Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

General Research Article

Microwave Thermal Effect on Diels-Alder Reaction of Furan and Maleimide

Author(s): Simin Sun, Chong Teng and Jiaxi Xu*

Volume 7, Issue 1, 2020

Page: [67 - 73] Pages: 7

DOI: 10.2174/2213335607666200101093318

Price: $65

Abstract

Background: Higher temperature regions (hot spots) have been observed in organic reactions and are attributed to microwave selective heating. The accumulated heat in reaction systems accelerates certain reactions.

Methods: The theoretical calculation was applied to select a suitable Diels-Alder reaction as a molecular probe to determine the microwave thermal effect on Diels-Alder reaction, one class of bimolecular reactions. The kinetic investigations were utilized to determine the reaction activation energies and further to calculate the actual reaction temperatures under different microwave conditions from the Arrhenius equation.

Results: On the basis of the theoretical calculational results, Diels-Alder reaction of furan and maleimide was selected as a molecular probe to determine the microwave thermal effect in Diels- Alder reaction. Their activation energies under thermal conditions were determined from kinetic data by using the Arrhenius equation. The actual reaction temperatures under different microwave conditions were further deduced from their activation energies and the Arrhenius equation.

Conclusion: Higher temperature regions (hot spots) were observed in Diels-Alder reaction, and they are more obvious in less polar solvents than those in more polar solvents in the microwave irradiated reactions.

Keywords: Selective heating, microwave irradiation, microwave effect, arrhenius equation, hot spots, diels-alder reaction.

Graphical Abstract

[1]
Kappe, C.O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527606556]
[2]
Oliver Kappe, C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev., 2008, 37(6), 1127-1139.
[http://dx.doi.org/10.1039/b803001b] [PMID: 18497926]
[3]
Xu, J.X. Microwave irradiation and selectivities in organic reactions. Huaxue Jinzhan, 2007, 19, 700-712.
[4]
Liang, Y.; Jiao, L.; Zhang, S.; Xu, J. Microwave- and photoirradiation-induced staudinger reactions of cyclic imines and ketenes generated from α-diazoketones. A further investigation into the stereochemical process. J. Org. Chem., 2005, 70(1), 334-337.
[http://dx.doi.org/10.1021/jo048328o] [PMID: 15624943]
[5]
Hu, L.B.; Wang, Y.K.; Li, B.N.; Du, D-M.; Xu, J.X. Diastereoselectivity in the staudinger reaction: A useful probe for investigation of nonthermal microwave effects. Tetrahedron, 2007, 63, 9387-9392.
[http://dx.doi.org/10.1016/j.tet.2007.06.112]
[6]
Li, S.Q.; Chen, X.P.; Xu, J.X. Microwave-assisted copper-catalyzed stereoselective ring expansions of three-membered heterocycles with α-diazo-β-dicarbonyl compounds. Tetrahedron, 2018, 74, 1613-1620.
[http://dx.doi.org/10.1016/j.tet.2018.01.014]
[7]
Xu, C.C.; Lu, Y.; Xu, K.N.; Xu, J.X. BF3·OEt2-Catalyzed synthesis of anti-β-(N-arylamino)-α-hydroxynitriles by regio- and diastereospecific ring-opening of 3-aryloxirane-2-carbonitriles with anilines. Synthesis, 2020, 52, 602-608.
[http://dx.doi.org/10.1055/s-0039-1690243]
[8]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57, 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X]
[9]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[10]
Dudley, G.B.; Richert, R.; Stiegman, A.E. On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem. Sci. (Camb.), 2015, 6(4), 2144-2152.
[http://dx.doi.org/10.1039/C4SC03372H] [PMID: 29308138]
[11]
Kappe, C.O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: myth or reality? Angew. Chem. Int. Ed. Engl., 2013, 52(4), 1088-1094.
[http://dx.doi.org/10.1002/anie.201204103] [PMID: 23225754]
[12]
Gabriel, C.; Gabriel, S.; Grant, E.H.; Halsteadb, B.S.J.; Mingos, D.M.P. Dielectric parameters relevant to microwave dielectric heating. Chem. Soc. Rev., 1998, 27, 213-223.
[http://dx.doi.org/10.1039/a827213z]
[13]
Kappe, C.O. How to measure reaction temperature in microwave-heated transformations. Chem. Soc. Rev., 2013, 42(12), 4977-4990.
[http://dx.doi.org/10.1039/c3cs00010a] [PMID: 23443140]
[14]
Obermayer, D.; Gutmann, B.; Kappe, C.O. Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew. Chem. Int. Ed. Engl., 2009, 48(44), 8321-8324.
[http://dx.doi.org/10.1002/anie.200904185] [PMID: 19784993]
[15]
Li, X.H.; Xu, J.X. Effects of the microwave power on the microwave-assisted esterification. Curr. Microw. Chem., 2017, 4, 158-162.
[http://dx.doi.org/10.2174/2213335603666160906151018]
[16]
Li, X.H.; Xu, J.X. Identification of microwave selective heating effort in an intermolecular reaction with Hammett linear relationship as a molecular level probe. Curr. Microw. Chem., 2017, 4, 339-346.
[17]
Chen, P-K.; Rosana, M.R.; Dudley, G.B.; Stiegman, A.E. Parameters affecting the microwave-specific acceleration of a chemical reaction. J. Org. Chem., 2014, 79(16), 7425-7436.
[http://dx.doi.org/10.1021/jo5011526] [PMID: 25050921]
[18]
Li, X.H.; Xu, J.X. Determination on temperature gradient of different polar reactants in reaction mixture under microwave irradiation with molecular probe. Tetrahedron, 2016, 35, 5515-5520.
[http://dx.doi.org/10.1016/j.tet.2016.07.041]
[19]
Yang, D.Q.; Xu, J.X. Influence of the product polarity on temperature profiles in the microwave-assisted Claisen rearrangement. Curr. Microw. Chem., 2018, 5, 120-127.
[http://dx.doi.org/10.2174/2213335605666180425144619]
[20]
Leadbeater, N.E.; Smith, R.J. In situ Raman spectroscopy as a probe for the effect of power on microwave-promoted Suzuki coupling reactions. Org. Biomol. Chem., 2007, 5(17), 2770-2774.
[http://dx.doi.org/10.1039/b707692d] [PMID: 17700844]
[21]
Leadbeater, N.E.; Stencel, L.M.; Wood, E.C. Probing the effects of microwave irradiation on enzyme-catalysed organic transformations: the case of lipase-catalysed transesterification reactions. Org. Biomol. Chem., 2007, 5(7), 1052-1055.
[http://dx.doi.org/10.1039/b617544a] [PMID: 17377658]
[22]
Schmink, J.R.; Holcomb, J.L.; Leadbeater, N.E. Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations. Chemistry, 2008, 14(32), 9943-9950.
[http://dx.doi.org/10.1002/chem.200801158] [PMID: 18830985]
[23]
Schmink, J.R.; Leadbeater, N.E. Probing “microwave effects” using Raman spectroscopy. Org. Biomol. Chem., 2009, 7(18), 3842-3846.
[http://dx.doi.org/10.1039/b910591c] [PMID: 19707691]
[24]
Rulísek, L.; Sebek, P.; Havlas, Z.; Hrabal, R.; Capek, P.; Svatos, A. An experimental and theoretical study of stereoselectivity of furan-maleic anhydride and furan-maleimide diels-alder reactions. J. Org. Chem., 2005, 70(16), 6295-6302.
[http://dx.doi.org/10.1021/jo050759z] [PMID: 16050690]
[25]
Frisch, M.J.; Trucks, G.W. Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A. Jr.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.K.; Kudin, N.; Staroverov, V.N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.J.; Dannenberg, J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09, Revision D.01.; Gaussian, Inc.: Wallingford, CT, 2013.
[26]
Zhao, Y. Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc., 2008, 120, 215-241.
[http://dx.doi.org/10.1007/s00214-007-0310-x]
[27]
Furche, F.; Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys., 2002, 117, 7433-7487.
[http://dx.doi.org/10.1063/1.1508368]
[28]
Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys., 2006, 124(9), 94107.
[http://dx.doi.org/10.1063/1.2173258] [PMID: 16526845]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy