Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Identification of Novel Cyclin A2 Binding Site and Nanomolar Inhibitors of Cyclin A2-CDK2 Complex

Author(s): Stephanie S. Kim, Michele J. Alves, Patrick Gygli, Jose Otero* and Steffen Lindert*

Volume 17, Issue 1, 2021

Published on: 31 December, 2019

Page: [57 - 68] Pages: 12

DOI: 10.2174/1573409916666191231113055

Price: $65

Abstract

Background: Given the diverse roles of cyclin A2 both in cell cycle regulation and in DNA damage response, identifying small molecule regulators of cyclin A2 activity carries significant potential to regulate diverse cellular processes in both ageing/neurodegeneration and in cancer.

Objective: Based on cyclin A2’s recently discovered role in DNA repair, we hypothesized that small molecule inhibitors that were predicted to bind to both cyclin A2 and CDK2 will be useful as a radiosensitizer of cancer cells. In this study, we used structure-based drug discovery to find inhibitors that target both cyclin A2 and CDK2.

Methods: Molecular dynamics simulations were used to generate diverse binding pocket conformations for application of the relaxed complex scheme. We then used structure-based virtual screening to find potential dual cyclin A2 and CDK2 inhibitors. Based on a consensus score of docked poses from Glide and AutoDock Vina, we identified about 40 promising hit compounds, where all PAINS scaffolds were removed from consideration. A biochemical luminescence assay of cyclin A2-CDK2 function was used for experimental verification.

Results: Four lead inhibitors of cyclin A2-CDK2 complex have been identified using a relaxed complex scheme virtual screen have been verified in a biochemical luminescence assay of cyclin A2- CDK2 function. Two of the four lead inhibitors had inhibitory concentrations in the nanomolar range.

Conclusion: The four cyclin A2-CDK2 complex inhibitors are the first reported inhibitors that were specifically designed not to target the cyclin A2-CDK2 protein-protein interface. Overall, our results highlight the potential of combined advanced computational tools and biochemical verification to discover novel binding scaffolds.

Keywords: Cyclin A2, structure-based drug discovery, virtual screening, computational drug discovery, polypharmacology, PAINS.

Graphical Abstract

[1]
Amaro, R.E.; Baron, R.; McCammon, J.A. An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J. Comput. Aided Mol. Des., 2008, 22(9), 693-705.
[http://dx.doi.org/10.1007/s10822-007-9159-2] [PMID: 18196463]
[2]
Lin, J.H.; Perryman, A.L.; Schames, J.R.; McCammon, J.A. The relaxed complex method: accommodating receptor flexibility for drug design with an improved scoring scheme. Biopolymers, 2003, 68(1), 47-62.
[http://dx.doi.org/10.1002/bip.10218] [PMID: 12579579]
[3]
Lin, J-H.; Perryman, A.L.; Schames, J.R.; McCammon, J.A. Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J. Am. Chem. Soc., 2002, 124(20), 5632-5633.
[http://dx.doi.org/10.1021/ja0260162] [PMID: 12010024]
[4]
Pagano, M.; Pepperkok, R.; Verde, F.; Ansorge, W.; Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO J., 1992, 11(3), 961-971.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05135.x] [PMID: 1312467]
[5]
Arsic, N.; Bendris, N.; Peter, M.; Begon-Pescia, C.; Rebouissou, C.; Gadéa, G.; Bouquier, N.; Bibeau, F.; Lemmers, B.; Blanchard, J.M. A novel function for Cyclin A2: control of cell invasion via RhoA signaling. J. Cell Biol., 2012, 196(1), 147-162.
[http://dx.doi.org/10.1083/jcb.201102085] [PMID: 22232705]
[6]
Kanakkanthara, A.; Jeganathan, K.B.; Limzerwala, J.F.; Baker, D.J.; Hamada, M.; Nam, H.J.; van Deursen, W.H.; Hamada, N.; Naylor, R.M.; Becker, N.A.; Davies, B.A.; van Ree, J.H.; Mer, G.; Shapiro, V.S.; Maher, L.J., III; Katzmann, D.J.; van Deursen, J.M. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science, 2016, 353(6307), 1549-1552.
[http://dx.doi.org/10.1126/science.aaf7463] [PMID: 27708105]
[7]
Gallego-Perez, D.; Otero, J.J.; Czeisler, C.; Ma, J.; Ortiz, C.; Gygli, P.; Catacutan, F.P.; Gokozan, H.N.; Cowgill, A.; Sherwood, T.; Ghatak, S.; Malkoc, V.; Zhao, X.; Liao, W.C.; Gnyawali, S.; Wang, X.; Adler, A.F.; Leong, K.; Wulff, B.; Wilgus, T.A.; Askwith, C.; Khanna, S.; Rink, C.; Sen, C.K.; Lee, L.J. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine (Lond.), 2015, 12(2), 399-409.
[PMID: 26711960]
[8]
Otero, J.J.; Kalaszczynska, I.; Michowski, W.; Wong, M.; Gygli, P.E.; Gokozan, H.N.; Griveau, A.; Odajima, J.; Czeisler, C.; Catacutan, F.P.; Murnen, A.; Schüller, U.; Sicinski, P.; Rowitch, D. Cerebellar cortical lamination and foliation require cyclin A2. Dev. Biol., 2014, 385(2), 328-339.
[http://dx.doi.org/10.1016/j.ydbio.2013.10.019] [PMID: 24184637]
[9]
Gygli, P.E.; Chang, J.C.; Gokozan, H.N.; Catacutan, F.P.; Schmidt, T.A.; Kaya, B.; Goksel, M.; Baig, F.S.; Chen, S.; Griveau, A.; Michowski, W.; Wong, M.; Palanichamy, K.; Sicinski, P.; Nelson, R.J.; Czeisler, C.; Otero, J.J. Cyclin A2 promotes DNA repair in the brain during both development and aging. Aging (Albany NY), 2016, 8(7), 1540-1570.
[http://dx.doi.org/10.18632/aging.100990] [PMID: 27425845]
[10]
Madabhushi, R.; Pan, L.; Tsai, L.H. DNA damage and its links to neurodegeneration. Neuron, 2014, 83(2), 266-282.
[http://dx.doi.org/10.1016/j.neuron.2014.06.034] [PMID: 25033177]
[11]
Suberbielle, E.; Sanchez, P.E.; Kravitz, A.V.; Wang, X.; Ho, K.; Eilertson, K.; Devidze, N.; Kreitzer, A.C.; Mucke, L. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci., 2013, 16(5), 613-621.
[http://dx.doi.org/10.1038/nn.3356] [PMID: 23525040]
[12]
Brown, N.R.; Noble, M.E.; Endicott, J.A.; Garman, E.F.; Wakatsuki, S.; Mitchell, E.; Rasmussen, B.; Hunt, T.; Johnson, L.N. The crystal structure of cyclin A. Structure, 1995, 3(11), 1235-1247.
[http://dx.doi.org/10.1016/S0969-2126(01)00259-3] [PMID: 8591034]
[13]
Andrews, M.J.; McInnes, C.; Kontopidis, G.; Innes, L.; Cowan, A.; Plater, A.; Fischer, P.M. Design, synthesis, biological activity and structural analysis of cyclic peptide inhibitors targeting the substrate recruitment site of cyclin-dependent kinase complexes. Org. Biomol. Chem., 2004, 2(19), 2735-2741.
[http://dx.doi.org/10.1039/b409157d] [PMID: 15455144]
[14]
Xie, L.; Xie, L.; Kinnings, S.L.; Bourne, P.E. Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 361-379.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134630] [PMID: 22017683]
[15]
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[16]
Lu, L.; Payvandi, F.; Wu, L.; Zhang, L.H.; Hariri, R.J.; Man, H.W.; Chen, R.S.; Muller, G.W.; Hughes, C.C.; Stirling, D.I.; Schafer, P.H.; Bartlett, J.B. The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc. Res., 2009, 77(2), 78-86.
[http://dx.doi.org/10.1016/j.mvr.2008.08.003] [PMID: 18805433]
[17]
Lindert, S.; Zhu, W.; Liu, Y.L.; Pang, R.; Oldfield, E.; McCammon, J.A. Farnesyl diphosphate synthase inhibitors from in silico screening. Chem. Biol. Drug Des., 2013, 81(6), 742-748.
[http://dx.doi.org/10.1111/cbdd.12121] [PMID: 23421555]
[18]
Zhu, W.; Zhang, Y.; Sinko, W.; Hensler, M.E.; Olson, J.; Molohon, K.J.; Lindert, S.; Cao, R.; Li, K.; Wang, K.; Wang, Y.; Liu, Y.L.; Sankovsky, A.; de Oliveira, C.A.; Mitchell, D.A.; Nizet, V.; McCammon, J.A.; Oldfield, E. Antibacterial drug leads targeting isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA, 2013, 110(1), 123-128.
[http://dx.doi.org/10.1073/pnas.1219899110] [PMID: 23248302]
[19]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[20]
Talele, T.T.; Khedkar, S.A.; Rigby, A.C. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr. Top. Med. Chem., 2010, 10(1), 127-141.
[http://dx.doi.org/10.2174/156802610790232251] [PMID: 19929824]
[21]
Clark, D.E. What has computer-aided molecular design ever done for drug discovery? Expert Opin. Drug Discov., 2006, 1(2), 103-110.
[http://dx.doi.org/10.1517/17460441.1.2.103] [PMID: 23495794]
[22]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[23]
McGann, M. FRED pose prediction and virtual screening accuracy. J. Chem. Inf. Model., 2011, 51(3), 578-596.
[http://dx.doi.org/10.1021/ci100436p] [PMID: 21323318]
[24]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[25]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[26]
Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 1999, 37(2), 228-241.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228:AID-PROT8>3.0.CO;2-8] [PMID: 10584068]
[27]
Sinko, W.; Lindert, S.; McCammon, J.A. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug Des., 2013, 81(1), 41-49.
[http://dx.doi.org/10.1111/cbdd.12051] [PMID: 23253130]
[28]
Feixas, F.; Lindert, S.; Sinko, W.; McCammon, J.A. Exploring the role of receptor flexibility in structure-based drug discovery. Biophys. Chem., 2014, 186, 31-45.
[http://dx.doi.org/10.1016/j.bpc.2013.10.007] [PMID: 24332165]
[29]
Feng, X.; Zhu, W.; Schurig-Briccio, L.A.; Lindert, S.; Shoen, C.; Hitchings, R.; Li, J.; Wang, Y.; Baig, N.; Zhou, T.; Kim, B.K.; Crick, D.C.; Cynamon, M.; McCammon, J.A.; Gennis, R.B.; Oldfield, E. Antiinfectives targeting enzymes and the proton motive force. Proc. Natl. Acad. Sci. USA, 2015, 112(51), E7073-E7082.
[http://dx.doi.org/10.1073/pnas.1521988112] [PMID: 26644565]
[30]
Kim, M.O.; Feng, X.; Feixas, F.; Zhu, W.; Lindert, S.; Bogue, S.; Sinko, W.; de Oliveira, C.; Rao, G.; Oldfield, E.; McCammon, J.A. A molecular dynamics investigation of Mycobacterium tuberculosis prenyl synthases: conformational flexibility and implications for computer-aided drug discovery. Chem. Biol. Drug Des., 2015, 85(6), 756-769.
[http://dx.doi.org/10.1111/cbdd.12463] [PMID: 25352216]
[31]
Zinsser, V.L.; Lindert, S.; Banford, S.; Hoey, E.M.; Trudgett, A.; Timson, D.J. UDP-galactose 4′-epimerase from the liver fluke, Fasciola hepatica: biochemical characterization of the enzyme and identification of inhibitors. Parasitology, 2015, 142(3), 463-472.
[http://dx.doi.org/10.1017/S003118201400136X] [PMID: 25124392]
[32]
Banzo Marraco, J.I.; de la Fuente Domínguez, C.; Carril Carril, J.M.; Lloréns Abando, V.; Arnal Mendive, C.; Santos Capilla, J.L.; Pereda de la Reguera, A. Usefulness of hepatobiliary gammagraphy in the diagnosis of biliary obstruction. Rev. Clin. Esp., 1986, 179(5), 236-239.
[PMID: 3538244]
[33]
Barakat, K.; Tuszynski, J. Relaxed complex scheme suggests novel inhibitors for the lyase activity of DNA polymerase beta. J. Mol. Graph. Model., 2011, 29(5), 702-716.
[http://dx.doi.org/10.1016/j.jmgm.2010.12.003] [PMID: 21194999]
[34]
Barakat, K.; Mane, J.; Friesen, D.; Tuszynski, J. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions. J. Mol. Graph. Model., 2010, 28(6), 555-568.
[http://dx.doi.org/10.1016/j.jmgm.2009.12.003] [PMID: 20056466]
[35]
Barakat, K.H.; Torin Huzil, J.; Luchko, T.; Jordheim, L.; Dumontet, C.; Tuszynski, J. Characterization of an inhibitory dynamic pharmacophore for the ERCC1-XPA interaction using a combined molecular dynamics and virtual screening approach. J. Mol. Graph. Model., 2009, 28(2), 113-130.
[http://dx.doi.org/10.1016/j.jmgm.2009.04.009] [PMID: 19473860]
[36]
Lindert, S.; Meiler, J.; McCammon, J.A. Iterative molecular dynamics-rosetta protein structure refinement protocol to improve model quality. J. Chem. Theory Comput., 2013, 9(8), 3843-3847.
[http://dx.doi.org/10.1021/ct400260c] [PMID: 23956701]
[37]
Lindert, S.; Li, M.X.; Sykes, B.D.; McCammon, J.A. Computer-aided drug discovery approach finds calcium sensitizer of cardiac troponin. Chem. Biol. Drug Des., 2015, 85(2), 99-106.
[http://dx.doi.org/10.1111/cbdd.12381] [PMID: 24954187]
[38]
Lindert, S.; Cheng, Y.; Kekenes-Huskey, P.; Regnier, M.; McCammon, J.A. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations. Biophys. J., 2015, 108(2), 395-407.
[http://dx.doi.org/10.1016/j.bpj.2014.11.3461] [PMID: 25606687]
[39]
Liu, Y.L.; Lindert, S.; Zhu, W.; Wang, K.; McCammon, J.A.; Oldfield, E. Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Proc. Natl. Acad. Sci. USA, 2014, 111(25), E2530-E2539.
[http://dx.doi.org/10.1073/pnas.1409061111] [PMID: 24927548]
[40]
Menchon, G.; Bombarde, O.; Trivedi, M.; Négrel, A.; Inard, C.; Giudetti, B.; Baltas, M.; Milon, A.; Modesti, M.; Czaplicki, G.; Calsou, P. Structure-based virtual ligand screening on the XRCC4/DNA ligase IV interface. Sci. Rep., 2016, 6, 22878.
[http://dx.doi.org/10.1038/srep22878] [PMID: 26964677]
[41]
Wong, C.F. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases. Protein Sci., 2016, 25(1), 192-203.
[http://dx.doi.org/10.1002/pro.2716] [PMID: 26032746]
[42]
Bhutani, I.; Loharch, S.; Gupta, P.; Madathil, R.; Parkesh, R. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies. PLoS One, 2015, 10(3)e0119771
[http://dx.doi.org/10.1371/journal.pone.0119771] [PMID: 25789990]
[43]
Aprahamian, M.L.; Tikunova, S.B.; Price, M.V.; Cuesta, A.F.; Davis, J.P.; Lindert, S. Successful Identification of Cardiac Troponin calcium sensitizers using a combination of virtual screening and ROC analysis of known troponin C binders. J. Chem. Inf. Model., 2017, 57(12), 3056-3069.
[http://dx.doi.org/10.1021/acs.jcim.7b00536] [PMID: 29144742]
[44]
Lindert, S.; Tallorin, L.; Nguyen, Q.G.; Burkart, M.D.; McCammon, J.A. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors. J. Comput. Aided Mol. Des., 2015, 29(1), 79-87.
[http://dx.doi.org/10.1007/s10822-014-9806-3] [PMID: 25344312]
[45]
Lindert, S.; Maslennikov, I.; Chiu, E.J.; Pierce, L.C.; McCammon, J.A.; Choe, S. Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits. Biochem. Biophys. Res. Commun., 2014, 445(4), 724-733.
[http://dx.doi.org/10.1016/j.bbrc.2014.01.179] [PMID: 24525125]
[46]
Tutone, M.; Almerico, A.M. Recent advances on CDK inhibitors: An insight by means of in silico methods. Eur. J. Med. Chem., 2017, 142, 300-315.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.067] [PMID: 28802482]
[47]
Martin, M.P.; Endicott, J.A.; Noble, M.E.M. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem., 2017, 61(5), 439-452.
[http://dx.doi.org/10.1042/EBC20170040] [PMID: 29118092]
[48]
Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res., 2009, 37, W413-W416.
[http://dx.doi.org/10.1093/nar/gkp281]
[49]
National Cancer Institute. NIH: Division of Cancer Treatment & Diagnosis. Developmental Therapeutics Program. (Available from:. http://dtp.nci.nih.gov/branches/dscb/div2_explanation.html
[50]
MacKerell, A.D.; Bashford, D.; Bellott, M.; Dunbrack, R.L.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f] [PMID: 24889800]
[51]
Durrant, J.D.; Votapka, L.; Sørensen, J.; Amaro, R.E. POVME 2.0: An enhanced tool for determining pocket shape and volume characteristics. J. Chem. Theory Comput., 2014, 10(11), 5047-5056.
[http://dx.doi.org/10.1021/ct500381c] [PMID: 25400521]
[52]
Christen, M.; Hünenberger, P.H.; Bakowies, D.; Baron, R.; Bürgi, R.; Geerke, D.P.; Heinz, T.N.; Kastenholz, M.A.; Kräutler, V.; Oostenbrink, C.; Peter, C.; Trzesniak, D.; van Gunsteren, W.F. The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem., 2005, 26(16), 1719-1751.
[http://dx.doi.org/10.1002/jcc.20303] [PMID: 16211540]
[53]
Dahlin, J.L.; Nissink, J.W.; Strasser, J.M.; Francis, S.; Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M.A. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem., 2015, 58(5), 2091-2113.
[http://dx.doi.org/10.1021/jm5019093] [PMID: 25634295]
[54]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[55]
Kenyon, V.; Chorny, I.; Carvajal, W.J.; Holman, T.R.; Jacobson, M.P. Novel human lipoxygenase inhibitors discovered using virtual screening with homology models. J. Med. Chem., 2006, 49(4), 1356-1363.
[http://dx.doi.org/10.1021/jm050639j] [PMID: 16480270]
[56]
Kim, S.S.; Aprahamian, M.L.; Lindert, S. Improving inverse docking target identification with Z-score selection. Chem. Biol. Drug Des., 2019, 93(6), 1105-1116.
[http://dx.doi.org/10.1111/cbdd.13453] [PMID: 30604454]
[57]
Feher, M. Consensus scoring for protein-ligand interactions. Drug Discov. Today, 2006, 11(9-10), 421-428.
[http://dx.doi.org/10.1016/j.drudis.2006.03.009] [PMID: 16635804]
[58]
Clark, R.D.; Strizhev, A.; Leonard, J.M.; Blake, J.F.; Matthew, J.B. Consensus scoring for ligand/protein interactions. J. Mol. Graph. Model., 2002, 20(4), 281-295.
[http://dx.doi.org/10.1016/S1093-3263(01)00125-5] [PMID: 11858637]
[59]
Oda, A.; Tsuchida, K.; Takakura, T.; Yamaotsu, N.; Hirono, S. Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. J. Chem. Inf. Model., 2006, 46(1), 380-391.
[http://dx.doi.org/10.1021/ci050283k] [PMID: 16426072]
[60]
Charifson, P.S.; Corkery, J.J.; Murcko, M.A.; Walters, W.P. Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J. Med. Chem., 1999, 42(25), 5100-5109.
[http://dx.doi.org/10.1021/jm990352k] [PMID: 10602695]
[61]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358.
[http://dx.doi.org/10.1021/jm020155c] [PMID: 12213076]
[62]
Ohio Supercomputer Center 1987. (Available from:. http://osc.edu/ark:/19495/f5s1ph73

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy