Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

New Inhibition Detection Method to Evaluate the Human Salivary Alphaamylase Activity of Some Drugs, Molecular Docking, and SAR Studies

Author(s): Nia Samira*, Benarous Khedidja, Lakaas Manel, Sadeki Israa and Yousfi Mohamed

Volume 20, Issue 1, 2021

Published on: 02 January, 2020

Page: [10 - 19] Pages: 10

DOI: 10.2174/1871523019666200102111048

Price: $65

Abstract

Background: For the first time, the investigation of six anti-inflammatory drugs and six antihistaminic drugs for inhibitory activities against alpha-amylase has been evaluated using a new inhibition detection method in order to find new treatments for some diseases caused by α-amylase.

Objective: The first part of this work was devoted to the evaluation of the inhibition activity of these drugs on salivary α-amylase in vitro. Then to study the nature of interactions and structure-activity relationship, using the Autodockvina program for molecular docking.

Materials and Methods: The evaluation of the inhibitory activity of our drugs is achieved using a new method that has proved its sensitivity, quickness, and effectiveness.

Results: The results of this study show that betamethasone and loratadine are potent α-amylase inhibitors with IC50 values 0.7mg/ml and 1.03 mg/ml, respectively compared to acarbose with IC50=5.6 μg/ml.

Conclusion: The results showed that the loratadine and the betamethasone have a strong potential to inhibit the alpha-amylase.

Keywords: Anti-inflammatory drugs, antihistaminic drugs, human salivary α-amylase, inhibition activity, molecular docking, betamethasone.

Graphical Abstract

[1]
Tiwari, S.P.; Srivastava, R.; Singh, C.S.; Shukla, K.; Singh, K.R.; Singh, P.; Singh, R.; Singh, N. Amylases: An overview with special reference to alpha amylase. J. Global Biosci., 2015, 4, 1886-1901.
[2]
Saini, R.; Singh Saini, H.; Dahiya, A. Amylases: Characteristics and industrial applications. J. Pharmacognosy Phytochem., 2017, 6(4), 1865-1871.
[3]
Benguechoua, M.; Nia, S.; Benarous, K.; Khachba, I.; Yousfi, M. Inhibition of candida rugosa lipase by different extracts of five algerian plants and their antioxidant activities. Curr. Enzym. Inhib., 2014, 10, 121-128.
[http://dx.doi.org/10.2174/1573408010666140812233628]
[4]
Khedidja, B.; Madjda, B.; Abderrahmane, G. Antiallergy drugs as potent inhibitors of lipase with structure-activity relationships and molecular docking. Antiinflamm. Antiallergy Agents Med. Chem., 2018, 17(2), 95-101.
[http://dx.doi.org/10.2174/1871523017666180910120150] [PMID: 30198443]
[5]
Nia, S.; Benguechoua, M.; Benarous, K.; Khacheba, I.; Cherif, J.K.; Trabelsi-Ayadi, M.; Yousfi, M. Screening of two algerian spontaneous plants for anti-lipase and antioxidant activities. Curr. Enzym. Inhib., 2014, 10, 113-120.
[http://dx.doi.org/10.2174/1573408010666140725183849]
[6]
Nair, S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol., 2013, 3(1), 128-132.
[7]
Guo, L.P.; Jiang, T.F.; Lv, Z.H.; Wang, Y.H. Screening A glucosidase inhibitors from traditional chinese drugs by capillary electrophoresis with electrophoretically mediated microanalysis. J. Pharm. Biomed. Anal., 2010, 53(5), 1250-1253.
[http://dx.doi.org/10.1016/j.jpba.2010.07.041] [PMID: 20719454]
[8]
Lordan, S.; Smyth, T.J.; Soler Vila, A.; Stanton, C.; Ross, R.P. The A amylase and A glucosidase inhibitory effects of Irish seaweed extracts. Food Chem., 2013, 141(3), 2170-2176.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.123 ] [PMID: 23870944]
[9]
Apostolidis, E.; Lee, C.M. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated alpha-glucosidase and alpha-amylase inhibition. J. Food Sci., 2010, 75(3), H97-H102.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01544.x PMID: 20492300]
[10]
Li, D.Q.; Zhao, J.; Xie, J.; Li, S.P. A novel sample preparation and on-line HPLC-DAD-MS/MS-BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: case study of alpha-glucosidase. J. Pharm. Biomed. Anal., 2014, 88, 130-135.
[http://dx.doi.org/10.1016/j.jpba.2013.08.029] [PMID: 24055848]
[11]
Kwon, Y.I.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against alpha-amylase and αglucosidase for management of hyperglycemia linked to type 2 diabetes. J. Food Biochem., 2006, 32, 15-31.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00165.x]
[12]
Yilmazer Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of A amylase and A glucosidase activity. J. Agric. Food Chem., 2012, 60(36), 8924-8929.
[http://dx.doi.org/10.1021/jf301147n] [PMID: 22697360]
[13]
Banks, P.A.; Conwell, D. The management of acute and chronic pancreatitis. Gastroenterol. Hepatol., 2010, 2(Suppl. 3), 1-16.
[PMID: 20567557]
[14]
Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem., 2003, 38(7-8), 645-659.
[http://dx.doi.org/10.1016/S0223-5234(03)00115-6 ] [PMID: 12932896]
[15]
Shishoo, C.J.; Shirsath, V.S.; Rathod, I.S.; Yande, V.D. Design, synthesis and antihistaminic (H(1)) activity of some condensed 3-aminopyrimidin-4(3H)-ones. Eur. J. Med. Chem., 2000, 35(3), 351-358.
[http://dx.doi.org/10.1016/S0223-5234(00)00128-8 ] [PMID: 10785561]
[16]
Figueiredo-Gonzalez, M.; Grosso, C.; Valentao, P.; Andrade, P.B. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: A stronger alternative to acarbose?, 2015, 118, 322-327.
[http://dx.doi.org/doi:10.1016/j.jpba.2015.10.042]
[17]
Quan, N.V. Antioxidant, alpha-amylase and alpha-glucosidase inhibitory activities and potential constituents of canariumtramdenum bark. Molecule, 2019, 24(3), 605.
[18]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. Pubchem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951 PMID: 26400175]
[19]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[20]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[21]
BIOVIA. Discovery studio modeling environment, Release 2017 San Diego 2016.
[22]
Benarous,k; Bombarda, I; Iriepa, I; Moraleda, I; Gaetan, H; Linani, A; Tahri, D; Sebaa, M; Yousfi, M. Harmaline and hispidin from peganumharmala and inonotushispidus with binding affinity to candida rugosa lipase: In silico and in vitro studies. Bioorg. Chem., 2015, 62, 1-7.
[http://dx.doi.org/10.1016/j.bioorg.2015.06.005]
[23]
Serseg, T.; Benarous, K. The inhibitory effect of some drugs on candida rugosa lipase and human pancreatic lipase: In vitro and in silico studies. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(6), 602-609.
[http://dx.doi.org/10.2174/1871530318666180319093342] [PMID: 29557755]
[24]
Taha, M.; Irshad, M.; Imran, S.; Rahim, F. Based carbohydrazide derivatives as amylase inhibitor and their molecular docking study. Heteroatom Chemistry, 2019, 8, 7502347.
[http://dx.doi.org///doi.org/10.1155/2019/7502347]
[25]
Hung Jhong, C.; Riyaphan, J.; Hung Lin, S.; Chia, Y. Screening alpha-glucosidase and alpha amylaseinhibitors from natural compounds by molecular docking in silico. Biotechnol. Appl. Biochem., 2015, 41(4), 242-251.
[http://dx.doi.org/10.1002/biof.1219]
[26]
Martinez Gonzalez, A.I.; Diaz Sanchez, A.G.; de la Rosa, L.A.; Bustos-Jaimes, I.; Alvarez-Parrilla, E. Inhibition of alpha amylase by flavonoids: Structure activity relationship (SAR). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 437-447.
[http://dx.doi.org/10.1016/j.saa.2018.08.057] [PMID: 30172871]
[27]
Yilmazer Musa, M; Griffith, A.M; Michels, A.J; Schneider, E; Frei, B. Inhibition of alpha amylase and alpha glucosidase activity by tea and grape seed extracts and their constituent catechins. J. Agric. Food Chem., 2012, 60(36), 8924-8929.
[http://dx.doi.org/10.1021/jf301147n]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy