Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Molecular Docking and Quantum Studies of Lawsone Dimers Derivatives: New Investigation of Antioxidant Behavior and Antifungal Activity

Author(s): Aldo S. de Oliveira*, David L. Palomino-Salcedo, Eduardo Zapp, Daniela Brondani, Thaynara D. Hoppe, Patrícia B. Brondani, Lidiane Meier, Susana Johann, Leonardo L.G. Ferreira and Adriano D. Andricopulo

Volume 20, Issue 3, 2020

Page: [182 - 191] Pages: 10

DOI: 10.2174/1568026620666191223092723

Price: $65

Abstract

Background: In general, fungal species are characterized by their opportunistic character and can trigger various infections in immunocompromised hosts. The emergence of infections associated with high mortality rates is due to the resistance mechanisms that these species develop.

Methods: This phenomenon of resistance denotes the need for the development of new and effective therapeutic approaches. In this paper, we report the investigation of the antioxidant and antifungal behavior of dimeric naphthoquinones derived from lawsone whose antimicrobial and antioxidant potential has been reported in the literature.

Results: Seven fungal strains were tested, and the antioxidant potential was tested using the combination of the methodologies: reducing power, total antioxidant capacity and cyclic voltammetry. Molecular docking studies (PDB ID 5V5Z and 1EA1) were conducted which allowed the derivation of structureactivity relationships (SAR). Compound 1-i, derived from 3-methylfuran-2-carbaldehyde showed the highest antifungal potential with an emphasis on the inhibition of Candida albicans species (MIC = 0.5 µg/mL) and the highest antioxidant potential.

Conclusion: A combination of molecular modeling data and in vitro assays can help to find new solutions to this major public health problem.

Keywords: Lawsone, Antifungals, Molecular docking, Antioxidant, Naphthoquinones, C. albicans.

Graphical Abstract

[1]
Paim, R.S.P.; Lorenzini, E. Strategies for prevention of bacterial resistance: contributions to patient safety. Rev. Cuid. (Bucaramanga), 2014, 5(2), 757-764.
[2]
Shankar, P.R. The evolving threat of antimicrobial resistance: options for action. Aus. Med. J., 2014, 5(4), 243-244.
[3]
Ventola, C.L. The antibiotic resistance crisis: causes and threats. P&T, 2015, 40(4), 277-283.
[4]
Ventola, C.L. The antibiotic resistance crisis: part 2: management strategies and new agents. P&T, 2015, 40(5), 344-352.
[PMID: 25987823]
[5]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[6]
Gur, S.; Turgut-Balik, D.; Gur, N. Antimicrobial activities and some fatty acids of turmeric, ginger root and linseed used in the treatment of infectious diseases. World J. Agric. Sci., 2006, 2(4), 439-442.
[7]
Parekh, J.; Chanda, S.V. In vitro antimicrobial activity and phytochemical analysis of some indian medicinal plants. Turk. J. Biol., 2007, 31(2007), 53-58.
[8]
Zumrutdal, E.; Ozaslan, M. A Miracle plant for the herbal pharmacy; Henna (Lawsonia Inermis). Int. J. Pharmacol., 2012, 8(6), 483-489.
[http://dx.doi.org/10.3923/ijp.2012.483.489]
[9]
Badoni Semwal, R.; Semwal, D.K.; Combrinck, S.; Cartwright-Jones, C.; Viljoen, A. Lawsonia inermis L. (henna): ethnobotanical, phytochemical and pharmacological aspects. J. Ethnopharmacol., 2014, 155(1), 80-103.
[http://dx.doi.org/10.1016/j.jep.2014.05.042] [PMID: 24886774]
[10]
Singh, D.K.; Luqman, S.; Mathur, A.K. Lawsonia Inermis L. - A Commercially important primaeval dying and medicinal plant with diverse pharmacological activity: a review. Ind. Crops Prod., 2015, 65, 269-286.
[http://dx.doi.org/10.1016/j.indcrop.2014.11.025]
[11]
Singh, D.K.; Luqman, S. A Perspective on anticancer potential of mehndi / henna. Biomed. Res. Ther., 2014, 1(4), 112-120.
[12]
Pradhan, R.; Dandawate, P.; Vyas, A.; Padhye, S.; Biersack, B.; Schobert, R.; Ahmad, A.; Sarkar, F.H. From body art to anticancer activities: perspectives on medicinal properties of henna. Curr. Drug Targets, 2012, 13(14), 1777-1798.
[http://dx.doi.org/10.2174/138945012804545588] [PMID: 23140289]
[13]
Ali, B.H.; Bashir, A.K.; Tanira, M.O.M. Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L. (henna) in rats. Pharmacology, 1995, 51(6), 356-363.
[http://dx.doi.org/10.1159/000139347] [PMID: 8966192]
[14]
Hadisi, Z.; Nourmohammadi, J.; Nassiri, S.M. The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int. J. Biol. Macromol., 2018, 107(Pt B), 2008-2019.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.061] [PMID: 29037870]
[15]
López López, L.I.; Nery Flores, S.D.; Silva Belmares, S.Y.; Sáenz Galindo, A. Naphthoquinones: biological properties and synthesis of lawsone and derivatives — a structured review naftoquinonas: propiedades biológicas y síntesis de lawsona y derivados – una revisión estructurada. Vitae, 2014, 21(3), 248.
[16]
Inagaki, R.; Ninomiya, M.; Tanaka, K.; Koketsu, M. Synthesis, Characterization and antileukemic properties of naphthoquinone derivatives of lawsone. ChemMedChem, 2015, 10(8), 1413-1423.
[http://dx.doi.org/10.1002/cmdc.201500189] [PMID: 26088596]
[17]
Sreelatha, T.; Kandhasamy, S.; Dinesh, R.; Shruthy, S.; Shweta, S.; Mukesh, D.; Karunagaran, D.; Balaji, R.; Mathivanan, N.; Perumal, P.T. Synthesis and SAR Study of novel anticancer and antimicrobial naphthoquinone amide derivatives. Bioorg. Med. Chem. Lett., 2014, 24(15), 3647-3651.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.080]
[18]
Rahmoun, N.M.; Boucherit-Otmani, Z.; Boucherit, K.; Benabdallah, M.; Villemin, D.; Choukchou-Braham, N. Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives. Med. Mal. Infect., 2012, 42(6), 270-275.
[http://dx.doi.org/10.1016/j.medmal.2012.05.002] [PMID: 22682997]
[19]
Da Silva, M.N.; Ferreira, V.F.; De Souza, M.C.B.V. An overview of the chemistry and pharmacology of naphthoquinones with emphasis on b- lapachone and derivatives. Quim. Nova, 2003, 26(3), 407-416.
[http://dx.doi.org/10.1590/S0100-40422003000300019]
[20]
El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochem. Rev., 2011, 10, 353.
[http://dx.doi.org/10.1007/s11101-011-9209-1]
[21]
Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem. Res. Toxicol., 2017, 30(1), 13-37.
[http://dx.doi.org/10.1021/acs.chemrestox.6b00256] [PMID: 27617882]
[22]
de Oliveira, A.S.; Brighente, I.M.C.; Lund, R.G.; Llanes, L.C.; Nunes, R.J.; Bretanha, L.C.; Yunes, R.A.; Carvalho, P.H.A.; Ribeiro, J.S. Antioxidant and antifungal activity of naphthoquinones dimeric derived from lawsone. J. Biosci. Med., 2017, 5(2), 39-48.
[http://dx.doi.org/10.4236/jbm.2017.52004]
[23]
Schrödinger Release., Canvas: New York. 2016.
[24]
Schrödinger Release., LigPrep: New York. 2018.
[25]
Schrödinger Release., LigPrep: New York. 2016.
[26]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[27]
Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; Kaus, J.W.; Cerutti, D.S.; Krilov, G.; Jorgensen, W.L.; Abel, R.; Friesner, R.A. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput., 2016, 12(1), 281-296.
[http://dx.doi.org/10.1021/acs.jctc.5b00864] [PMID: 26584231]
[28]
Rostkowski, M.; Olsson, M.H.; Søndergaard, C.R.; Jensen, J.H. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol., 2011, 11, 6.
[http://dx.doi.org/10.1186/1472-6807-11-6] [PMID: 21269479]
[29]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[30]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[31]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision B.01. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
[32]
Nageswari, G.; George, G.; Ramalingam, S.; Govindarajan, M. Electronic and vibrational spectroscopic (FT-IR and FT-Raman) investigation using ab initio (HF) and DFT (B3LYP and B3PW91) and HOMO/LUMO/MEP analysis on the structure of l-serine methyl ester hydrogen chloride. J. Mol. Struct., 2018, 1166(15), 422-441.
[http://dx.doi.org/10.1016/j.molstruc.2018.04.014]
[33]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[34]
Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Ghannoum, M.A.; Espinel-Ingroff, A.; Knapp, C.C.; Ostrosky-Zeichner, L. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, 3rd ed; Clinical and Laboratory Standards Institute, 2008.
[35]
Johann, S.; Pizzolatti, M.G.; Donnici, C.L.; De Resende, M.A. Antifungal properties of plants used in brazilian traditional medicine against clinically relevant fungal pathogens. Braz. J. Microbiol., 2007, 38(4)
[http://dx.doi.org/10.1590/S1517-83822007000400010]
[36]
Hahn, R.C.; Hamdan, J.S. Effects of amphotericin B and three azole derivatives on the lipids of yeast cells of Paracoccidioides brasiliensis. Antimicrob. Agents Chemother., 2000, 44(7), 1997-2000.
[http://dx.doi.org/10.1128/AAC.44.7.1997-2000.2000] [PMID: 10858371]
[37]
Cruz, R.C.; Werneck, S.M.C.; Oliveira, C.S.; Santos, P.C.; Soares, B.M.; Santos, D.A.; Cisalpino, P.S. Influence of different media, incubation times, and temperatures for determining the MICs of seven antifungal agents against Paracoccidioides brasiliensis by microdilution. J. Clin. Microbiol., 2013, 51(2), 436-443.
[http://dx.doi.org/10.1128/JCM.02231-12] [PMID: 23175254]
[38]
Storti, L.R.; Pasquale, G.; Scomparim, R.; Galastri, A.L.; Alterthum, F.; Gambale, W.; Rodrigues Paula, C. Candida spp. isolated from inpatients, the environment, and health practitioners in the pediatric unit at the universitary hospital of the jundiaí medical college, state of são paulo, Brazil. Rev. Soc. Bras. Med. Trop., 2012, 45(2), 225-231.
[http://dx.doi.org/10.1590/S0037-86822012000200017] [PMID: 22534997]
[39]
Medrano, D.J.A.; Brilhante, R.S.N. Cordeiro, Rde.A.; Rocha, M.F.G.; Rabenhorst, S.H.B.; Sidrim, J.J.C. Candidemia in a Brazilian hospital: the importance of Candida parapsilosis. Rev. Inst. Med. Trop. São Paulo, 2006, 48(1), 17-20.
[http://dx.doi.org/10.1590/S0036-46652006000100004] [PMID: 16547574]
[40]
Sheng, C.; Zhang, W.; Zhang, M.; Song, Y.; Ji, H.; Zhu, J.; Yao, J.; Yu, J.; Yang, S.; Zhou, Y.; Zhu, J.; Lu, J. Homology modeling of lanosterol 14α-demethylase of Candida albicans and Aspergillus fumigatus and insights into the enzyme-substrate Interactions. J. Biomol. Struct. Dyn., 2004, 22(1), 91-99.
[http://dx.doi.org/10.1080/07391102.2004.10506984] [PMID: 15214809]
[41]
González-Chávez, R.; Martínez, R.; Torre-Bouscoulet, M.E.; Gallo, M.; González-Chávez, M.M. De novo design of non-coordinating indolones as potential inhibitors for lanosterol 14-α-demethylase (CYP51). Chem. Pharm. Bull. (Tokyo), 2014, 62(1), 16-24.
[http://dx.doi.org/10.1248/cpb.c13-00003] [PMID: 24390489]
[42]
Vázquez-Torres, A.; Balish, E. Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev., 1997, 61(2), 170-192.
[PMID: 9184009]
[43]
Donini, M.; Zenaro, E.; Tamassia, N.; Dusi, S. NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Eur. J. Immunol., 2007, 37(5), 1194-1203.
[http://dx.doi.org/10.1002/eji.200636532] [PMID: 17407098]
[44]
Lorenz, M.C.; Bender, J.A.; Fink, G.R. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell, 2004, 3(5), 1076-1087.
[http://dx.doi.org/10.1128/EC.3.5.1076-1087.2004] [PMID: 15470236]
[45]
Mochon, A.B.; Jin, Y.; Kayala, M.A.; Wingard, J.R.; Clancy, C.J.; Nguyen, M.H.; Felgner, P.; Baldi, P.; Liu, H. Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog., 2010, 6(3) e1000827
[http://dx.doi.org/10.1371/journal.ppat.1000827] [PMID: 20361054]
[46]
Barbosa, K.B.F.; Costa, N.M.B.; De Cássia Gonçalves Alfenas, R.; De Paula, S.O.; Minim, V.P.R.; Bressan, J. Oxidative stress: concept, implications and modulatory factors. Rev. Nutr., 2010, 23(4), 629-643.
[http://dx.doi.org/10.1590/S1415-52732010000400013]
[47]
Guin, P.S.; Das, S.; Mandal, P.C. Electrochemical reduction of quinones in different media: a review. Int. J. Electrochem., 2011.
[http://dx.doi.org/10.4061/2011/816202]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy