Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Research Article

On Transfemoral Prosthetic Knee Design for Natural Human Knee Motion

Author(s): Wen-Tzong Lee*, Kevin Russell and Raj S. Sodhi

Volume 13, Issue 1, 2020

Page: [49 - 59] Pages: 11

DOI: 10.2174/2212797613666191219154947

Price: $65

Abstract

Background: A transfemoral prosthetic knee is an artificial knee used by above-the-knee amputees. There are two major categories of transfemoral prosthetic knee designs: pin joint-based and polycentric designs. While pin joint-based knee designs only allow pure rotation of the knee, polycentric knee designs allow a combination of rotational and translational knee motion which is exhibited in natural knee motion.

Objective: This work presents both the recently-patented design process and the resulting design of a polycentric transfemoral prosthetic knee that approximates natural spatial human knee motion during flexion and extension.

Methods: The design process includes tibial motion acquisition, Revolute-Revolute-Spherical-Spherical linkage (or RRSS) motion generation, RRSS linkage axode generation and circle fitting. The polycentric transfemoral prosthetic knee design produced from this process includes a gear joint with a specific spatial orientation to approximate natural spatial human knee motion.

Results: Using the design process, a polycentric transfemoral prosthetic knee was designed to replicate a group of five tibial positions over 37.5° of knee flexion (the amount of knee flexion in a standard human gait cycle) with a minimal structural error.

Conclusion: The circular gear-based knee design accurately replicated natural spatial knee motion over the tibial position data given for a standard human gait cycle. The knee design method must be implemented over a broader sampling of tibial position data to determine if a circular gear-based knee design is consistently accurate.

Keywords: Axode generation, circle fitting, four-bar spatial linkage, motion generation, polycentric knee, RRSS linkage, transfemoral prosthetic knee.

[1]
D’Alessio J, Russell K, Sodhi RS. On the application of the rodriguez displacement equation for the generation of finite helical axes for tibial motion. J Biomech Sci Eng 2015; 10(4): 00409.
[http://dx.doi.org/10.1299/jbse.15-00409]
[2]
Dai JS. A historical of the theoretical development or rigid-body displacements from rodrigues parameters to the finite twist. Mech Mach Theory 2006; 41(1): 41-52.
[http://dx.doi.org/10.1016/j.mechmachtheory.2005.04.004]
[3]
Blankevoort L, Huiskes R, de Lange A. Helical axes of passive knee joint motions. J Biomech 1990; 23(12): 1219-29.
[http://dx.doi.org/10.1016/0021-9290(90)90379-H]
[4]
Sheehan FT. The finite helical axis of the knee joint (a non-invasive in vivo study using fast-PC MRI). J Biomech 2007; 40(5): 1038-47.
[http://dx.doi.org/10.1016/j.jbiomech.2006.04.006]
[5]
Hart RA, Mote CD Jr, Skinner HB. A finite helical axis as a landmark for kinematic reference of the knee. J Biomech Eng 1991; 113(2): 215-22.
[http://dx.doi.org/10.1115/1.2891237]
[6]
van den Bogert AJ, Reinschmidt C, Lundberg A. Helical axes of skeletal knee joint motion during running. J Biomech 2008; 41(8): 1632-8.
[http://dx.doi.org/10.1016/j.jbiomech.2008.03.018]
[7]
Petrofsky SH, Reinke CH. Computer controlled hydraulic resistance device for a prosthesis and other apparatus. US5888212 (1999)
[8]
Petrofsky SH, Gruesbeck WG. Computer controlled hydraulic resistance device for a prosthesis and other apparatus. US6113642 (2000)
[9]
Boender JQLA, Boender JAB. Hydraulic prosthetic joint. US10085857 (2018)
[10]
Glabiszewski R. Hyraulic damping device and artificial joint employing the device. US4595179 (1986)
[11]
Steiner J, Schneider C. Hinged connecting apparatus for a lower limb prosthesis. US7935152 (2011)
[12]
Krieger W. Hinge joint in orthopaedic prostheses and ortheses. US5728172 (1998)
[13]
Wellershaus U, Wagner H. Prosthetic knee joint USD383542 (1997)
[14]
Balboni A, Balli L, De Micheli D M, Donati G, Ferrini N. Automatic prosthesis for above-knee amputees. US8974543 (2015)
[15]
O'Connor RS. Prosthesis for long femur and knee disarticulation amputation. US5895430 (1999)
[16]
Molino JL, Rebarber M. Prosthetic knee unit. US6911050 (2005)
[17]
Christiansen JE, Fitzgerald M, Moeller MG, Pascalides A, Vayda RT. Compressible rotational artificial joint. US4619660 (1986)
[18]
Cool JC, Lemmers LG. Leg prosthesis with lockable knee joint. US5895429 (1999)
[19]
Berringer WA, Sulima EJ. Myoelectrically controlled knee joint locking device. US5062857 (1991)
[20]
Rincoe RG, Hull MB. Prosthetic knee joint. US5246465 (1993)
[21]
Amador BT, Torrealba RR, Müller-Karger CM. New Developments in Knee Prosthesis Research. Nova Science Publishers: United Kingdom 2015.
[22]
Kistenberg RS. Prosthetic choices for people with leg and arm amputations. Phys Med Rehabil Clin N Am 2014; 25(1): 93-115.
[http://dx.doi.org/10.1016/j.pmr.2013.10.001]
[23]
Cummings DR. Pediatric prosthetics. Current trends and future possibilities. Phys Med Rehabil Clin N Am 2000; 11(3): 653-79.
[http://dx.doi.org/10.1016/S1047-9651(18)30125-6]
[24]
May DRW. Knee joint structure for artificial legs. US4178642 (1979).M
[25]
Marlow RZ, May DRW. Artificial knee with improved stable link-type knee joint. US4911709 (1990)
[26]
Gramnäs F. Artificial toggle joint. US5314498 (1994)
[27]
van de Veen PG. Device for mutual pivoting connection of parts of an orthopaedic apparatus. US5545232 (1996)
[28]
van de Veen PG. Pivot device between parts of an orthopedic aid. US5645590 (1997)
[29]
Cooper JE, Arbogast RE, Kinsinger JH, Srinivasan S. Knee mechanism for an artificial limb. US5800567 (1998)
[30]
Shorter JJ, Aulie A. Knee prosthesis. US6206933 (2001)
[31]
Sawatzki S. Knee joint USD439339 (2001)
[32]
Sawatzki S, Wagner H. Knee joint prosthesis USD446304 (2001)
[33]
Yih TC, Pemmaraju S. Prosthetic devices for upper and lower limbs. US6676707B2 (2004)
[34]
Otten E. Lower leg prosthesis. US9060881 (2015)
[35]
Omarsson B, Karlsson SG, Olafsson S. Prosthetic knee. USD733883 (2015)
[36]
Terleski TW, Gonzalez RV, Cantu CE, LaSalle RK. Prosthetic knee. USD732167 (2015) & USD732168 (2015)
[37]
Gonzalez RV, Nystrom A, Minelga E, Edmunds M. Prosthetic knee USD785177 (2017)
[38]
Grafinger J. Knee joint prosthesis. US7597716 (2009)
[39]
Aulie AL. Hinge structure for prosthetic joint. US5171325 (1992)
[40]
Gramnäs F. Artificial joint with a hydraulic damping cylinder. US5800566 (1998)
[41]
Kramer S, Srinivasan S, Swanson V. Knee joint mechanism for knee disarticulation prosthesis. US5746774 (1998)
[42]
Boender JQLA. Hydraulic knee joint. US6106560 (2000)
[43]
Suzuki M. Knee joint structure of artificial limb. US6508843 (2003)
[44]
Chen S. Artificial knee joint assembly capable of maintaining a knee angle between a lower leg and a thigh when the assembly stands on a horizontal or inclined surface. US6706074 (2004)
[45]
Shen H. Tetraxial-link artificial limb joint. US6752835 (2004)
[46]
Hikichi Y. Above-knee prosthesis with variable resistance knee joint. US6902585 (2005)
[47]
Wild GE. Prosthetic knee and rotary hydraulic chamber. US7066964 (2006)
[48]
Harn C, Zhen R. Artificial joint. USD527458 (2006)
[49]
Muehlenberend A. Knee joint for prosthesis USD523959 (2006)
[50]
Cheng C. Positioning and buffering device for artificial knee joint. US7044983 (2006)
[51]
Iversen EK, Sears HH, Dyck AD, et al. Device and system for prosthetic knees and ankles. US7942935 (2011)
[52]
Cheng C. Artificial knee joint. USD632790 (2011)
[53]
Boender JQLA. Hydraulic prosthetic joint. US8915969 (2014)
[54]
Iversen EK, Jacobs JA, Christenson J. Above-knee prosthesis. US9901467 (2018)
[55]
Boiten H, Mosler L, Pusch M, Te Riele F, Michniewicz J, Harbach L. Orthopedic device. US9993356 (2018)
[56]
Arun S, Kanagaraj S. Injection mouldable polymeric composite based passive polycentric knee joint. US9687364 (2017)
[57]
Grundei H. Leg prosthesis. US695569 (2005)
[58]
Bedard S, Roy PO. Actuated prosthesis for amputees. US7736394 (2010)
[59]
Pusch M, Kampas P. Method for controlling an orthopedic knee joint. US8814948 (2014)
[60]
Haynes ML, Taylor MD. Prosthetic leg having electronically controlled prosthetic knee with regenerative braking feature. US7485152 (2009)
[61]
Summit S. Prosthetic limb. US8366789 (2013)
[62]
Boiten H. Prosthetic knee joint with incorporated vacuum pump. US9775715 (2017)
[63]
May DRW. Adjustable friction joint for an artificial knee. US4145766 (1979)
[64]
Omarsson B, Karlsson SG, Olafsson S, Olafsson G, Landry D. Prosthetic knee. US8764849 (2014)
[65]
Campbell HE. Artificial polycentric knee joint. US4064569 (1977)
[66]
Lührs B, Theile F, Griesser M, Richard HA, Kullmer G. Multiaxis joint, especially artificial knee joint. US6749640 (2004)
[67]
Wilkes DF. Prosthetic knee joint. US4005496 (1977)
[68]
Andrysek J, Naumann S, Cleghorn WL. Artificial knee joint. US7087090 (2006)
[69]
Chen S. Artificial knee joint having a minimum knee angle. US7087091 (2006)
[70]
Chen C-L, Chen C-C, Chen I. Artificial knee joint. US7195647 (2007)
[71]
Pitkin MR. Artificial knee having dual flexion action during locomotion. US5405408 (1995)
[72]
Shiraishi N, Furuichi Y, Nakatani K. Artificial limb including knee joint. US5899943 (1999)
[73]
Gramnäs F. Device at a knee joint prosthesis. US6808540 (2017)
[74]
van de Veen PG. Swivel connection between two parts of an orthopedic technical aid. US5181931 (1993)
[75]
Harn C, Zhen R. Artificial joint. USD526062 (2006) & USD526412 (2006)
[76]
Chen C. Artificial joint. USD553741 (2007)
[77]
Gramnäs F. Artificial multi-axis knee joint. US7544214 (2009)
[78]
Lee W, Russell K, D’Alessio J, Sodhi RS. Method of designing and manufacturing artificial joint TWI642419 (2018)
[79]
Belvedere C, Ensini A, Feliciangeli A, Cenni F, D’Angeli V, Giannini S, et al. Geometrical changes of knee ligaments and patellar tendon during passive flexion. J Biomech 2012; 45(11): 1886-92.
[http://dx.doi.org/10.1016/j.jbiomech.2012.05.029]
[80]
Su H, Collins CL, McCarthy MJ. Classification of RRSS linkages. Mechanism Mach Theory 2002; 7(11): 1413-33.
[http://dx.doi.org/10.1016/S0094-114X(02)00060-5]
[81]
Su H, McCarthy MJ. Classification of designs for RRSS linkages. ASME Design Engineering Technical Conference and Computers and Information in Engineering Conference Pittsburgh, PA, USA, September, 2001.
[82]
Russell K, Shen Q, Sodhi RS. Mechanism Design: Visual and Programmable Approaches. 1st ed. CRC Press: Boca Raton, USA 2014.
[83]
Russell K, Shen Q, Sodhi RS. Kinematics and Dynamics of Mechanical Systems: Implementation in MATLAB and SimMechanics. 2nd ed. CRC Press: Boca Raton, USA 2019.
[84]
Lee W, Russell K. Developments in quantitative dimensional synthesis (1970-present): Four-bar motion generation. Inverse Probl Sci Eng 2018; 26(1): 133-48.
[http://dx.doi.org/10.1080/17415977.2017.1310858]
[85]
Russell K, Shen Q. Expanded spatial four-link motion and path generation with order and branch defect elimination. Inverse Probl Sci Eng 2013; 21(1): 129-40.
[http://dx.doi.org/10.1080/17415977.2012.672418]
[86]
Russell K, Sodhi RS. Instant screw axis point synthesis of the RRSS mechanism. Mechanism Mach Theory 2002; 37(10): 1117-26.
[http://dx.doi.org/10.1016/S0094-114X(02)00047-2]
[87]
Shen Q, Russell K, Lee W, Sodhi RS. On cam system design to replicate RRSS motion generation. Proceedings of the 13th World Congress in Mechanism and Machine Science. Guanajuato, México. June 2011.
[88]
Shen Q, Russell K, Lee W, Sodhi RS. On cam system design to replicate spatial four-bar mechanism coupler motion. Inverse Probl Sci Eng 2011; 19(2): 251-65.
[http://dx.doi.org/10.1080/17415977.2010.550047]
[89]
Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin Orthop Relat Res 2007; 454(1): 81-8.
[http://dx.doi.org/10.1097/BLO.0b013e31802dc4d0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy