Abstract
Background: Prediction of drug-target interactions is an essential step in drug discovery. Given drug-target interactions network, the objective of this task is to predict probable missing edges from known interactions. Computationally predicting drug-target interactions is an appropriate alternative for the time-consuming and costly experimental process of drug-target interaction prediction. A large number of computational methods for solving this problem have been proposed in recent years.
Objective: In recent years, several review articles have been published in the field of drug-target interactions prediction. Compared to other review articles, this paper includes a qualitative analysis in the form of a framework, a drug-target interactions prediction (DTIP) framework.
Methods: The framework consists of three sections. Initially, a classification has been presented for drug-target interactions prediction methods based on the link prediction approaches used in these methods. Secondly, general evaluation criteria have been introduced for analyzing approaches. Finally, a qualitative comparison is made between each approach in terms of their advantages and disadvantages.
Results: By providing a new classification of the drug-target interactions prediction approaches and comparing them with the proposed evaluation criteria, this framework provides a convenient and efficient way to select and compare the methods. Moreover, using the framework, we can improve these techniques further.
Conclusion: This paper provides a study to select, compare, and improve chemogenomic drugtarget interactions prediction methods. To this aim, an analytical framework is presented.
Keywords: Chemogenomic, drug-target interactions prediction, drug-target interactions network, machine learning, link prediction, comparative analytical framework, drug discovery.
Graphical Abstract
[http://dx.doi.org/10.1038/s41598-017-04264-w] [PMID: 28630414]
[http://dx.doi.org/10.1186/2193-9616-1-17] [PMID: 25505661]
[http://dx.doi.org/10.1093/bib/bbt056] [PMID: 23933754]
[http://dx.doi.org/10.1016/j.ymeth.2015.04.036] [PMID: 25957673]
[http://dx.doi.org/10.1093/bioinformatics/btn409] [PMID: 18676415]
[http://dx.doi.org/10.1038/nbt1273] [PMID: 17211405]
[PMID: 12825452]
[http://dx.doi.org/10.1038/nbt1338] [PMID: 17921997]
[http://dx.doi.org/10.1093/bib/bby010] [PMID: 29420684]
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]
[http://dx.doi.org/d10.1145/2500863.2500870]
[http://dx.doi.org/10.1186/s12859-016-1005-x] [PMID: 27071755]
[http://dx.doi.org/10.1186/s12859-016-0977-x] [PMID: 26987649]
[http://dx.doi.org/10.1186/1752-0509-4-S2-S6] [PMID: 20840733]
[http://dx.doi.org/10.1007/978-1-62703-107-3_9] [PMID: 23192544]
[http://dx.doi.org/10.1517/17425255.2014.950222] [PMID: 25112457]
[http://dx.doi.org/10.2174/1381612822666160418121534] [PMID: 27087598]
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[http://dx.doi.org/10.1208/s12248-017-0092-6] [PMID: 28577120]
[http://dx.doi.org/10.2174/1389203720666190123164310] [PMID: 30674253]
[http://dx.doi.org/10.1093/bib/bby002] [PMID: 29377981]
[http://dx.doi.org/10.1016/j.jbi.2019.103159] [PMID: 30926470]
[http://dx.doi.org/10.1145/3012704]
[http://dx.doi.org/10.1007/978-1-4419-8462-3_9]
[http://dx.doi.org/10.1007/s10462-017-9590-2]
[http://dx.doi.org/10.1109/TCBB.2014.2325031] [PMID: 26356852]
[http://dx.doi.org/10.1016/j.physa.2010.11.027]
[http://dx.doi.org/10.4304/jsw.7.1.220-227]
[http://dx.doi.org/10.1145/1117454.1117456]
[http://dx.doi.org/10.1039/c2mb00002d] [PMID: 22538619]
[http://dx.doi.org/10.1002/asi.20591]
[http://dx.doi.org/10.1186/s12859-017-1460-z] [PMID: 28095781]
[http://dx.doi.org/10.1109/ICMeCG.2014.38]
[http://dx.doi.org/10.1007/s11432-014-5237-y]
[http://dx.doi.org/10.1016/S0378-4371(02)00736-7]
[http://dx.doi.org/10.1371/journal.pcbi.1002503] [PMID: 22589709]
[http://dx.doi.org/10.1093/bib/bbw012] [PMID: 26944082]
[http://dx.doi.org/10.1186/s13321-016-0128-4] [PMID: 26985240]
[http://dx.doi.org/10.1021/ci100476q] [PMID: 21506615]
[http://dx.doi.org/10.1021/ci9001876] [PMID: 19708682]
[http://dx.doi.org/10.1093/nar/gkt1223] [PMID: 24288371]
[http://dx.doi.org/10.1093/bioinformatics/bts412] [PMID: 22962471]
[http://dx.doi.org/10.1007/978-3-319-89656-4_26]
[http://dx.doi.org/10.1371/journal.pone.0037608] [PMID: 22666371]
[http://dx.doi.org/10.1186/s12859-016-1377-y] [PMID: 28155697]
[http://dx.doi.org/10.1093/bioinformatics/btu624] [PMID: 25246429]
[http://dx.doi.org/10.1155/2017/6340316]
[http://dx.doi.org/10.1093/nar/gkm998] [PMID: 17998252]
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[http://dx.doi.org/10.1016/j.neucom.2016.10.039]
[http://dx.doi.org/10.1109/IKT.2017.8258613]
[http://dx.doi.org/10.1038/s41598-017-17157-9] [PMID: 29208988]
[http://dx.doi.org/10.1093/bib/bby069] [PMID: 30102367]
[http://dx.doi.org/10.1093/bioinformatics/bts360] [PMID: 22730431]
[http://dx.doi.org/10.1145/2487575.2487670]
[http://dx.doi.org/10.1109/TCBB.2016.2530062] [PMID: 26890921]
[http://dx.doi.org/10.1038/srep40376] [PMID: 28079135]
[http://dx.doi.org/10.1093/bioinformatics/btr500] [PMID: 21893517]
[http://dx.doi.org/10.1371/journal.pone.0066952] [PMID: 23840562]
[http://dx.doi.org/10.1093/bioinformatics/btp433] [PMID: 19605421]
[http://dx.doi.org/10.1371/journal.pone.0171839] [PMID: 28192537]
[http://dx.doi.org/10.1145/3194480.3194491]
[http://dx.doi.org/10.1038/nature14539]
[http://dx.doi.org/10.1016/j.neunet.2014.09.003] [PMID: 25462637]
[http://dx.doi.org/10.1093/bioinformatics/btt234] [PMID: 23812976]
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[http://dx.doi.org/10.1016/j.ymeth.2016.06.024] [PMID: 27378654]
[http://dx.doi.org/10.1093/nar/gkt1207] [PMID: 24293645]
[http://dx.doi.org/10.1093/nar/gkp456]
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[http://dx.doi.org/10.1038/s41467-017-00680-8] [PMID: 28924171]
[http://dx.doi.org/10.2174/1573409915666190613113822] [PMID: 31198115]
[http://dx.doi.org/10.1007/s10115-014-0789-0]
[http://dx.doi.org/10.1145/1143844.1143874]
[http://dx.doi.org/10.1093/bioinformatics/btm344] [PMID: 17720704]
[http://dx.doi.org/10.1109/TPAMI.2013.50] [PMID: 23787338]
[http://dx.doi.org/10.1021/ci400219z] [PMID: 24289468]
[http://dx.doi.org/10.1109/JPROC.2017.2761740]
[http://dx.doi.org/10.1109/TKDE.2008.239]
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[http://dx.doi.org/10.1016/j.compbiolchem.2011.10.003] [PMID: 22099632]
[http://dx.doi.org/10.1021/ja036030u] [PMID: 14505407]
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[http://dx.doi.org/10.1109/KBEI.2019.8734956]
[http://dx.doi.org/10.1021/ci0496797] [PMID: 15807504]
[http://dx.doi.org/10.1371/journal.pone.0062975] [PMID: 23667553]
[http://dx.doi.org/10.1109/ChiCC.2016.7554493]
[http://dx.doi.org/10.1038/s41598-017-08079-7] [PMID: 28808275]
[http://dx.doi.org/10.1093/nar/gkw1118] [PMID: 27899599]
[http://dx.doi.org/10.1016/j.future.2016.04.023]