabolism and Toxicity

Author(s): Pooja Malaviya, Dhaval Shukal and Abhay R. Vasavada*

Volume 20, Issue 14, 2019

Page: [1167 - 1190] Pages: 24

DOI: 10.2174/1389200221666200103091753

Price: $65

Abstract

Background: Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern.

Objective: The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics.

Methods: Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models.

Results: Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices.

Conclusion: The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.

Keywords: Nanoparticles, drug delivery system, drug metabolism, genotoxicity, pharmacokinetics, nanotherapeutics.

Graphical Abstract

[1]
Zhang, Y.; Zhi, Z.; Jiang, T.; Zhang, J.; Wang, Z.; Wang, S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Control. Release, 2010, 145(3), 257-263.
[http://dx.doi.org/10.1016/j.jconrel.2010.04.029] [PMID: 20450945]
[2]
Niemelä, E.; Desai, D.; Nkizinkiko, Y.; Eriksson, J.E.; Rosenholm, J.M. Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur. J. Pharm. Biopharm., 2015, 96, 11-21.
[http://dx.doi.org/10.1016/j.ejpb.2015.07.009] [PMID: 26184689]
[3]
Paulis, L.E.; Geelen, T.; Kuhlmann, M.T.; Coolen, B.F.; Schäfers, M.; Nicolay, K.; Strijkers, G.J. Distribution of lipid-based nanoparticles to infarcted myocardium with potential application for MRI-monitored drug delivery. J. Control. Release, 2012, 162(2), 276-285.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.035] [PMID: 22771978]
[4]
Badkas, A.; Frank, E.; Zhou, Z.; Jafari, M.; Chandra, H.; Sriram, V.; Lee, J-Y.; Yadav, J.S. Modulation of in vitro phagocytic uptake and immunogenicity potential of modified Herceptin®-conjugated PLGA-PEG nanoparticles for drug delivery. Colloids Surf. B Biointerfaces, 2018, 162, 271-278.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.001] [PMID: 29216514]
[5]
Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater., 2012, 24(28), 3747-3756.
[http://dx.doi.org/10.1002/adma.201200454] [PMID: 22550056]
[6]
Lohcharoenkal, W.; Wang, L.; Chen, Y.C.; Rojanasakul, Y. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int., 2014, 2014180549
[http://dx.doi.org/10.1155/2014/180549] [PMID: 24772414]
[7]
Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387.
[http://dx.doi.org/10.1007/s11095-016-1958-5] [PMID: 27299311]
[8]
Pearce, A.K.; Simpson, J.D.; Fletcher, N.L.; Houston, Z.H.; Fuchs, A.V.; Russell, P.J.; Whittaker, A.K.; Thurecht, K.J. Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic. Biomaterials, 2017, 141, 330-339.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.004] [PMID: 28711780]
[9]
Shen, J.; Kim, H-C.; Su, H.; Wang, F.; Wolfram, J.; Kirui, D.; Mai, J.; Mu, C.; Ji, L-N.; Mao, Z-W.; Shen, H. Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics, 2014, 4(5), 487-497.
[http://dx.doi.org/10.7150/thno.8263] [PMID: 24672582]
[10]
Wang, J.; Fan, Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int. J. Mol. Sci., 2014, 15(12), 22258-22278.
[http://dx.doi.org/10.3390/ijms151222258] [PMID: 25479073]
[11]
Gliga, A.R.; Skoglund, S.; Wallinder, I.O.; Fadeel, B.; Karlsson, H.L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol., 2014, 11(1), 11.
[http://dx.doi.org/10.1186/1743-8977-11-11] [PMID: 24529161]
[12]
Han, S.G.; Lee, J.S.; Ahn, K.; Kim, Y.S.; Kim, J.K.; Lee, J.H.; Shin, J.H.; Jeon, K.S.; Cho, W.S.; Song, N.W.; Gulumian, M.; Shin, B.S.; Yu, I.J. Size-dependent clearance of gold nanoparticles from lungs of Sprague-Dawley rats after short-term inhalation exposure. Arch. Toxicol., 2015, 89(7), 1083-1094.
[http://dx.doi.org/10.1007/s00204-014-1292-9] [PMID: 24935253]
[13]
Lai, S.K.; Suk, J.S.; Pace, A.; Wang, Y-Y.; Yang, M.; Mert, O.; Chen, J.; Kim, J.; Hanes, J. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials, 2011, 32(26), 6285-6290.
[http://dx.doi.org/10.1016/j.biomaterials.2011.05.008] [PMID: 21665271]
[14]
Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci., 2018, 13(1), 72-81.
[http://dx.doi.org/10.1016/j.ajps.2017.09.001]
[15]
O’Donnell, A.; Moollan, A.; Baneham, S.; Ozgul, M.; Pabari, R.M.; Cox, D.; Kirby, B.P.; Ramtoola, Z. Intranasal and intravenous administration of octa-arginine modified poly(lactic-co-glycolic acid) nanoparticles facilitates central nervous system delivery of loperamide. J. Pharm. Pharmacol., 2015, 67(4), 525-536.
[http://dx.doi.org/10.1111/jphp.12347] [PMID: 25515568]
[16]
Wen, Z.; Yan, Z.; Hu, K.; Pang, Z.; Cheng, X.; Guo, L.; Zhang, Q.; Jiang, X.; Fang, L.; Lai, R. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson’s disease following intranasal administration. J. Control. Release, 2011, 151(2), 131-138.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.022] [PMID: 21362449]
[17]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[18]
Bi, C.; Wang, A.; Chu, Y.; Liu, S.; Mu, H.; Liu, W.; Wu, Z.; Sun, K.; Li, Y. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int. J. Nanomedicine, 2016, 11, 6547-6559.
[http://dx.doi.org/10.2147/IJN.S120939] [PMID: 27994458]
[19]
Aly, A.E-E.; Harmon, B.T.; Padegimas, L.; Sesenoglu-Laird, O.; Cooper, M.J.; Waszczak, B.L. Intranasal delivery of PGDNF DNA nanoparticles provides neuroprotection in the rat 6-hydroxydopamine model of Parkinson’s disease. Mol. Neurobiol., 2019, 56(1), 688-701.
[http://dx.doi.org/10.1007/s12035-018-1109-6] [PMID: 29779176]
[20]
Sanchez-Ramos, J.; Song, S.; Kong, X.; Foroutan, P.; Martinez, G.; Dominguez-Viqueria, W.; Mohapatra, S.; Mohapatra, S.; Haraszti, R.A.; Khvorova, A.; Aronin, N.; Sava, V. Chitosan-Mangafodipir nanoparticles designed for intranasal delivery of siRNA and DNA to brain. J. Drug Deliv. Sci. Technol., 2018, 43, 453-460.
[http://dx.doi.org/10.1016/j.jddst.2017.11.013] [PMID: 29805475]
[21]
Muntimadugu, E.; Dhommati, R.; Jain, A.; Challa, V.G.S.; Shaheen, M.; Khan, W. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease. Eur. J. Pharm. Sci., 2016, 92, 224-234.
[http://dx.doi.org/10.1016/j.ejps.2016.05.012] [PMID: 27185298]
[22]
Anderson, D.S.; Patchin, E.S.; Silva, R.M.; Uyeminami, D.L.; Sharmah, A.; Guo, T.; Das, G.K.; Brown, J.M.; Shannahan, J.; Gordon, T.; Chen, L.C.; Pinkerton, K.E.; Van Winkle, L.S. Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol. Sci., 2015, 144(2), 366-381.
[http://dx.doi.org/10.1093/toxsci/kfv005] [PMID: 25577195]
[23]
Miragoli, M.; Ceriotti, P.; Iafisco, M.; Vacchiano, M.; Salvarani, N.; Alogna, A.; Carullo, P.; Ramirez-Rodríguez, G.B.; Patrício, T.; Esposti, L.D.; Rossi, F.; Ravanetti, F.; Pinelli, S.; Alinovi, R.; Erreni, M.; Rossi, S.; Condorelli, G.; Post, H.; Tampieri, A.; Catalucci, D. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci. Transl. Med., 2018, 10(424)aan6205
[http://dx.doi.org/10.1126/scitranslmed.aan6205] [PMID: 29343624]
[24]
Choi, H.S.; Ashitate, Y.; Lee, J.H.; Kim, S.H.; Matsui, A.; Insin, N.; Bawendi, M.G.; Semmler-Behnke, M.; Frangioni, J.V.; Tsuda, A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol., 2010, 28(12), 1300-1303.
[http://dx.doi.org/10.1038/nbt.1696] [PMID: 21057497]
[25]
Disdier, C.; Chalansonnet, M.; Gagnaire, F.; Gaté, L.; Cosnier, F.; Devoy, J.; Saba, W.; Lund, A.K.; Brun, E.; Mabondzo, A. Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano-aerosol in aging rats. Sci. Rep., 2017, 7(1), 12196.
[http://dx.doi.org/10.1038/s41598-017-12404-5] [PMID: 28939873]
[26]
Khosravi, Y.; Salimi, A.; Pourahmad, J.; Naserzadeh, P.; Seydi, E. Inhalation exposure of nano diamond induced oxidative stress in lung, heart and brain. Xenobiotica, 2018, 48(8), 860-866.
[http://dx.doi.org/10.1080/00498254.2017.1367974] [PMID: 28879798]
[27]
Ran, F.; Lei, W.; Cui, Y.; Jiao, J.; Mao, Y.; Wang, S.; Wang, S. Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. J. Colloid Interface Sci., 2018, 511, 57-66.
[http://dx.doi.org/10.1016/j.jcis.2017.09.088] [PMID: 28972896]
[28]
Cui, Y.; Liu, H.; Zhou, M.; Duan, Y.; Li, N.; Gong, X.; Hu, R.; Hong, M.; Hong, F. Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J. Biomed. Mater. Res. A, 2011, 96(1), 221-229.
[http://dx.doi.org/10.1002/jbm.a.32976] [PMID: 21105171]
[29]
Yang, X.; Shao, H.; Liu, W.; Gu, W.; Shu, X.; Mo, Y.; Chen, X.; Zhang, Q.; Jiang, M. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol. Lett., 2015, 234(1), 40-49.
[http://dx.doi.org/10.1016/j.toxlet.2015.02.004] [PMID: 25680694]
[30]
Yan, G.; Huang, Y.; Bu, Q.; Lv, L.; Deng, P.; Zhou, J.; Wang, Y.; Yang, Y.; Liu, Q.; Cen, X.; Zhao, Y. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 2012, 47(4), 577-588.
[http://dx.doi.org/10.1080/10934529.2012.650576] [PMID: 22375541]
[31]
Abass, M.A.; Selim, S.A.; Selim, A.O.; El-Shal, A.S.; Gouda, Z.A. Effect of orally administered zinc oxide nanoparticles on albino rat thymus and spleen. IUBMB Life, 2017, 69(7), 528-539.
[http://dx.doi.org/10.1002/iub.1638] [PMID: 28589695]
[32]
Sang, X.; Zheng, L.; Sun, Q.; Li, N.; Cui, Y.; Hu, R.; Gao, G.; Cheng, Z.; Cheng, J.; Gui, S.; Liu, H.; Zhang, Z.; Hong, F. The chronic spleen injury of mice following long-term exposure to titanium dioxide nanoparticles. J. Biomed. Mater. Res. A, 2012, 100(4), 894-902.
[http://dx.doi.org/10.1002/jbm.a.34024] [PMID: 22275130]
[33]
Tassinari, R.; Cubadda, F.; Moracci, G.; Aureli, F.; D’Amato, M.; Valeri, M.; De Berardis, B.; Raggi, A.; Mantovani, A.; Passeri, D.; Rossi, M.; Maranghi, F. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology, 2014, 8(6), 654-662.
[http://dx.doi.org/10.3109/17435390.2013.822114] [PMID: 23834344]
[34]
Adebayo, O.A.; Akinloye, O.; Adaramoye, O.A. Cerium oxide nanoparticle elicits oxidative stress, endocrine imbalance and lowers sperm characteristics in testes of balb/c mice. Andrologia, 2018, 50(3)e12920
[http://dx.doi.org/10.1111/and.12920] [PMID: 29164652]
[35]
Karimipour, M.; Zirak Javanmard, M.; Ahmadi, A.; Jafari, A. Oral administration of titanium dioxide nanoparticle through ovarian tissue alterations impairs mice embryonic development. Int. J. Reprod. Biomed. (Yazd), 2018, 16(6), 397-404.
[http://dx.doi.org/10.29252/ijrm.16.6.397] [PMID: 30123868]
[36]
Feng, C.; Sun, G.; Wang, Z.; Cheng, X.; Park, H.; Cha, D.; Kong, M.; Chen, X. Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. Eur. J. Pharm. Biopharm., 2014, 87(1), 197-207.
[http://dx.doi.org/10.1016/j.ejpb.2013.11.007] [PMID: 24316340]
[37]
Liu, D.C.; Raphael, A.P.; Sundh, D.; Grice, J.E.; Peter Soyer, H.; Roberts, M.S.; Prow, T.W. The human stratum corneum prevents small gold nanoparticle penetration and their potential toxic metabolic consequences. J. Nanomater., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/721706]
[38]
Tang, L.; Zhang, C.; Song, G.; Jin, X.; Xu, Z. In vivo skin penetration and metabolic path of quantum dots. Sci. China Life Sci., 2013, 56(2), 181-188.
[http://dx.doi.org/10.1007/s11427-012-4404-x] [PMID: 23329155]
[39]
Takeuchi, I.; Shimamura, Y.; Kakami, Y.; Kameda, T.; Hattori, K.; Miura, S.; Shirai, H.; Okumura, M.; Inagi, T.; Terada, H.; Makino, K. Transdermal delivery of 40-nm silk fibroin nanoparticles. Colloids Surf. B Biointerfaces, 2019, 175, 564-568.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.012] [PMID: 30579057]
[40]
Li, N.; Peng, L-H.; Chen, X.; Nakagawa, S.; Gao, J-Q. Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int. J. Nanomedicine, 2011, 6, 3241-3250.
[PMID: 22228992]
[41]
Alomrani, A.; Badran, M.; Harisa, G.I. ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-Fluorouracil against colorectal cancer. Saudi Pharm. J., 2019, 27(5), 603-611.
[http://dx.doi.org/10.1016/j.jsps.2019.02.008]
[42]
Desai, P.R.; Marepally, S.; Patel, A.R.; Voshavar, C.; Chaudhuri, A.; Singh, M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release, 2013, 170(1), 51-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.04.021] [PMID: 23643662]
[43]
Geraets, L.; Oomen, A.G.; Krystek, P.; Jacobsen, N.R.; Wallin, H.; Laurentie, M.; Verharen, H.W.; Brandon, E.F.; de Jong, W.H. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part. Fibre Toxicol., 2014, 11(1), 30.
[http://dx.doi.org/10.1186/1743-8977-11-30] [PMID: 24993397]
[44]
Rambanapasi, C.; Zeevaart, J.R.; Buntting, H.; Bester, C.; Kotze, D.; Hayeshi, R.; Grobler, A. Bioaccumulation and subchronic toxicity of 14 nm gold nanoparticles in rats. Molecules, 2016, 21(6), 763.
[http://dx.doi.org/10.3390/molecules21060763] [PMID: 27294904]
[45]
De Jong, W.H.; Van Der Ven, L.T.M.; Sleijffers, A.; Park, M.V.D.Z.; Jansen, E.H.J.M.; Van Loveren, H.; Vandebriel, R.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34(33), 8333-8343.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.048] [PMID: 23886731]
[46]
Lankveld, D.P.; Rayavarapu, R.G.; Krystek, P.; Oomen, A.G.; Verharen, H.W.; van Leeuwen, T.G.; De Jong, W.H.; Manohar, S. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (Lond.), 2011, 6(2), 339-349.
[http://dx.doi.org/10.2217/nnm.10.122] [PMID: 21385136]
[47]
Ye, L.; Yong, K-T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W-C.; Liu, J.; Wang, K.; Liu, J.; Liu, Y.; Hu, Y.; Zhang, X.; Swihart, M.T.; Prasad, P.N. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol., 2012, 7(7), 453-458.
[http://dx.doi.org/10.1038/nnano.2012.74] [PMID: 22609691]
[48]
Muro, S.; Garnacho, C.; Champion, J.A.; Leferovich, J.; Gajewski, C.; Schuchman, E.H.; Mitragotri, S.; Muzykantov, V.R. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol. Ther., 2008, 16(8), 1450-1458.
[http://dx.doi.org/10.1038/mt.2008.127] [PMID: 18560419]
[49]
Li, S.; Nickels, J.; Palmer, A.F. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials, 2005, 26(17), 3759-3769.
[http://dx.doi.org/10.1016/j.biomaterials.2004.09.015] [PMID: 15621266]
[50]
Paul, J.W.; Hua, S.; Ilicic, M.; Tolosa, J.M.; Butler, T.; Robertson, S.; Smith, R. Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am. J. Obstet. Gynecol., 2017, 216(3), 283.e1-283.e14.
[http://dx.doi.org/10.1016/j.ajog.2016.08.027] [PMID: 27567564]
[51]
Campagnolo, L.; Massimiani, M.; Vecchione, L.; Piccirilli, D.; Toschi, N.; Magrini, A.; Bonanno, E.; Scimeca, M.; Castagnozzi, L.; Buonanno, G.; Stabile, L.; Cubadda, F.; Aureli, F.; Fokkens, P.H.; Kreyling, W.G.; Cassee, F.R.; Pietroiusti, A. Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. Nanotoxicology, 2017, 11(5), 687-698.
[http://dx.doi.org/10.1080/17435390.2017.1343875] [PMID: 28618895]
[52]
Huang, J-P.; Hsieh, P.C.H.; Chen, C-Y.; Wang, T-Y.; Chen, P-C.; Liu, C-C.; Chen, C-C.; Chen, C-P. Nanoparticles can cross mouse placenta and induce trophoblast apoptosis. Placenta, 2015, 36(12), 1433-1441.
[http://dx.doi.org/10.1016/j.placenta.2015.10.007] [PMID: 26526105]
[53]
Yamashita, K.; Yoshioka, Y.; Higashisaka, K.; Mimura, K.; Morishita, Y.; Nozaki, M.; Yoshida, T.; Ogura, T.; Nabeshi, H.; Nagano, K.; Abe, Y.; Kamada, H.; Monobe, Y.; Imazawa, T.; Aoshima, H.; Shishido, K.; Kawai, Y.; Mayumi, T.; Tsunoda, S.; Itoh, N.; Yoshikawa, T.; Yanagihara, I.; Saito, S.; Tsutsumi, Y. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol., 2011, 6(5), 321-328.
[http://dx.doi.org/10.1038/nnano.2011.41] [PMID: 21460826]
[54]
Poulsen, M.S.; Mose, T.; Maroun, L.L.; Mathiesen, L.; Knudsen, L.E.; Rytting, E. Kinetics of silica nanoparticles in the human placenta. Nanotoxical., 2015, 91, 79-86.
[http://dx.doi.org/10.3109/17435390.2013.812259]
[55]
Juch, H.; Nikitina, L.; Reimann, S.; Gauster, M.; Dohr, G.; Obermayer-Pietsch, B.; Hoch, D.; Kornmueller, K.; Haag, R. Dendritic polyglycerol nanoparticles show charge dependent bio-distribution in early human placental explants and reduce hCG secretion. Nanotoxicology, 2018, 12(2), 90-103.
[http://dx.doi.org/10.1080/17435390.2018.1425496] [PMID: 29334310]
[56]
Muoth, C.; Großgarten, M.; Karst, U.; Ruiz, J.; Astruc, D.; Moya, S.; Diener, L.; Grieder, K.; Wichser, A.; Jochum, W.; Wick, P.; Buerki-Thurnherr, T. Impact of particle size and surface modification on gold nanoparticle penetration into human placental microtissues. Nanomedicine (Lond.), 2017, 12(10), 1119-1133.
[http://dx.doi.org/10.2217/nnm-2017-0428] [PMID: 28447888]
[57]
Park, J.H.; Oh, N. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomedicine, 2014, 9(Suppl. 1), 51-63.
[http://dx.doi.org/10.2147/IJN.S26592]
[58]
Hao, X.; Wu, J.; Shan, Y.; Cai, M.; Shang, X.; Jiang, J.; Wang, H. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J. Phys. Condens. Matter, 2012, 24(16)164207
[http://dx.doi.org/10.1088/0953-8984/24/16/164207] [PMID: 22466161]
[59]
Kuhn, D.A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol., 2014, 5, 1625-1636.
[http://dx.doi.org/10.3762/bjnano.5.174] [PMID: 25383275]
[60]
Langston Suen, W-L.; Chau, Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J. Pharm. Pharmacol., 2014, 66(4), 564-573.
[http://dx.doi.org/10.1111/jphp.12134] [PMID: 24635558]
[61]
Buono, C.; Anzinger, J.J.; Amar, M.; Kruth, H.S. Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions. J. Clin. Invest., 2009, 119(5), 1373-1381.
[http://dx.doi.org/10.1172/JCI35548] [PMID: 19363293]
[62]
Platel, A.; Carpentier, R.; Becart, E.; Mordacq, G.; Betbeder, D.; Nesslany, F. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J. Appl. Toxicol., 2016, 36(3), 434-444.
[http://dx.doi.org/10.1002/jat.3247] [PMID: 26487569]
[63]
Chakraborty, A.; Jana, N.R. Clathrin to lipid raft-endocytosis via controlled surface chemistry and efficient perinuclear targeting of nanoparticle. J. Phys. Chem. Lett., 2015, 6(18), 3688-3697.
[http://dx.doi.org/10.1021/acs.jpclett.5b01739] [PMID: 26722743]
[64]
Unsoy, G.; Khodadust, R.; Yalcin, S.; Mutlu, P.; Gunduz, U. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur. J. Pharm. Sci., 2014, 62, 243-250.
[http://dx.doi.org/10.1016/j.ejps.2014.05.021] [PMID: 24931189]
[65]
Fröhlich, E. Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr. Drug Metab., 2013, 14(9), 976-988.
[http://dx.doi.org/10.2174/1389200211314090004] [PMID: 24160294]
[66]
Park, E-J.; Sim, J.; Kim, Y.; Han, B.S.; Yoon, C.; Lee, S.; Cho, M-H.; Lee, B-S.; Kim, J-H. A 13-week repeated-dose oral toxicity and bioaccumulation of aluminum oxide nanoparticles in mice. Arch. Toxicol., 2015, 89(3), 371-379.
[http://dx.doi.org/10.1007/s00204-014-1256-0] [PMID: 24798085]
[67]
Rana, K.; Verma, Y.; Rani, V.; Rana, S.V.S. Renal toxicity of nanoparticles of cadmium sulphide in rat. Chemosphere, 2018, 193, 142-150.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.011] [PMID: 29128560]
[68]
Liu, M.; Zhang, J.; Zhu, X.; Shan, W.; Li, L.; Zhong, J.; Zhang, Z.; Huang, Y. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J. Control. Release, 2016, 222, 67-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.008] [PMID: 26686663]
[69]
Wang, J.; Kong, M.; Zhou, Z.; Yan, D.; Yu, X.; Cheng, X.; Feng, C.; Liu, Y.; Chen, X. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr. Polym., 2017, 157, 596-602.
[http://dx.doi.org/10.1016/j.carbpol.2016.10.021] [PMID: 27987967]
[70]
Caldorera-Moore, M.; Vela Ramirez, J.E.; Peppas, N.A. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles. J. Drug Target., 2019, 27(5-6), 582-589.
[http://dx.doi.org/10.1080/1061186X.2018.1547732] [PMID: 30457357]
[71]
Serpooshan, V.; Sheibani, S.; Pushparaj, P.; Wojcik, M.; Jang, A.Y.; Santoso, M.R.; Jang, J.H.; Huang, H.; Safavi-Sohi, R.; Haghjoo, N.; Nejadnik, H.; Aghaverdi, H.; Vali, H.; Kinsella, J.M.; Presley, J.; Xu, K.; Yang, P.C.; Mahmoudi, M. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano, 2018, 12(3), 2253-2266.
[http://dx.doi.org/10.1021/acsnano.7b06212] [PMID: 29536733]
[72]
Zhao, Y.; Wang, Y.; Ran, F.; Cui, Y.; Liu, C.; Zhao, Q.; Gao, Y.; Wang, D.; Wang, S. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep., 2017, 7(1), 4131.
[http://dx.doi.org/10.1038/s41598-017-03834-2] [PMID: 28646143]
[73]
Lee, J.H.; Ju, J.E.; Kim, B.I.; Pak, P.J.; Choi, E.K.; Lee, H.S.; Chung, N. Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ. Toxicol. Chem., 2014, 33(12), 2759-2766.
[http://dx.doi.org/10.1002/etc.2735] [PMID: 25176020]
[74]
Forest, V.; Leclerc, L.; Hochepied, J-F.; Trouvé, A.; Sarry, G.; Pourchez, J. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol. In Vitro, 2017, 38, 136-141.
[http://dx.doi.org/10.1016/j.tiv.2016.09.022] [PMID: 27693598]
[75]
Farvadi, F.; Ghahremani, M.H.; Hashemi, F.; Reza Hormozi-Nezhad, M.; Raoufi, M.; Zanganeh, S.; Atyabi, F.; Dinarvand, R.; Mahmoudi, M. Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces. J. Colloid Interface Sci., 2018, 531, 245-252.
[http://dx.doi.org/10.1016/j.jcis.2018.07.013] [PMID: 30032011]
[76]
Mao, B-H.; Chen, Z-Y.; Wang, Y-J.; Yan, S-J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep., 2018, 8(1), 2445.
[http://dx.doi.org/10.1038/s41598-018-20728-z] [PMID: 29402973]
[77]
Javurek, A.B.; Suresh, D.; Spollen, W.G.; Hart, M.L.; Hansen, S.A.; Ellersieck, M.R.; Bivens, N.J.; Givan, S.A.; Upendran, A.; Kannan, R.; Rosenfeld, C.S. Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles. Sci. Rep., 2017, 7(1), 2822.
[http://dx.doi.org/10.1038/s41598-017-02880-0] [PMID: 28588204]
[78]
Williams, K.; Milner, J.; Boudreau, M.D.; Gokulan, K.; Cerniglia, C.E.; Khare, S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 2015, 9(3), 279-289.
[http://dx.doi.org/10.3109/17435390.2014.921346] [PMID: 24877679]
[79]
El Mahdy, M.M.; Eldin, T.A.S.; Aly, H.S.; Mohammed, F.F.; Shaalan, M.I. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp. Toxicol. Pathol., 2015, 67(1), 21-29.
[http://dx.doi.org/10.1016/j.etp.2014.09.005] [PMID: 25446800]
[80]
Xu, L.; Shao, A.; Zhao, Y.; Wang, Z.; Zhang, C.; Sun, Y.; Deng, J.; Chou, L.L. Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. J. Nanosci. Nanotechnol., 2015, 15(6), 4215-4223.
[http://dx.doi.org/10.1166/jnn.2015.9612] [PMID: 26369032]
[81]
Gromadzka-Ostrowska, J.; Dziendzikowska, K.; Lankoff, A.; Dobrzyńska, M.; Instanes, C.; Brunborg, G.; Gajowik, A.; Radzikowska, J.; Wojewódzka, M.; Kruszewski, M. Silver nanoparticles effects on epididymal sperm in rats. Toxicol. Lett., 2012, 214(3), 251-258.
[http://dx.doi.org/10.1016/j.toxlet.2012.08.028] [PMID: 22982066]
[82]
Yang, L.; Kuang, H.; Zhang, W.; Aguilar, Z.P.; Wei, H.; Xu, H. Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Sci. Rep., 2017, 7(1), 3303.
[http://dx.doi.org/10.1038/s41598-017-03015-1] [PMID: 28607366]
[83]
Chen, H.; Dorrigan, A.; Saad, S.; Hare, D.J.; Cortie, M.B.; Valenzuela, S.M. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One, 2013, 8(2)e58208
[http://dx.doi.org/10.1371/journal.pone.0058208] [PMID: 23469154]
[84]
Gupta, H.; Singh, D.; Vanage, G.; Joshi, D.S.; Thakur, M. Evaluation of histopathological and ultrastructural changes in the testicular cells of Wistar rats post chronic exposure to gold nanoparticles. Indian J. Biotechnol., 2018, 17, 9-15.
[85]
Lee, U.; Yoo, C-J.; Kim, Y-J.; Yoo, Y-M. Cytotoxicity of gold nanoparticles in human neural precursor cells and rat cerebral cortex. J. Biosci. Bioeng., 2016, 121(3), 341-344.
[http://dx.doi.org/10.1016/j.jbiosc.2015.07.004] [PMID: 26277219]
[86]
Cardoso, E.; Rezin, G.T.; Zanoni, E.T.; de Souza Notoya, F.; Leffa, D.D.; Damiani, A.P.; Daumann, F.; Rodriguez, J.C.O.; Benavides, R.; da Silva, L.; Andrade, V.M.; da Silva Paula, M.M. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats. Mutat. Res., 2014, 766-767, 25-30.
[http://dx.doi.org/10.1016/j.mrfmmm.2014.05.009] [PMID: 25847268]
[87]
Ferreira, G.K.; Cardoso, E.; Vuolo, F.S.; Michels, M.; Zanoni, E.T.; Carvalho-Silva, M.; Gomes, L.M.; Dal-Pizzol, F.; Rezin, G.T.; Streck, E.L.; Paula, M.M. Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Biochem. Cell Biol., 2015, 93(6), 548-557.
[http://dx.doi.org/10.1139/bcb-2015-0030] [PMID: 26583437]
[88]
Fraga, S.; Brandão, A.; Soares, M.E.; Morais, T.; Duarte, J.A.; Pereira, L.; Soares, L.; Neves, C.; Pereira, E. Bastos, Mde.L.; Carmo, H. Short- and long-term distribution and toxicity of gold nanoparticles in the rat after a single-dose intravenous administration. Nanomedicine (Lond.), 2014, 10(8), 1757-1766.
[http://dx.doi.org/10.1016/j.nano.2014.06.005] [PMID: 24941462]
[89]
Lee, I-C.; Ko, J-W.; Park, S-H.; Shin, N-R.; Shin, I-S.; Moon, C.; Kim, S-H.; Yun, W-K.; Kim, H-C.; Kim, J-C. Copper nanoparticles induce early fibrotic changes in the liver via TGF-β/Smad signaling and cause immunosuppressive effects in rats. Nanotoxicology, 2018, 12(6), 637-651.
[http://dx.doi.org/10.1080/17435390.2018.1472313] [PMID: 29848140]
[90]
Lei, R.; Yang, B.; Wu, C.; Liao, M.; Ding, R.; Wang, Q. Mitochondrial dysfunction and oxidative damage in the liver and kidney of rats following exposure to copper nanoparticles for five consecutive days. Toxicol. Res. (Camb.), 2015, 4(2), 351-364.
[http://dx.doi.org/10.1039/C4TX00156G]
[91]
Yang, J.; Hu, S.; Rao, M.; Hu, L.; Lei, H.; Wu, Y.; Wang, Y.; Ke, D.; Xia, W.; Zhu, C.H. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. Int. J. Nanomedicine, 2017, 12, 5959-5971.
[http://dx.doi.org/10.2147/IJN.S139215] [PMID: 28860760]
[92]
Adamcakova-Dodd, A.; Monick, M.M.; Powers, L.S.; Gibson-Corley, K.N.; Thorne, P.S. Effects of prenatal inhalation exposure to copper nanoparticles on murine dams and offspring. Part. Fibre Toxicol., 2015, 12, 30.
[http://dx.doi.org/10.1186/s12989-015-0105-5] [PMID: 26437892]
[93]
Zheng, F.; Luo, Z.; Zheng, C.; Li, J.; Zeng, J.; Yang, H.; Chen, J.; Jin, Y.; Aschner, M.; Wu, S.; Zhang, Q.; Li, H. Comparison of the neurotoxicity associated with cobalt nanoparticles and cobalt chloride in Wistar rats. Toxicol. Appl. Pharmacol., 2019, 369, 90-99.
[http://dx.doi.org/10.1016/j.taap.2019.03.003] [PMID: 30849457]
[94]
Wang, Z.; Chen, Z.; Zuo, Q.; Song, F.; Wu, D.; Cheng, W.; Fan, W. Reproductive toxicity in adult male rats following intra-articular injection of cobalt-chromium nanoparticles. J. Orthop. Sci., 2013, 18(6), 1020-1026.
[http://dx.doi.org/10.1007/s00776-013-0458-2] [PMID: 24085379]
[95]
Wan, R.; Mo, Y.; Zhang, Z.; Jiang, M.; Tang, S.; Zhang, Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part. Fibre Toxicol., 2017, 14(1), 38.
[http://dx.doi.org/10.1186/s12989-017-0219-z] [PMID: 28923112]
[96]
Larese Filon, F.; Crosera, M.; Timeus, E.; Adami, G.; Bovenzi, M.; Ponti, J.; Maina, G. Human skin penetration of cobalt nanoparticles through intact and damaged skin. Toxicol. In Vitro, 2013, 27(1), 121-127.
[http://dx.doi.org/10.1016/j.tiv.2012.09.007] [PMID: 22995585]
[97]
Vales, G.; Demir, E.; Kaya, B.; Creus, A.; Marcos, R. Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology, 2013, 7(4), 462-468.
[http://dx.doi.org/10.3109/17435390.2012.689882] [PMID: 22548285]
[98]
Chattopadhyay, S.; Dash, S.K.; Tripathy, S.; Das, B.; Mandal, D.; Pramanik, P.; Roy, S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem. Biol. Interact., 2015, 226, 58-71.
[http://dx.doi.org/10.1016/j.cbi.2014.11.016] [PMID: 25437709]
[99]
Akhtar, M.J.; Kumar, S.; Alhadlaq, H.A.; Alrokayan, S.A.; Abu-Salah, K.M.; Ahamed, M. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Toxicol. Ind. Health, 2016, 32(5), 809-821.
[http://dx.doi.org/10.1177/0748233713511512] [PMID: 24311626]
[100]
Park, J-W.; Lee, I-C.; Shin, N-R.; Jeon, C-M.; Kwon, O-K.; Ko, J-W.; Kim, J-C.; Oh, S-R.; Shin, I-S.; Ahn, K-S. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology, 2016, 10(4), 445-452.
[http://dx.doi.org/10.3109/17435390.2015.1078851] [PMID: 26472121]
[101]
Singh, S.P.; Kumari, M.; Kumari, S.I.; Rahman, M.F.; Mahboob, M.; Grover, P. Toxicity assessment of manganese oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral exposure. J. Appl. Toxicol., 2013, 33(10), 1165-1179.
[http://dx.doi.org/10.1002/jat.2887] [PMID: 23702825]
[102]
Saquib, Q.; Attia, S.M.; Ansari, S.M.; Al-Salim, A.; Faisal, M.; Alatar, A.A.; Musarrat, J.; Zhang, X.; Al-Khedhairy, A.A. p53, MAPKAPK-2 and caspases regulate nickel oxide nanoparticles induce cell death and cytogenetic anomalies in rats. Int. J. Biol. Macromol., 2017, 105(Pt 1), 228-237.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.032] [PMID: 28690165]
[103]
Senoh, H.; Kano, H.; Suzuki, M.; Ohnishi, M.; Kondo, H.; Takanobu, K.; Umeda, Y.; Aiso, S.; Fukushima, S. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J. Occup. Health, 2017, 59(2), 112-121.
[http://dx.doi.org/10.1539/joh.16-0184-OA] [PMID: 27980250]
[104]
Blum, J.L.; Rosenblum, L.K.; Grunig, G.; Beasley, M.B.; Xiong, J.Q.; Zelikoff, J.T. Short-term inhalation of cadmium oxide nanoparticles alters pulmonary dynamics associated with lung injury, inflammation, and repair in a mouse model. Inhal. Toxicol., 2014, 26(1), 48-58.
[http://dx.doi.org/10.3109/08958378.2013.851746] [PMID: 24417406]
[105]
Fatima, R.; Akhtar, K.; Hossain, M.M.; Ahmad, R. Chromium oxide nanoparticle-induced biochemical and histopathological alterations in the kidneys and brain of Wistar rats. Toxicol. Ind. Health, 2017, 33(12), 911-921.
[http://dx.doi.org/10.1177/0748233717735266] [PMID: 29069986]
[106]
Singh, S.P.; Chinde, S.; Kamal, S.S.K.; Rahman, M.F.; Mahboob, M.; Grover, P. Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure. Environ. Sci. Pollut. Res. Int., 2016, 23(4), 3914-3924.
[http://dx.doi.org/10.1007/s11356-015-5622-0] [PMID: 26503004]
[107]
Alarifi, S.; Ali, D.; Alkahtani, S. Mechanistic investigation of toxicity of chromium oxide nanoparticles in murine fibrosarcoma cells. Int. J. Nanomedicine, 2016, 11, 1253-1259.
[PMID: 27099490]
[108]
Patel, S.; Jana, S.; Chetty, R.; Thakore, S.; Singh, M.; Devkar, R. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem. Toxicol., 2019, 42(1), 1-8.
[http://dx.doi.org/10.1080/01480545.2017.1413110] [PMID: 29281933]
[109]
Reddy, U.A.; Prabhakar, P.V.; Mahboob, M. Biomarkers of oxidative stress for in vivo assessment of toxicological effects of iron oxide nanoparticles. Saudi J. Biol. Sci., 2017, 24(6), 1172-1180.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.029] [PMID: 28855809]
[110]
Nicolosi, A.; Cardoit, L.; Pasquereau, P.; Jaillet, C.; Thoby-Brisson, M.; Juvin, L.; Morin, D. Acute exposure to zinc oxide nanoparticles critically disrupts operation of the respiratory neural network in neonatal rat. Neurotoxicology, 2018, 67, 150-160.
[http://dx.doi.org/10.1016/j.neuro.2018.05.006] [PMID: 29860053]
[111]
Abbasalipourkabir, R.; Moradi, H.; Zarei, S.; Asadi, S.; Salehzadeh, A.; Ghafourikhosroshahi, A.; Mortazavi, M.; Ziamajidi, N. Toxicity of zinc oxide nanoparticles on adult male Wistar rats. Food Chem. Toxicol., 2015, 84, 154-160.
[http://dx.doi.org/10.1016/j.fct.2015.08.019] [PMID: 26316185]
[112]
Roy, R.; Singh, S.K.; Chauhan, L.K.S.; Das, M.; Tripathi, A.; Dwivedi, P.D. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol. Lett., 2014, 227(1), 29-40.
[http://dx.doi.org/10.1016/j.toxlet.2014.02.024] [PMID: 24614525]
[113]
Talebi, A.R.; Khorsandi, L.; Moridian, M. The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist. Reprod. Genet., 2013, 30(9), 1203-1209.
[http://dx.doi.org/10.1007/s10815-013-0078-y] [PMID: 23949131]
[114]
Sharma, V.; Singh, P.; Pandey, A.K.; Dhawan, A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res., 2012, 745(1-2), 84-91.
[http://dx.doi.org/10.1016/j.mrgentox.2011.12.009] [PMID: 22198329]
[115]
Yousef, M.I.; Mutar, T.F.; Kamel, M.A.E. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol. Rep., 2019, 6, 336-346.
[http://dx.doi.org/10.1016/j.toxrep.2019.04.003] [PMID: 31049295]
[116]
Prabhakar, P.V.; Reddy, U.A.; Singh, S.P.; Balasubramanyam, A.; Rahman, M.F.; Indu Kumari, S.; Agawane, S.B.; Murty, U.S.N.; Grover, P.; Mahboob, M. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J. Appl. Toxicol., 2012, 32(6), 436-445.
[http://dx.doi.org/10.1002/jat.1775] [PMID: 22161306]
[117]
Canli, E.G.; Ila, H.B.; Canli, M. Responses of biomarkers belonging to different metabolic systems of rats following oral administration of aluminium nanoparticle. Environ. Toxicol. Pharmacol., 2019, 69, 72-79.
[http://dx.doi.org/10.1016/j.etap.2019.04.002] [PMID: 30965278]
[118]
M’rad, I.; Jeljeli, M.; Rihane, N.; Hilber, P.; Sakly, M.; Amara, S. Aluminium oxide nanoparticles compromise spatial learning and memory performance in rats. EXCLI J., 2018, 17, 200-210.
[PMID: 29743858]
[119]
Zhang, Q.; Ding, Y.; He, K.; Li, H.; Gao, F.; Moehling, T.J.; Wu, X.; Duncan, J.; Niu, Q. Exposure to alumina nanoparticles in female mice during pregnancy induces neurodevelopmental toxicity in the offspring. Front. Pharmacol., 2018, 9, 253.
[http://dx.doi.org/10.3389/fphar.2018.00253] [PMID: 29615914]
[120]
Li, X.; Zhang, C.; Bian, Q.; Gao, N.; Zhang, X.; Meng, Q.; Wu, S.; Wang, S.; Xia, Y.; Chen, R. Integrative functional transcriptomic analyses implicate specific molecular pathways in pulmonary toxicity from exposure to aluminum oxide nanoparticles. Nanotoxicology, 2016, 10(7), 957-969.
[http://dx.doi.org/10.3109/17435390.2016.1149632] [PMID: 26830206]
[121]
Alshatwi, A.A.; Subbarayan, P.V.; Ramesh, E.; Al-Hazzani, A.A.; Alsaif, M.A.; Alwarthan, A.A. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2013, 30(1), 1-10.
[http://dx.doi.org/10.1080/19440049.2012.729160] [PMID: 23046173]
[122]
Arul Prakash, F.; Dushendra Babu, G.J.; Lavanya, M.; Shenbaga Vidhya, K.; Devasena, T. Toxicity studies of aluminium oxide nanoparticles in cell lines. Int. J. Nanotechnol. Appl., 2011, 5(2), 99-107.
[123]
Bayat, N.; Lopes, V.R.; Schölermann, J.; Jensen, L.D.; Cristobal, S. Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials, 2015, 63, 1-13.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.044] [PMID: 26066004]
[124]
Richter, J.W.; Shull, G.M.; Fountain, J.H.; Guo, Z.; Musselman, L.P.; Fiumera, A.C.; Mahler, G.J. Titanium dioxide nanoparticle exposure alters metabolic homeostasis in a cell culture model of the intestinal epithelium and Drosophila melanogaster. Nanotoxicology, 2018, 12(5), 390-406.
[http://dx.doi.org/10.1080/17435390.2018.1457189] [PMID: 29600885]
[125]
Zhang, L.; Xie, X.; Zhou, Y.; Yu, D.; Deng, Y.; Ouyang, J.; Yang, B.; Luo, D.; Zhang, D.; Kuang, H. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice. Int. J. Nanomedicine, 2018, 13, 777-789.
[http://dx.doi.org/10.2147/IJN.S152400] [PMID: 29440900]
[126]
Jia, X.; Wang, S.; Zhou, L.; Sun, L. The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice. Nanoscale Res. Lett., 2017, 12(1), 478.
[http://dx.doi.org/10.1186/s11671-017-2242-2] [PMID: 28774157]
[127]
Husain, M.; Wu, D.; Saber, A.T.; Decan, N.; Jacobsen, N.R.; Williams, A.; Yauk, C.L.; Wallin, H.; Vogel, U.; Halappanavar, S. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology, 2015, 9(8), 1013-1022.
[http://dx.doi.org/10.3109/17435390.2014.996192] [PMID: 25993494]
[128]
Cui, Y.; Liu, H.; Ze, Y.; Zengli, Z.; Hu, Y.; Cheng, Z.; Cheng, J.; Hu, R.; Gao, G.; Wang, L.; Tang, M.; Hong, F. Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol. Sci., 2012, 128(1), 171-185.
[http://dx.doi.org/10.1093/toxsci/kfs153] [PMID: 22539623]
[129]
Hu, R.; Zheng, L.; Zhang, T.; Gao, G.; Cui, Y.; Cheng, Z.; Cheng, J.; Hong, M.; Tang, M.; Hong, F. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J. Hazard. Mater., 2011, 191(1-3), 32-40.
[http://dx.doi.org/10.1016/j.jhazmat.2011.04.027] [PMID: 21570177]
[130]
Gui, S.; Zhang, Z.; Zheng, L.; Cui, Y.; Liu, X.; Li, N.; Sang, X.; Sun, Q.; Gao, G.; Cheng, Z.; Cheng, J.; Wang, L.; Tang, M.; Hong, F. Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J. Hazard. Mater., 2011, 195, 365-370.
[http://dx.doi.org/10.1016/j.jhazmat.2011.08.055] [PMID: 21907489]
[131]
Ambalavanan, N.; Stanishevsky, A.; Bulger, A.; Halloran, B.; Steele, C.; Vohra, Y.; Matalon, S. Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 304(3), L152-L161.
[http://dx.doi.org/10.1152/ajplung.00013.2012] [PMID: 23220372]
[132]
Disdier, C.; Devoy, J.; Cosnefroy, A.; Chalansonnet, M.; Herlin-Boime, N.; Brun, E.; Lund, A.; Mabondzo, A. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood-brain barrier clearance and brain inflammation in rat. Part. Fibre Toxicol., 2015, 12(1), 27.
[http://dx.doi.org/10.1186/s12989-015-0102-8] [PMID: 26337446]
[133]
Alarifi, S.; Ali, D.; Al-Doaiss, A.A.; Ali, B.A.; Ahmed, M.; Al-Khedhairy, A.A. Histologic and apoptotic changes induced by titanium dioxide nanoparticles in the livers of rats. Int. J. Nanomedicine, 2013, 8, 3937-3943.
[PMID: 24143098]
[134]
Yang, L.; Kuang, H.; Zhang, W.; Wei, H.; Xu, H. Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale, 2018, 10(24), 11564-11577.
[http://dx.doi.org/10.1039/C8NR01248B] [PMID: 29892752]
[135]
Ma-Hock, L.; Farias, P.M.A.; Hofmann, T.; Andrade, A.C.D.S.; Silva, J.N.; Arnaud, T.M.S.; Wohlleben, W.; Strauss, V.; Treumann, S.; Chaves, C.R.; Gröters, S.; Landsiedel, R.; van Ravenzwaay, B. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats. Toxicol. Lett., 2014, 225(1), 20-26.
[http://dx.doi.org/10.1016/j.toxlet.2013.11.007] [PMID: 24296008]
[136]
Wang, X.; Tian, J.; Yong, K-T.; Zhu, X.; Lin, M.C-M.; Jiang, W.; Li, J.; Huang, Q.; Lin, G. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice. J. Nanobiotechnology, 2016, 14(1), 10.
[http://dx.doi.org/10.1186/s12951-016-0162-4] [PMID: 26846666]
[137]
Lu, Y.; Xu, S.; Chen, H.; He, M.; Deng, Y.; Cao, Z.; Pi, H.; Chen, C.; Li, M.; Ma, Q.; Gao, P.; Ji, Y.; Zhang, L.; Yu, Z.; Zhou, Z. CdSe/ZnS quantum dots induce hepatocyte pyroptosis and liver inflammation via NLRP3 inflammasome activation. Biomaterials, 2016, 90, 27-39.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.003] [PMID: 26986854]
[138]
Li, X.; Yang, X.; Yuwen, L.; Yang, W.; Weng, L.; Teng, Z.; Wang, L. Evaluation of toxic effects of CdTe quantum dots on the reproductive system in adult male mice. Biomaterials, 2016, 96, 24-32.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.014] [PMID: 27135714]
[139]
Zhang, W.; Yang, L.; Kuang, H.; Yang, P.; Aguilar, Z.P.; Wang, A.; Fu, F.; Xu, H. Acute toxicity of quantum dots on late pregnancy mice: Effects of nanoscale size and surface coating. J. Hazard. Mater., 2016, 318, 61-69.
[http://dx.doi.org/10.1016/j.jhazmat.2016.06.048] [PMID: 27399148]
[140]
Liu, J.; Yang, M.; Jing, L.; Ren, L.; Wei, J.; Zhang, J.; Zhang, F.; Duan, J.; Zhou, X.; Sun, Z. Silica nanoparticle exposure inducing granulosa cell apoptosis and follicular atresia in female Balb/c mice. Environ. Sci. Pollut. Res. Int., 2018, 25(4), 3423-3434.
[http://dx.doi.org/10.1007/s11356-017-0724-5] [PMID: 29151191]
[141]
Nemmar, A.; Yuvaraju, P.; Beegam, S.; Yasin, J.; Kazzam, E.E.; Ali, B.H. Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int. J. Nanomedicine, 2016, 11, 919-928.
[http://dx.doi.org/10.2147/IJN.S92278] [PMID: 27022259]
[142]
Parveen, A.; Rizvi, S.H.M. Sushma; Mahdi, F.; Ahmad, I.; Singh, P.P.; Mahdi, A.A. Intranasal exposure to silica nanoparticles induces alterations in pro-inflammatory environment of rat brain. Toxicol. Ind. Health, 2017, 33(2), 119-132.
[http://dx.doi.org/10.1177/0748233715602985] [PMID: 26431867]
[143]
Chen, Q.; Xue, Y.; Sun, J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2013, 8, 1129-1140.
[PMID: 23515466]
[144]
Schütz, I.; Lopez-Hernandez, T.; Gao, Q.; Puchkov, D.; Jabs, S.; Nordmeyer, D.; Schmudde, M.; Rühl, E.; Graf, C.M.; Haucke, V. Lysosomal dysfunction caused by cellular accumulation of silica nanoparticles. J. Biol. Chem., 2016, 291(27), 14170-14184.
[http://dx.doi.org/10.1074/jbc.M115.710947] [PMID: 27226546]
[145]
Yi, H.; Wang, Z.; Li, X.; Yin, M.; Wang, L.; Aldalbahi, A.; El-Sayed, N.N.; Wang, H.; Chen, N.; Fan, C.; Song, H. Silica nanoparticles target a Wnt signal transducer for degradation and impair embryonic development in Zebrafish. Theranostics, 2016, 6(11), 1810-1820.
[http://dx.doi.org/10.7150/thno.16127] [PMID: 27570552]
[146]
Duan, J.; Yu, Y.; Li, Y.; Yu, Y.; Sun, Z. Cardiovascular toxicity evaluation of silica nanoparticles in endothelial cells and zebrafish model. Biomaterials, 2013, 34(23), 5853-5862.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.032] [PMID: 23663927]
[147]
Cammisuli, F.; Giordani, S.; Gianoncelli, A.; Rizzardi, C.; Radillo, L.; Zweyer, M.; Da Ros, T.; Salomé, M.; Melato, M.; Pascolo, L. Iron-related toxicity of single-walled carbon nanotubes and crocidolite fibres in human mesothelial cells investigated by Synchrotron XRF microscopy. Sci. Rep., 2018, 8(1), 706.
[http://dx.doi.org/10.1038/s41598-017-19076-1] [PMID: 29335462]
[148]
Fujita, K.; Fukuda, M.; Endoh, S.; Maru, J.; Kato, H.; Nakamura, A.; Shinohara, N.; Uchino, K.; Honda, K. Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal. Toxicol., 2015, 27(4), 207-223.
[http://dx.doi.org/10.3109/08958378.2015.1026620] [PMID: 25865113]
[149]
Park, E-J.; Roh, J.; Kim, S-N.; Kang, M.S.; Han, Y-A.; Kim, Y.; Hong, J.T.; Choi, K. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch. Toxicol., 2011, 85(9), 1121-1131.
[http://dx.doi.org/10.1007/s00204-011-0655-8] [PMID: 21472445]
[150]
Zheng, W.; McKinney, W.; Kashon, M.L.; Pan, D.; Castranova, V.; Kan, H. The effects of inhaled multi-walled carbon nanotubes on blood pressure and cardiac function. Nanoscale Res. Lett., 2018, 13(1), 189.
[http://dx.doi.org/10.1186/s11671-018-2603-5] [PMID: 29971611]
[151]
Kasai, T.; Umeda, Y.; Ohnishi, M.; Mine, T.; Kondo, H.; Takeuchi, T.; Matsumoto, M.; Fukushima, S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part. Fibre Toxicol., 2016, 13(1), 53.
[http://dx.doi.org/10.1186/s12989-016-0164-2] [PMID: 27737701]
[152]
Zhang, H.Y.; Chen, R.L.; Shao, Y.; Wang, H.L.; Liu, Z.G. Effects of exposure of adult mice to multi-walled carbon nanotubes on the liver lipid metabolism of their offspring. Toxicol. Res. (Camb.), 2018, 7(5), 809-816.
[http://dx.doi.org/10.1039/C8TX00032H] [PMID: 30310658]
[153]
Chen, L.; Hu, P.; Zhang, L.; Huang, S.; Luo, L.; Huang, C. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and Zebrafish. Sci. China Chem., 2012, 55(10), 2209-2216.
[http://dx.doi.org/10.1007/s11426-012-4620-z]
[154]
Han, Y.G.; Xu, J.; Li, Z.G.; Ren, G.G.; Yang, Z. In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells. Neurotoxicology, 2012, 33(5), 1128-1134.
[http://dx.doi.org/10.1016/j.neuro.2012.06.004] [PMID: 22728153]
[155]
Lee, J.K.; Sayers, B.C.; Chun, K-S.; Lao, H-C.; Shipley-Phillips, J.K.; Bonner, J.C.; Langenbach, R. Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP kinase-dependent and -independent mechanisms in mouse RAW264.7 macrophages. Part. Fibre Toxicol., 2012, 9(1), 14.
[http://dx.doi.org/10.1186/1743-8977-9-14] [PMID: 22571318]
[156]
Wen, H.; Dan, M.; Yang, Y.; Lyu, J.; Shao, A.; Cheng, X.; Chen, L.; Xu, L. Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS One, 2017, 12(9)e0185554
[http://dx.doi.org/10.1371/journal.pone.0185554] [PMID: 28953974]
[157]
Sakamoto, M.; Ha, J-Y.; Yoneshima, S.; Kataoka, C.; Tatsuta, H.; Kashiwada, S. Free silver ion as the main cause of acute and chronic toxicity of silver nanoparticles to cladocerans. Arch. Environ. Contam. Toxicol., 2015, 68(3), 500-509.
[http://dx.doi.org/10.1007/s00244-014-0091-x] [PMID: 25352442]
[158]
Hadrup, N.; Loeschner, K.; Bergström, A.; Wilcks, A.; Gao, X.; Vogel, U.; Frandsen, H.L.; Larsen, E.H.; Lam, H.R.; Mortensen, A. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch. Toxicol., 2012, 86(4), 543-551.
[http://dx.doi.org/10.1007/s00204-011-0759-1] [PMID: 21969074]
[159]
Zhang, J.; Qin, X.; Wang, B.; Xu, G.; Qin, Z.; Wang, J.; Wu, L.; Ju, X.; Bose, D.D.; Qiu, F.; Zhou, H.; Zou, Z. Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells. Cell Death Dis., 2017, 8(7)e2954
[http://dx.doi.org/10.1038/cddis.2017.337] [PMID: 28749469]
[160]
Albers, C.E.; Hofstetter, W.; Siebenrock, K.A.; Landmann, R.; Klenke, F.M. In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology, 2013, 7(1), 30-36.
[http://dx.doi.org/10.3109/17435390.2011.626538] [PMID: 22013878]
[161]
Park, E-J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol. In Vitro, 2010, 24(3), 872-878.
[http://dx.doi.org/10.1016/j.tiv.2009.12.001] [PMID: 19969064]
[162]
Chen, P.; Wang, H.; He, M.; Chen, B.; Yang, B.; Hu, B. Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicol. Environ. Saf., 2019, 171, 337-346.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.096] [PMID: 30616150]
[163]
Valdiglesias, V.; Costa, C.; Kiliç, G.; Costa, S.; Pásaro, E.; Laffon, B.; Teixeira, J.P. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ. Int., 2013, 55, 92-100.
[http://dx.doi.org/10.1016/j.envint.2013.02.013] [PMID: 23535050]
[164]
Ng, C.T.; Yong, L.Q.; Hande, M.P.; Ong, C.N.; Yu, L.E.; Bay, B.H.; Baeg, G.H. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int. J. Nanomedicine, 2017, 12, 1621-1637.
[http://dx.doi.org/10.2147/IJN.S124403] [PMID: 28280330]
[165]
Asghari, A.; Hosseini, M.; Khordad, E.; Alipour, F.; Marefati, N.; Ebrahimzadeh Bideskan, A. Hippocampal apoptosis of the neonates born from TiO2 nanoparticles-exposed rats is mediated by inducible nitric oxide synthase. Toxin Rev., 2019, 1-10.
[http://dx.doi.org/10.1080/15569543.2019.1570269]
[166]
Asati, A.; Santra, S.; Kaittanis, C.; Perez, J.M. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano, 2010, 4(9), 5321-5331.
[http://dx.doi.org/10.1021/nn100816s] [PMID: 20690607]
[167]
Bennett, S.W.; Zhou, D.; Mielke, R.; Keller, A.A. Photoinduced disaggregation of TiO2 nanoparticles enables transdermal penetration. PLoS One, 2012, 7(11)e48719
[http://dx.doi.org/10.1371/journal.pone.0048719] [PMID: 23155401]
[168]
Chang, J.; Lee, C-W.; Alsulimani, H.H.; Choi, J.E.; Lee, J-K.; Kim, A.; Park, B.H.; Kim, J.; Lee, H. Role of fatty acid composites in the toxicity of titanium dioxide nanoparticles used in cosmetic products. J. Toxicol. Sci., 2016, 41(4), 533-542.
[http://dx.doi.org/10.2131/jts.41.533] [PMID: 27432239]
[169]
Kocbek, P.; Teskač, K.; Kreft, M.E.; Kristl, J. Toxicological aspects of long-term treatment of keratinocytes with ZnO and TiO2 nanoparticles. Small, 2010, 6(17), 1908-1917.
[http://dx.doi.org/10.1002/smll.201000032] [PMID: 20677183]
[170]
Kuku, G.; Culha, M. Investigating the origins of toxic response in TiO2 nanoparticle-treated cells. Nanomater., 2017, 7(4), 83.
[171]
Zdravkovic, B.; Zdravkovic, T.P.; Zdravkovic, M.; Strukelj, B.; Ferk, P. The influence of nano-TiO2 on metabolic activity, cytotoxicity and ABCB5 mRNA expression in WM-266-4 human metastatic melanoma cell line. J. BUON, 2019, 24(1), 338-346.
[PMID: 30941990]
[172]
Paino, I.M.M.; Marangoni, V.S. de Oliveira, Rde.C.; Antunes, L.M.; Zucolotto, V. Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol. Lett., 2012, 215(2), 119-125.
[http://dx.doi.org/10.1016/j.toxlet.2012.09.025] [PMID: 23046612]
[173]
Khan, H.A.; Alamery, S.; Ibrahim, K.E.; El-Nagar, D.M.; Al-Harbi, N.; Rusop, M.; Alrokayan, S.H. Size and time-dependent induction of proinflammatory cytokines expression in brains of mice treated with gold nanoparticles. Saudi J. Biol. Sci., 2019, 26(3), 625-631.
[http://dx.doi.org/10.1016/j.sjbs.2018.09.012] [PMID: 30899181]
[174]
Li, J.J.; Lo, S-L.; Ng, C-T.; Gurung, R.L.; Hartono, D.; Hande, M.P.; Ong, C-N.; Bay, B-H.; Yung, L-Y.L. Genomic instability of gold nanoparticle treated human lung fibroblast cells. Biomaterials, 2011, 32(23), 5515-5523.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.023] [PMID: 21543115]
[175]
Mytych, J.; Zebrowski, J.; Lewinska, A.; Wnuk, M. Prolonged effects of silver nanoparticles on P53/P21 pathway-mediated proliferation, DNA damage response, and methylation parameters in HT22 hippocampal neuronal cells. Mol. Neurobiol., 2017, 54(2), 1285-1300.
[http://dx.doi.org/10.1007/s12035-016-9688-6] [PMID: 26843106]
[176]
Uboldi, C.; Orsière, T.; Darolles, C.; Aloin, V.; Tassistro, V.; George, I.; Malard, V. Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. Part. Fibre Toxicol., 2016, 13(1), 5.
[http://dx.doi.org/10.1186/s12989-016-0118-8] [PMID: 26843362]
[177]
Zhou, Y.; Hong, F.; Tian, Y.; Zhao, X.; Hong, J.; Ze, Y.; Wang, L. Nanoparticulate titanium dioxide-inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice. Toxicol. Res. (Camb.), 2017, 6(6), 889-901.
[http://dx.doi.org/10.1039/C7TX00153C] [PMID: 30090551]
[178]
Zhu, B.; He, W.; Hu, S.; Kong, R.; Yang, L. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere, 2019, 225, 705-712.
[http://dx.doi.org/10.1016/j.chemosphere.2019.03.091] [PMID: 30904758]
[179]
Battal, D.; Çelik, A.; Güler, G.; Aktaş, A.; Yildirimcan, S.; Ocakoglu, K.; Çömelekoǧlu, Ü. SiO2 Nanoparticule-induced size-dependent genotoxicity - an in vitro study using sister chromatid exchange, micronucleus and comet assay. Drug Chem. Toxicol., 2015, 38(2), 196-204.
[http://dx.doi.org/10.3109/01480545.2014.928721] [PMID: 24960636]
[180]
Türkez, H.; Sönmez, E.; Tatar, A. Boron Compounds Counteracts Oxidative Stress Mediated Genotoxicity Induced by Fe3O4 nanoparticles in vitro. Appl. Mech. Mater., 2016, 835, 84-90.
[http://dx.doi.org/10.4028/www.scientific.net/AMM.835.84]
[181]
Ishino, K.; Kato, T.; Kato, M.; Shibata, T.; Watanabe, M.; Wakabayashi, K.; Nakagama, H.; Totsuka, Y. Comprehensive DNA adduct analysis reveals pulmonary inflammatory response contributes to genotoxic action of magnetite nanoparticles. Int. J. Mol. Sci., 2015, 16(2), 3474-3492.
[http://dx.doi.org/10.3390/ijms16023474] [PMID: 25658799]
[182]
Gamallo, M.; Silva, S.; Pintado, M.E.; Feijoo, G.; Moreira, M.T. Genotoxicity Analysis of Different Magnetite-Based Nanoparticles Applied in Chemical Catalysis Processes. 13th Internationl Chemical and Biological Engineering Conference, 2018.
[183]
Ershova, E.S.; Sergeeva, V.A.; Chausheva, A.I.; Zheglo, D.G.; Nikitina, V.A.; Smirnova, T.D.; Kameneva, L.V.; Porokhovnik, L.N.; Kutsev, S.I.; Troshin, P.A.; Voronov, I.I.; Khakina, E.A.; Veiko, N.N.; Kostyuk, S.V. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 805, 46-57.
[http://dx.doi.org/10.1016/j.mrgentox.2016.05.004] [PMID: 27402482]
[184]
Pan, X.; Redding, J.E.; Wiley, P.A.; Wen, L.; McConnell, J.S.; Zhang, B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere, 2010, 79(1), 113-116.
[http://dx.doi.org/10.1016/j.chemosphere.2009.12.056] [PMID: 20106502]
[185]
Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere, 2011, 83(8), 1124-1132.
[http://dx.doi.org/10.1016/j.chemosphere.2011.01.025] [PMID: 21310462]
[186]
Carvalho Naves, M.P.; de Morais, C.R.; Silva, A.C.A.; Dantas, N.O.; Spanó, M.A.; de Rezende, A.A.A. Assessment of mutagenic, recombinogenic and carcinogenic potential of titanium dioxide nanocristals in somatic cells of Drosophila melanogaster. Food Chem. Toxicol., 2018, 112, 273-281.
[http://dx.doi.org/10.1016/j.fct.2017.12.040] [PMID: 29292020]
[187]
Vecchio, G.; Galeone, A.; Brunetti, V.; Maiorano, G.; Rizzello, L.; Sabella, S.; Cingolani, R.; Pompa, P.P. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomedicine (Lond.), 2012, 8(1), 1-7.
[http://dx.doi.org/10.1016/j.nano.2011.11.001] [PMID: 22094122]
[188]
Anand, A.S.; Prasad, D.N.; Singh, S.B.; Kohli, E. Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J. Hazard. Mater., 2017, 327, 180-186.
[http://dx.doi.org/10.1016/j.jhazmat.2016.12.040] [PMID: 28064146]
[189]
Gomaa, I.O.; Kader, M.H.; Salah, T.A.; Heikal, O.A. Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug Discov. Ther., 2013, 7(3), 116-123.
[PMID: 23917860]
[190]
Gábelová, A.; El Yamani, N.; Alonso, T.I.; Buliaková, B.; Srančíková, A.; Bábelová, A.; Pran, E.R.; Fjellsbø, L.M.; Elje, E.; Yazdani, M.; Silva, M.J.; Dušinská, M. Fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of iron oxide nanoparticles. Mutagenesis, 2017, 32(1), 193-202.
[http://dx.doi.org/10.1093/mutage/gew045] [PMID: 27658822]
[191]
Wang, M.M.; Wang, Y.C.; Wang, X.N.; Liu, Y.; Zhang, H.; Zhang, J.W.; Huang, Q.; Chen, S.P.; Hei, T.K.; Wu, L.J.; Xu, A. Mutagenicity of ZnO nanoparticles in mammalian cells: Role of physicochemical transformations under the aging process. Nanotoxicology, 2015, 9(8), 972-982.
[http://dx.doi.org/10.3109/17435390.2014.992816] [PMID: 25676621]
[192]
Jin, C.; Liu, Y.; Sun, L.; Chen, T.; Zhang, Y.; Zhao, A.; Wang, X.; Cristau, M.; Wang, K.; Jia, W. Metabolic profiling reveals disorder of carbohydrate metabolism in mouse fibroblast cells induced by titanium dioxide nanoparticles. J. Appl. Toxicol., 2013, 33(12), 1442-1450.
[http://dx.doi.org/10.1002/jat.2808] [PMID: 22996321]
[193]
Bo, Y.; Jin, C.; Liu, Y.; Yu, W.; Kang, H. Metabolomic analysis on the toxicological effects of TiO2 nanoparticles in mouse fibroblast cells: from the perspective of perturbations in amino acid metabolism. Toxicol. Mech. Methods, 2014, 24(7), 461-469.
[http://dx.doi.org/10.3109/15376516.2014.939321] [PMID: 24965839]
[194]
Przybytkowski, E.; Behrendt, M.; Dubois, D.; Maysinger, D. Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J., 2009, 276(21), 6204-6217.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07324.x] [PMID: 19780838]
[195]
Duan, J.; Liang, S.; Feng, L.; Yu, Y.; Sun, Z. Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. Int. J. Nanomedicine, 2018, 13, 7303-7318.
[http://dx.doi.org/10.2147/IJN.S185348] [PMID: 30519016]
[196]
Wang, B.; Chen, N.; Wei, Y.; Li, J.; Sun, L.; Wu, J.; Huang, Q.; Liu, C.; Fan, C.; Song, H. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci. Rep., 2012, 2(1), 563.
[http://dx.doi.org/10.1038/srep00563] [PMID: 22872808]
[197]
Choi, S.Y.; Song, M.S.; Ryu, P.D.; Lam, A.T.N.; Joo, S-W.; Lee, S.Y. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int. J. Nanomedicine, 2015, 10, 4383-4392.
[PMID: 26185441]
[198]
Xue, Y.; Xu, X.; Zhang, X-Q.; Farokhzad, O.C.; Langer, R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc. Natl. Acad. Sci. USA, 2016, 113(20), 5552-5557.
[http://dx.doi.org/10.1073/pnas.1603840113] [PMID: 27140638]
[199]
Park, E-J.; Choi, D-H.; Kim, Y.; Lee, E-W.; Song, J.; Cho, M-H.; Kim, J-H.; Kim, S-W. Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol. In Vitro, 2014, 28(8), 1402-1412.
[http://dx.doi.org/10.1016/j.tiv.2014.07.010] [PMID: 25086211]
[200]
Noël, C.; Simard, J-C.; Girard, D. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol. In Vitro, 2016, 31, 12-22.
[http://dx.doi.org/10.1016/j.tiv.2015.11.003] [PMID: 26551149]
[201]
Gholinejad, Z.; Khadem Ansari, M.H.; Rasmi, Y. Titanium dioxide nanoparticles induce endothelial cell apoptosis via cell membrane oxidative damage and p38, PI3K/Akt, NF-κB signaling pathways modulation. J. Trace Elem. Med. Biol., 2019, 54, 27-35.
[http://dx.doi.org/10.1016/j.jtemb.2019.03.008] [PMID: 31109618]
[202]
Wason, M.S.; Lu, H.; Yu, L.; Lahiri, S.K.; Mukherjee, D.; Shen, C.; Das, S.; Seal, S.; Zhao, J. Cerium oxide nanoparticles sensitize pancreatic cancer to radiation therapy through oxidative activation of the JNK apoptotic pathway. Cancers (Basel), 2018, 10(9), 303.
[http://dx.doi.org/10.3390/cancers10090303] [PMID: 30200491]
[203]
Kim, J-H.; Jeong, M.S.; Kim, D-Y.; Her, S.; Wie, M-B. Zinc oxide nanoparticles induce lipoxygenase-mediated apoptosis and necrosis in human neuroblastoma SH-SY5Y cells. Neurochem. Int., 2015, 90, 204-214.
[http://dx.doi.org/10.1016/j.neuint.2015.09.002] [PMID: 26364578]
[204]
Blanco, J.; Tomás-Hernández, S.; García, T.; Mulero, M.; Gómez, M.; Domingo, J.L.; Sánchez, D.J. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem. Toxicol., 2018, 115, 398-404.
[http://dx.doi.org/10.1016/j.fct.2018.03.039] [PMID: 29604305]
[205]
Hu, H.; Guo, Q.; Wang, C.; Ma, X.; He, H.; Oh, Y.; Feng, Y.; Wu, Q.; Gu, N. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice. J. Appl. Toxicol., 2015, 35(10), 1122-1132.
[http://dx.doi.org/10.1002/jat.3150] [PMID: 25826740]
[206]
Lee, M.J.; Lee, S.J.; Yun, S.J.; Jang, J.Y.; Kang, H.; Kim, K.; Choi, I.H.; Park, S. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species. Int. J. Nanomedicine, 2015, 11, 55-68.
[PMID: 26730190]
[207]
Chowdhury, A.; Kunjiappan, S.; Bhattacharjee, C.; Somasundaram, B.; Panneerselvam, T. Biogenic synthesis of Marsilea quadrifolia gold nanoparticles: a study of improved glucose utilization efficiency on 3T3-L1 adipocytes. In Vitro Cell. Dev. Biol. Anim., 2017, 53(6), 483-493.
[http://dx.doi.org/10.1007/s11626-017-0136-3] [PMID: 28342023]
[208]
Chen, H.; Ng, J.P.M.; Tan, Y.; McGrath, K.; Bishop, D.P.; Oliver, B.; Chan, Y.L.; Cortie, M.B.; Milthorpe, B.K.; Valenzuela, S.M. Gold nanoparticles improve metabolic profile of mice fed a high-fat diet. J. Nanobiotechnology, 2018, 16(1), 11.
[http://dx.doi.org/10.1186/s12951-018-0338-1] [PMID: 29409496]
[209]
Shanker, K.; Mohan, G.K.; Hussain, M.A.; Jayarambabu, N.; Pravallika, P.L. Green biosynthesis, characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models. Pharmacogn. Mag., 2017, 13(49), 188-192.
[PMID: 28216905]
[210]
Wang, J.; Yu, Y.; Lu, K.; Yang, M.; Li, Y.; Zhou, X.; Sun, Z. Silica nanoparticles induce autophagy dysfunction via lysosomal impairment and inhibition of autophagosome degradation in hepatocytes. Int. J. Nanomedicine, 2017, 12, 809-825.
[http://dx.doi.org/10.2147/IJN.S123596] [PMID: 28182147]
[211]
Wang, F.; Salvati, A.; Boya, P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol., 2018, 8(4)170271
[http://dx.doi.org/10.1098/rsob.170271] [PMID: 29643148]
[212]
Xu, J.L.; Khor, K.A.; Sui, J.J.; Zhang, J.H.; Chen, W.N. Protein expression profiles in osteoblasts in response to differentially shaped hydroxyapatite nanoparticles. Biomaterials, 2009, 30(29), 5385-5391.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.002] [PMID: 19631375]
[213]
Yang, X.; Li, Y.; Liu, X.; Zhang, R.; Feng, Q. In vitro uptake of hydroxyapatite nanoparticles and their effect on osteogenic differentiation of human mesenchymal stem cells. Stem Cells Int., 2018.
[http://dx.doi.org/10.1155/2018/2036176]
[214]
Wang, Y.; Lin, Y-X.; Qiao, Z-Y.; An, H-W.; Qiao, S-L.; Wang, L.; Rajapaksha, R.P.Y.J.; Wang, H. Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo. Adv. Mater., 2015, 27(16), 2627-2634.
[http://dx.doi.org/10.1002/adma.201405926] [PMID: 25786652]
[215]
Gaté, L.; Disdier, C.; Cosnier, F.; Gagnaire, F.; Devoy, J.; Saba, W.; Brun, E.; Chalansonnet, M.; Mabondzo, A. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats. Toxicol. Lett., 2017, 265, 61-69.
[http://dx.doi.org/10.1016/j.toxlet.2016.11.009] [PMID: 27865850]
[216]
Lee, J.H.; Kim, Y.S.; Song, K.S.; Ryu, H.R.; Sung, J.H.; Park, J.D.; Park, H.M.; Song, N.W.; Shin, B.S.; Marshak, D.; Ahn, K.; Lee, J.E.; Yu, I.J. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol., 2013, 10(1), 36.
[http://dx.doi.org/10.1186/1743-8977-10-36] [PMID: 24059869]
[217]
Naz, F.; Koul, V.; Srivastava, A.; Gupta, Y.K.; Dinda, A.K. Biokinetics of ultrafine gold nanoparticles (AuNPs) relating to redistribution and urinary excretion: a long-term in vivo study. J. Drug Target., 2016, 24(8), 720-729.
[http://dx.doi.org/10.3109/1061186X.2016.1144758] [PMID: 26837799]
[218]
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S-Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and shape effects in the biodistribution of intravascularly injected particles. J. Control. Release, 2010, 141(3), 320-327.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.014] [PMID: 19874859]
[219]
Adriani, G.; de Tullio, M.D.; Ferrari, M.; Hussain, F.; Pascazio, G.; Liu, X.; Decuzzi, P. The preferential targeting of the diseased microvasculature by disk-like particles. Biomaterials, 2012, 33(22), 5504-5513.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.027] [PMID: 22579236]
[220]
Chauhan, V.P.; Popović, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M.G.; Jain, R.K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl., 2011, 50(48), 11417-11420.
[http://dx.doi.org/10.1002/anie.201104449] [PMID: 22113800]
[221]
Zhu, X.; Vo, C.; Taylor, M.; Smith, B.R. Non-spherical micro- and nanoparticles in nanomedicine. Mater. Horiz., 2019, 6, 1094-1121.
[222]
Souris, J.S.; Lee, C-H.; Cheng, S-H.; Chen, C-T.; Yang, C-S.; Ho, J.A.; Mou, C-Y.; Lo, L-W. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials, 2010, 31(21), 5564-5574.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.048] [PMID: 20417962]
[223]
Arami, H.; Khandhar, A.P.; Tomitaka, A.; Yu, E.; Goodwill, P.W.; Conolly, S.M.; Krishnan, K.M. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials, 2015, 52, 251-261.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.040] [PMID: 25818431]
[224]
Cole, A.J.; David, A.E.; Wang, J.; Galbán, C.J.; Hill, H.L.; Yang, V.C. Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials, 2011, 32(8), 2183-2193.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.040] [PMID: 21176955]
[225]
Rodell, C.B.; Arlauckas, S.P.; Cuccarese, M.F.; Garris, C.S.; Li, R.; Ahmed, M.S.; Kohler, R.H.; Pittet, M.J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng., 2018, 2, 578-588.
[http://dx.doi.org/10.1038/s41551-018-0236-8]
[226]
Binnemars-Postma, K.A.; Ten Hoopen, H.W.; Storm, G.; Prakash, J. Differential uptake of nanoparticles by human M1 and M2 polarized macrophages: protein corona as a critical determinant. Nanomedicine (Lond.), 2016, 11(22), 2889-2902.
[http://dx.doi.org/10.2217/nnm-2016-0233] [PMID: 27780415]
[227]
Burgos, R.A.; Conejeros, I.; Hidalgo, M.A.; Werling, D.; Hermosilla, C. Calcium influx, a new potential therapeutic target in the control of neutrophil-dependent inflammatory diseases in bovines. Vet. Immunol. Immunopathol., 2011, 143(1-2), 1-10.
[http://dx.doi.org/10.1016/j.vetimm.2011.05.037] [PMID: 21764141]
[228]
Muñoz, L.E.; Bilyy, R.; Biermann, M.H.C.; Kienhöfer, D.; Maueröder, C.; Hahn, J.; Brauner, J.M.; Weidner, D.; Chen, J.; Scharin-Mehlmann, M.; Janko, C.; Friedrich, R.P.; Mielenz, D.; Dumych, T.; Lootsik, M.D.; Schauer, C.; Schett, G.; Hoffmann, M.; Zhao, Y.; Herrmann, M. Nanoparticles size-dependently initiate self-limiting NETosis-driven inflammation. Proc. Natl. Acad. Sci. USA, 2016, 113(40), E5856-E5865.
[http://dx.doi.org/10.1073/pnas.1602230113] [PMID: 27647892]
[229]
Hwang, T-L.; Aljuffali, I.A.; Hung, C-F.; Chen, C-H.; Fang, J-Y. The impact of cationic solid lipid nanoparticles on human neutrophil activation and formation of neutrophil extracellular traps (NETs). Chem. Biol. Interact., 2015, 235, 106-114.
[http://dx.doi.org/10.1016/j.cbi.2015.04.011] [PMID: 25920576]
[230]
Vlasova, I.I.; Sokolov, A.V.; Chekanov, A.V.; Kostevich, V.A.; Vasil’ev, V.B. [Myeloperoxidase-induced biodegradation of single-walled carbon nanotubes is mediated by hypochlorite]. Bioorg. Khim., 2011, 37(4), 510-521.
[PMID: 22096994]
[231]
Ding, Y.; Tian, R.; Yang, Z.; Chen, J.; Lu, N. NADPH oxidase-dependent degradation of single-walled carbon nanotubes in macrophages. J. Mater. Sci. Mater. Med., 2017, 28(1), 7.
[http://dx.doi.org/10.1007/s10856-016-5817-z] [PMID: 27885574]
[232]
Ding, Y.; Tian, R.; Yang, Z.; Chen, J.; Lu, N. Binding of human IgG to single-walled carbon nanotubes accelerated myeloperoxidase-mediated degradation in activated neutrophils. Biophys. Chem., 2016, 218, 36-41.
[http://dx.doi.org/10.1016/j.bpc.2016.09.001] [PMID: 27614147]
[233]
Lu, N.; Li, J.; Tian, R.; Peng, Y-Y. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Chem. Res. Toxicol., 2014, 27(6), 1070-1077.
[http://dx.doi.org/10.1021/tx5001317] [PMID: 24870066]
[234]
Bancos, S.; Stevens, D.L.; Tyner, K.M. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro. Int. J. Nanomedicine, 2014, 10, 183-206.
[PMID: 25565813]
[235]
Miao, X.; Leng, X.; Zhang, Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int. J. Mol. Sci., 2017, 18(2), 336.
[http://dx.doi.org/10.3390/ijms18020336] [PMID: 28178185]
[236]
Kang, K.; Lim, J-S. Induction of functional changes of dendritic cells by silica nanoparticles. Immune Netw., 2012, 12(3), 104-112.
[http://dx.doi.org/10.4110/in.2012.12.3.104] [PMID: 22916046]
[237]
Walkey, C.D.; Olsen, J.B.; Song, F.; Liu, R.; Guo, H.; Olsen, D.W.H.; Cohen, Y.; Emili, A.; Chan, W.C.W. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano, 2014, 8(3), 2439-2455.
[http://dx.doi.org/10.1021/nn406018q] [PMID: 24517450]
[238]
Clemments, A.M.; Botella, P.; Landry, C.C. Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity. ACS Appl. Mater. Interfaces, 2015, 7(39), 21682-21689.
[http://dx.doi.org/10.1021/acsami.5b07631] [PMID: 26371804]
[239]
García-Álvarez, R.; Hadjidemetriou, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Kostarelos, K. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10(3), 1256-1264.
[http://dx.doi.org/10.1039/C7NR08322J] [PMID: 29292433]
[240]
Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J-M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 777.
[http://dx.doi.org/10.1038/s41467-017-00600-w] [PMID: 28974673]
[241]
Salvati, A.; Pitek, A.S.; Monopoli, M.P.; Prapainop, K.; Bombelli, F.B.; Hristov, D.R.; Kelly, P.M.; Åberg, C.; Mahon, E.; Dawson, K.A. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol., 2013, 8(2), 137-143.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[242]
Moyano, D.F.; Saha, K.; Prakash, G.; Yan, B.; Kong, H.; Yazdani, M.; Rotello, V.M. Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano, 2014, 8(7), 6748-6755.
[http://dx.doi.org/10.1021/nn5006478] [PMID: 24971670]
[243]
Amici, A.; Caracciolo, G.; Digiacomo, L.; Gambini, V.; Marchini, C.; Tilio, M.; Capriotti, A.L.; Colapicchioni, V.; Matassa, D.R.; Familiari, G.; Palchetti, S. In vivo protein corona patterns of lipid nanoparticles †. RSC Advances, 2017, 7, 1137-1145.
[http://dx.doi.org/10.1039/C6RA25493D]
[244]
Yan, X.; Sedykh, A.; Wang, W.; Zhao, X.; Yan, B.; Zhu, H. In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches. Nanoscale, 2019, 11(17), 8352-8362.
[http://dx.doi.org/10.1039/C9NR00844F] [PMID: 30984943]
[245]
Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, A.C.; Kecel-Gunduz, S. Assessment of nano-toxicity and safety profiles of silver nanoparticles.In: Silver nanoparticles - fabrication, characterization and applications; Khan, M.; Ed,,Intechopen: London,; , 2018, p. 185.
[246]
Liu, R.; Rallo, R.; George, S.; Ji, Z.; Nair, S. Nel, A.E.; Cohen, Y. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small, 2011, 7(8), 1118-1126.
[http://dx.doi.org/10.1002/smll.201002366] [PMID: 21456088]
[247]
Luan, F.; Kleandrova, V.V.; González-Díaz, H.; Ruso, J.M.; Melo, A.; Speck-Planche, A.; Cordeiro, M.N.D.S. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale, 2014, 6(18), 10623-10630.
[http://dx.doi.org/10.1039/C4NR01285B] [PMID: 25083742]
[248]
Kleandrova, V.V.; Luan, F.; González-Díaz, H.; Ruso, J.M.; Speck-Planche, A.; Cordeiro, M.N.D.S. Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ. Sci. Technol., 2014, 48(24), 14686-14694.
[http://dx.doi.org/10.1021/es503861x] [PMID: 25384130]
[249]
Concu, R.; Kleandrova, V.V.; Speck-Planche, A.; Cordeiro, M.N.D.S. Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology, 2017, 11(7), 891-906.
[http://dx.doi.org/10.1080/17435390.2017.1379567] [PMID: 28937298]
[250]
Choi, Y.H.; Han, H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig., 2018, 48(1), 43-60.
[http://dx.doi.org/10.1007/s40005-017-0370-4] [PMID: 30546919]
[251]
Lunov, O.; Syrovets, T.; Loos, C.; Beil, J.; Delacher, M.; Tron, K.; Nienhaus, G.U.; Musyanovych, A.; Mailänder, V.; Landfester, K.; Simmet, T. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano, 2011, 5(3), 1657-1669.
[http://dx.doi.org/10.1021/nn2000756] [PMID: 21344890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy