Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Effects of Medium Chain Fatty Acids on Intestinal Health of Monogastric Animals

Author(s): Manyi Jia, Yucheng Zhang , Yuqi Gao and Xi Ma*

Volume 21, Issue 8, 2020

Page: [777 - 784] Pages: 8

DOI: 10.2174/1389203721666191231145901

Price: $65

Abstract

Medium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.

Keywords: Medium-chain fatty acids (MCFAs), microbiota, gut barrier, inflammation, IBD, SOAs.

Graphical Abstract

[1]
De Smet, S.; Michiels, J.; Ovyn, A.; Dierick, N.; Laget, M.; Cools, A. Gut antibacterial effects of C7 and C9 carboxylic acids in the diet of piglets. J. Anim. Sci., 2016, 94(3), 54-57.
[http://dx.doi.org/10.2527/jas.2015-9532]
[2]
Boyen, F.; Haesebrouck, F.; Vanparys, A.; Volf, J.; Mahu, M.; Van Immerseel, F.; Rychlik, I.; Dewulf, J.; Ducatelle, R.; Pasmans, F. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet. Microbiol., 2008, 132(3-4), 319-327.
[http://dx.doi.org/10.1016/j.vetmic.2008.05.008] [PMID: 18583068]
[3]
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 2015, 112(18), 5649-5654.
[http://dx.doi.org/10.1073/pnas.1503141112] [PMID: 25792457]
[4]
Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci., 2019, 6(4), 48.
[http://dx.doi.org/10.3389/fvets.2019.00048] [PMID: 30886850]
[5]
Ramírez, M.; Amate, L.; Gil, A. Absorption and distribution of dietary fatty acids from different sources. Early Hum. Dev., 2001, 65(Suppl.), S95-S101.
[http://dx.doi.org/10.1016/S0378-3782(01)00211-0] [PMID: 11755040]
[6]
Carvajal, O.; Sakono, M.; Sonoki, H.; Nakayama, M.; Kishi, T.; Sato, M.; Ikeda, I.; Sugano, M.; Imaizumi, K. Structured triacylglycerol containing medium-chain fatty acids in sn-1(3) facilitates the absorption of dietary long-chain fatty acids in rats. Biosci. Biotechnol. Biochem., 2000, 64(4), 793-798.
[http://dx.doi.org/10.1271/bbb.64.793] [PMID: 10830495]
[7]
Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev., 2011, 12(1), 83-93.
[http://dx.doi.org/10.1017/S1466252311000089] [PMID: 21676342]
[8]
Guillot, E.; Vaugelade, P.; Lemarchal, P.; Rérat, A. Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs. Br. J. Nutr., 1993, 69(2), 431-442.
[http://dx.doi.org/10.1079/BJN19930045] [PMID: 8489999]
[9]
Vessey, D.A. Isolation and preliminary characterization of the medium-chain fatty acid:CoA ligase responsible for activation of short- and medium-chain fatty acids in colonic mucosa from swine. Dig. Dis. Sci., 2001, 46(2), 438-442.
[http://dx.doi.org/10.1023/A:1005677521373] [PMID: 11281196]
[10]
Dierick, N.A.; Decuypere, J.A.; Degeyter, I. The combined use of whole Cuphea seeds containing medium chain fatty acids and an exogenous lipase in piglet nutrition. Arch. Tierernahr., 2003, 57(1), 49-63.
[PMID: 12801079]
[11]
Manzanilla, E.G.; Perez, J.F.; Martin, M.; Kamel, C.; Baucells, F.; Gasa, J. Effect of plant extracts and formic acid on the intestinal equilibrium of early-weaned pigs. J. Anim. Sci., 2004, 82(11), 3210-3218.
[http://dx.doi.org/10.2527/2004.82113210x] [PMID: 15542467]
[12]
Ferrara, F.; Tedin, L.; Pieper, R.; Meyer, W.; Zentek, J. Influence of medium-chain fatty acids and short-chain organic acids on jejunal morphology and intra-epithelial immune cells in weaned piglets. J. Anim. Physiol. Anim. Nutr. (Berl.), 2017, 101(3), 531-540.
[http://dx.doi.org/10.1111/jpn.12490] [PMID: 26919402]
[13]
Zentek, J.; Buchheit-Renko, S.; Männer, K.; Pieper, R.; Vahjen, W. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets. Arch. Anim. Nutr., 2012, 66(1), 14-26.
[http://dx.doi.org/10.1080/1745039X.2011.644916] [PMID: 22397093]
[14]
Thormar, H.; Hilmarsson, H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids, 2007, 150(1), 1-11.
[http://dx.doi.org/10.1016/j.chemphyslip.2007.06.220] [PMID: 17686469]
[15]
Yang, H.T.; Chen, J.W.; Rathod, J.; Jiang, Y.Z.; Tsai, P.J.; Hung, Y.P.; Ko, W.C.; Paredes-Sabja, D.; Huang, I.H. Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Front. Microbiol., 2018, 8, 2635.
[http://dx.doi.org/10.3389/fmicb.2017.02635] [PMID: 29387044]
[16]
Messens, W.; Goris, J.; Dierick, N.; Herman, L.; Heyndrickx, M. Inhibition of Salmonella typhimurium by medium-chain fatty acids in an in vitro simulation of the porcine cecum. Vet. Microbiol., 2010, 141(1-2), 73-80.
[http://dx.doi.org/10.1016/j.vetmic.2009.08.002] [PMID: 19709819]
[17]
Mamantopoulos, M.; Ronchi, F.; McCoy, K.D.; Wullaert, A. Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions. Gut Microbes, 2018, 9(4), 374-381.
[http://dx.doi.org/10.1080/19490976.2017.1421888] [PMID: 29672197]
[18]
Elhenawy, W.; Oberc, A.; Coombes, B.K. A polymicrobial view of disease potential in Crohn’s-associated adherent-invasive E. coli. Gut Microbes, 2018, 9(2), 166-174.
[http://dx.doi.org/10.1080/19490976.2017.1378291] [PMID: 28914579]
[19]
Anjuwon-Foster, B.R.; Tamayo, R. Phase variation of Clostridium difficile virulence factors. Gut Microbes, 2018, 9(1), 76-83.
[http://dx.doi.org/10.1080/19490976.2017.1362526] [PMID: 28806147]
[20]
Farowski, F.; Els, G.; Tsakmaklis, A.; Higgins, P.G.; Kahlert, C.R.; Stein-Thoeringer, C.K.; Bobardt, J.S.; Dettmer-Wilde, K.; Oefner, P.J.; Vehreschild, J.J.; Vehreschild, M.J.G.T. Assessment of urinary 3-indoxyl sulfate as a marker for gut microbiota diversity and abundance of Clostridiales. Gut Microbes, 2019, 10(2), 133-141.
[http://dx.doi.org/10.1080/19490976.2018.1502536] [PMID: 30118620]
[21]
Collins, J.; Danhof, H.; Britton, R.A. The role of trehalose in the global spread of epidemic Clostridium difficile. Gut Microbes, 2019, 10(2), 204-209.
[http://dx.doi.org/10.1080/19490976.2018.1491266] [PMID: 30118389]
[22]
Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Richard, M.L.; Beaugerie, L. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 2018, 9(1), 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[23]
Bergsson, G.; Arnfinnsson, J.; Karlsson, S.M.; Steingrímsson, O.; Thormar, H. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob. Agents Chemother., 1998, 42(9), 2290-2294.
[http://dx.doi.org/10.1128/AAC.42.9.2290] [PMID: 9736551]
[24]
Bergsson, G.; Arnfinnsson, J.; Steingrímsson, O.; Thormar, H. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS, 2001, 109(10), 670-678.
[http://dx.doi.org/10.1034/j.1600-0463.2001.d01-131.x] [PMID: 11890570]
[25]
Bergsson, G.; Steingrímsson, O.; Thormar, H. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori. Int. J. Antimicrob. Agents, 2002, 20(4), 258-262.
[http://dx.doi.org/10.1016/S0924-8579(02)00205-4] [PMID: 12385681]
[26]
Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9(4), 308-325.
[http://dx.doi.org/10.1080/19490976.2018.1465157] [PMID: 29667480]
[27]
Mann, P.E.; Huynh, K.; Widmer, G. Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes, 2018, 9(2), 143-154.
[http://dx.doi.org/10.1080/19490976.2017.1395122] [PMID: 29135334]
[28]
Wang, J.; Lu, J.; Xie, X.; Xiong, J.; Huang, N.; Wei, H.; Jiang, S.; Peng, J. Blend of organic acids and medium chain fatty acids prevents the inflammatory response and intestinal barrier dysfunction in mice challenged with enterohemorrhagic Escherichia coli O157:H7. Int. Immunopharmacol., 2018, 58, 64-71.
[http://dx.doi.org/10.1016/j.intimp.2018.03.014] [PMID: 29555328]
[29]
Long, S.; Xu, Y.; Pan, L.; Wang, Q.; Wang, C.; Wu, J.; Wu, Y.; Han, Y.; Yun, C.; Piao, X. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim. Feed Sci. Technol., 2018, 235, 23-32.
[http://dx.doi.org/10.1016/j.anifeedsci.2017.08.018]
[30]
Kim, S.A.; Rhee, M.S. Marked synergistic bactericidal effects and mode of action of medium-chain fatty acids in combination with organic acids against Escherichia coli O157:H7. Appl. Environ. Microbiol., 2013, 79(21), 6552-6560.
[http://dx.doi.org/10.1128/AEM.02164-13] [PMID: 23956396]
[31]
Zeng, X.; Sunkara, L.T.; Jiang, W.; Bible, M.; Carter, S.; Ma, X.; Qiao, S.; Zhang, G. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs. PLoS One, 2013, 8(8)e72922
[http://dx.doi.org/10.1371/journal.pone.0072922] [PMID: 24023657]
[32]
Sunkara, L.T.; Jiang, W.; Zhang, G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One, 2012, 7(11)e49558
[http://dx.doi.org/10.1371/journal.pone.0049558] [PMID: 23166711]
[33]
Jiang, W.; Sunkara, L.T.; Zeng, X.; Deng, Z.; Myers, S.M.; Zhang, G. Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs. Peptides, 2013, 50, 129-138.
[http://dx.doi.org/10.1016/j.peptides.2013.10.008] [PMID: 24140860]
[34]
Weis, A.M.; Soto, R.; Round, J.L. Commensal regulation of T cell survival through Erdr1. Gut Microbes, 2018, 9(5), 458-464.
[http://dx.doi.org/10.1080/19490976.2018.1441662] [PMID: 29543554]
[35]
Solano-Aguilar, G.; Shea-Donohue, T.; Madden, K.B.; Quinoñes, A.; Beshah, E.; Lakshman, S.; Xie, Y.; Dawson, H.; Urban, J.F. Bifidobacterium animalis subspecies lactis modulates the local immune response and glucose uptake in the small intestine of juvenile pigs infected with the parasitic nematode Ascaris suum. Gut Microbes, 2018, 9(5), 422-436.
[http://dx.doi.org/10.1080/19490976.2018.1460014] [PMID: 30024817]
[36]
Lindmark, T.; Kimura, Y.; Artursson, P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J. Pharmacol. Exp. Ther., 1998, 284(1), 362-369.
[PMID: 9435199]
[37]
Martínez-Vallespín, B.; Vahjen, W.; Zentek, J. Effects of medium-chain fatty acids on the structure and immune response of IPEC-J2 cells. Cytotechnology, 2016, 68(5), 1925-1936.
[http://dx.doi.org/10.1007/s10616-016-0003-1] [PMID: 27553650]
[38]
Muredda, L.; Kępczyńska, M.A.; Zaibi, M.S.; Alomar, S.Y.; Trayhurn, P. IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch. Physiol. Biochem., 2018, 124(2), 97-108.
[http://dx.doi.org/10.1080/13813455.2017.1364774] [PMID: 28835131]
[39]
Alvarez-Curto, E.; Milligan, G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochem. Pharmacol., 2016, 114, 3-13.
[http://dx.doi.org/10.1016/j.bcp.2016.03.017] [PMID: 27002183]
[40]
Takafumi, H.; Daiji, K.; Atsuhikob, I.; Ikuo, K.; Gozoh, T.; Akira, H. Role of free fatty acids receptors in the regulation of energy metabolism. Biochim. Biophys. Acta, 2014, 1841(9), 1292-1300.
[http://dx.doi.org/10.1016/j.bbalip.2014.06.002]
[41]
Bouchard, C.; Pagé, J.; Bédard, A.; Tremblay, P.; Vallières, L. G protein-coupled receptor 84, a microglia-associated protein expressed in neuroinflammatory conditions. Glia, 2007, 55(8), 790-800.
[http://dx.doi.org/10.1002/glia.20506] [PMID: 17390309]
[42]
Lattin, J.E.; Schroder, K.; Su, A.I.; Walker, J.R.; Zhang, J.; Wiltshire, T.; Saijo, K.; Glass, C.K.; Hume, D.A.; Kellie, S.; Sweet, M.J. Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Res., 2008, 4, 5.
[http://dx.doi.org/10.1186/1745-7580-4-5] [PMID: 18442421]
[43]
Yousefi, S.; Cooper, P.R.; Potter, S.L.; Mueck, B.; Jarai, G. Cloning and expression analysis of a novel G-protein-coupled receptor selectively expressed on granulocytes. J. Leukoc. Biol., 2001, 69(6), 1045-1052.
[PMID: 11404393]
[44]
Kono, H.; Fujii, H.; Asakawa, M.; Maki, A.; Amemiya, H.; Hirai, Y.; Matsuda, M.; Yamamoto, M. Medium-chain triglycerides enhance secretory IgA expression in rat intestine after administration of endotoxin. Am. J. Physiol. Gastrointest. Liver Physiol., 2004, 286(6), G1081-G1089.
[http://dx.doi.org/10.1152/ajpgi.00457.2003] [PMID: 15132951]
[45]
Wang, J.; Wu, X.; Simonavicius, N.; Tian, H.; Ling, L. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J. Biol. Chem., 2006, 281(45), 34457-34464.
[http://dx.doi.org/10.1074/jbc.M608019200] [PMID: 16966319]
[46]
Lee, J.Y.; Sohn, K.H.; Rhee, S.H.; Hwang, D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J. Biol. Chem., 2001, 276(20), 16683-16689.
[http://dx.doi.org/10.1074/jbc.M011695200] [PMID: 11278967]
[47]
Shi, H.; Kokoeva, M.V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J.S. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest., 2006, 116(11), 3015-3025.
[http://dx.doi.org/10.1172/JCI28898] [PMID: 17053832]
[48]
Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; Balogh, A.; Ostermann, A.I.; Schebb, N.H.; Akkad, D.A.; Grohme, D.A.; Kleinewietfeld, M.; Kempa, S.; Thöne, J.; Demir, S.; Müller, D.N.; Gold, R.; Linker, R.A. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2015, 43(4), 817-829.
[http://dx.doi.org/10.1016/j.immuni.2015.09.007] [PMID: 26488817]
[49]
Minton, K. T cell responses: A long-chain reaction. Nat. Rev. Immunol., 2015, 15(12), 726-727.
[http://dx.doi.org/10.1038/nri3934] [PMID: 26515077]
[50]
Neumann, C.; Blume, J.; Roy, U.; Teh, P.P.; Vasanthakumar, A.; Beller, A.; Liao, Y.; Heinrich, F.; Arenzana, T.L.; Hackney, J.A.; Eidenschenk, C.; Gálvez, E.J.C.; Stehle, C.; Heinz, G.A.; Maschmeyer, P.; Sidwell, T.; Hu, Y.; Amsen, D.; Romagnani, C.; Chang, H.D.; Kruglov, A.; Mashreghi, M.F.; Shi, W.; Strowig, T.; Rutz, S.; Kallies, A.; Scheffold, A. c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host-microbiota homeostasis. Nat. Immunol., 2019, 20(4), 471-481.
[http://dx.doi.org/10.1038/s41590-019-0316-2] [PMID: 30778241]
[51]
Pellissier, S.; Bonaz, B. The Place of Stress and Emotions in the Irritable Bowel Syndrome. Vitam. Horm., 2017, 103, 327-354.
[http://dx.doi.org/10.1016/bs.vh.2016.09.005] [PMID: 28061975]
[52]
Codling, C.; O’Mahony, L.; Shanahan, F.; Quigley, E.M.; Marchesi, J.R. A molecular analysis of fecal and mucosal bacterial communities in irritable bowel syndrome. Dig. Dis. Sci., 2010, 55(2), 392-397.
[http://dx.doi.org/10.1007/s10620-009-0934-x] [PMID: 19693670]
[53]
Posserud, I.; Stotzer, P.O.; Björnsson, E.S.; Abrahamsson, H.; Simrén, M. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut, 2007, 56(6), 802-808.
[http://dx.doi.org/10.1136/gut.2006.108712] [PMID: 17148502]
[54]
Simon, G.L.; Gorbach, S.L. Intestinal flora in health and disease. Gastroenterology, 1984, 86(1), 174-193.
[http://dx.doi.org/10.1016/0016-5085(84)90606-1] [PMID: 6357937]
[55]
Li, H.; Liu, Y.; Zhang, X.; Xu, Q.; Zhang, Y.; Xue, C.; Guo, C. Medium-chain fatty acids decrease serum cholesterol via reduction of intestinal bile acidreabsorption in C57BL/6J mice. Nutr. Metab. (Lond.), 2018, 1(5), 15-37.
[56]
Liu, Y.; Zhang, Y.; Zhang, X.; Xu, Q.; Yang, X.; Xue, C. Medium-chain fatty acids reduce serum cholesterol by regulating the metabolism of bile acid in C57BL/6J mice. Food Funct., 2017, 8(1), 291-298.
[http://dx.doi.org/10.1039/C6FO01207H] [PMID: 28009872]
[57]
Koloski, N.; Jones, M.; Walker, M.M.; Veysey, M.; Zala, A.; Keely, S.; Holtmann, G.; Talley, N.J. Population based study: atopy and autoimmune diseases are associated with functional dyspepsia and irritable bowel syndrome, independent of psychological distress. Aliment. Pharmacol. Ther., 2019, 49(5), 546-555.
[http://dx.doi.org/10.1111/apt.15120] [PMID: 30687959]
[58]
Geng, C.; Meng, Q.; Zhang, M.; Liu, X. Effects of medium chain fatty acid on animal growth performance and the possible mechanism. Feed Industry., 2014, 35(17), 27-31.
[59]
Braude, R.; Mitchell, K.G.; Myres, A.W.; Newport, M.J.; Cuthbertson, A. The replacement of protein concentrates by synthetic lysine in the diet of growing pigs. Br. J. Nutr., 1972, 27(1), 169-175.
[http://dx.doi.org/10.1079/BJN19720080] [PMID: 5059379]
[60]
Allee, G.L.; Romsos, D.R.; Leveille, G.A.; Baker, D.H. Metabolic consequences of dietary medium-chain triglycerides in the pig. Proc. Soc. Exp. Biol. Med., 1972, 139(2), 422-427.
[http://dx.doi.org/10.3181/00379727-139-36158] [PMID: 5059032]
[61]
Dove, C.R. The effect of adding copper and various fat sources to the diets of weanling swine on growth performance and serum fatty acid profiles. J. Anim. Sci., 1993, 71(8), 2187-2192.
[http://dx.doi.org/10.2527/1993.7182187x] [PMID: 8376244]
[62]
Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: concept, possibilities and limitations. An overview. Nutr. Res. Rev., 2003, 16(2), 193-210.
[http://dx.doi.org/10.1079/NRR200369] [PMID: 19087389]
[63]
Han, Y.K.; Hwang, I.H.; Thacker, P.A. Use of a micro-encapsulated eucalyptus-medium chain fatty acid product as an alternative to zinc oxide and antibiotics for weaned pigs. J. Swine Health Prod., 2011, 19(1), 34-43.
[64]
Hanczakowska, E.; Szewczyk, A.; Swiatkiewicz, M.; Okoń, K. Short- and medium-chain fatty acids as a feed supplement for weaning and nursery pigs. Pol. J. Vet. Sci., 2013, 16(4), 647-654.
[http://dx.doi.org/10.2478/pjvs-2013-0092] [PMID: 24597298]
[65]
Shokrollahi, B.; Yavari, Z.; Kordestani, A.H. Effects of dietary medium-chain fatty acids on performance, carcass characteristics, and some serum parameters of broiler chickens. Br. Poult. Sci., 2014, 55(5), 662-667.
[http://dx.doi.org/10.1080/00071668.2014.955836] [PMID: 25166886]
[66]
Wang, J.; Wang, X.; Li, J.; Chen, Y.; Yang, W.; Zhang, L. Effects of dietary coconut oil as a medium-chain fatty acid source on performance, carcass composition and serum lipids in male broiler. Asian-Australas. J. Anim. Sci., 2015, 28(2), 223-230.
[http://dx.doi.org/10.5713/ajas.14.0328] [PMID: 25557818]
[67]
Wang, J.P.; Kim, I.H. Effect of caprylic acid and Yucca schidigera extract on production performance, egg quality, blood characteristics, and excreta microflora in laying hens. Br. Poult. Sci., 2011, 52(6), 711-717.
[http://dx.doi.org/10.1080/00071668.2011.635638] [PMID: 22221237]
[68]
Yang, K.M.; Jiang, Z.Y.; Zheng, C.T.; Wang, L.; Yang, X.F. Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci., 2014, 92(4), 1496-1503.
[http://dx.doi.org/10.2527/jas.2013-6619] [PMID: 24492550]
[69]
Nishi, Y.; Mifune, H.; Kojima, M. Ghrelin acylation by ingestion of medium-chain fatty acids. Methods Enzymol., 2012, 514, 303-315.
[http://dx.doi.org/10.1016/B978-0-12-381272-8.00019-2] [PMID: 22975061]
[70]
Odle, J.; Benevenga, N.J.; Crenshaw, T.D. Utilization of medium-chain triglycerides by neonatal piglets: chain length of even- and odd-carbon fatty acids and apparent digestion/absorption and hepatic metabolism. J. Nutr., 1991, 121(5), 605-614.
[http://dx.doi.org/10.1093/jn/121.5.605] [PMID: 2019870]
[71]
Piva, A.; Pizzamiglio, V.; Morlacchini, M.; Tedeschi, M.; Piva, G. Lipid microencapsulation allows slow release of organic acids and natural identical flavors along the swine intestine. J. Anim. Sci., 2007, 85(2), 486-493.
[http://dx.doi.org/10.2527/jas.2006-323] [PMID: 17040943]
[72]
Li, J.; Wang, Y.; Tang, L.; de Villiers, W.J.; Cohen, D.; Woodward, J.; Finkelman, F.D.; Eckhardt, E.R. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J. Allergy Clin. Immunol., 2013, 131(2), 442-450.
[http://dx.doi.org/10.1016/j.jaci.2012.10.011] [PMID: 23182172]
[73]
Wang, Y.; Ghoshal, S.; Ward, M.; de Villiers, W.; Woodward, J.; Eckhardt, E. Chylomicrons promote intestinal absorption and systemic dissemination of dietary antigen (ovalbumin) in mice. PLoS One, 2009, 4(12)e8442
[http://dx.doi.org/10.1371/journal.pone.0008442] [PMID: 20041190]
[74]
Haidukewych, D.; Forsythe, W.I.; Sills, M. Monitoring octanoic and decanoic acids in plasma from children with intractable epilepsy treated with medium-chain triglyceride diet. Clin. Chem., 1982, 28(4 Pt 1), 642-645.
[http://dx.doi.org/10.1093/clinchem/28.4.642] [PMID: 7074833]
[75]
Wollin, S.D.; Wang, Y.; Kubow, S.; Jones, P.J. Effects of a medium chain triglyceride oil mixture and alpha-lipoic acid diet on body composition, antioxidant status, and plasma lipid levels in the Golden Syrian hamster. J. Nutr. Biochem., 2004, 15(7), 402-410.
[http://dx.doi.org/10.1016/j.jnutbio.2003.12.001] [PMID: 15219925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy