Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

General Review Article

Cell-free microRNAs as Non-invasive Diagnostic and Prognostic Biomarkers in Pancreatic Cancer

Author(s): Natalia A. Gablo, Vladimir Prochazka, Zdenek Kala, Ondrej Slaby and Igor Kiss*

Volume 20, Issue 8, 2019

Page: [569 - 580] Pages: 12

DOI: 10.2174/1389202921666191217095017

Price: $65

Abstract

Pancreatic cancer (PaC) is one of the most lethal cancers, with an increasing global incidence rate. Unfavorable prognosis largely results from associated difficulties in early diagnosis and the absence of prognostic and predictive biomarkers that would enable an individualized therapeutic approach. In fact, PaC prognosis has not improved for years, even though much efforts and resources have been devoted to PaC research, and the multimodal management of PaC patients has been used in clinical practice. It is thus imperative to develop optimal biomarkers, which would increase diagnostic precision and improve the post-diagnostic management of PaC patients. Current trends in biomarker research envisage the unique opportunity of cell-free microRNAs (miRNAs) present in circulation to become a convenient, non-invasive tool for accurate diagnosis, prognosis and prediction of response to treatment. This review analyzes studies focused on cell-free miRNAs in PaC. The studies provide solid evidence that miRNAs are detectable in serum, blood plasma, saliva, urine, and stool, and that they present easy-to-acquire biomarkers with strong diagnostic, prognostic and predictive potential.

Keywords: Cell-free microRNA, pancreatic cancer, diagnosis, prognosis, prediction, non-invasive biomarker.

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[3]
Wong, M.C.S.; Jiang, J.Y.; Liang, M.; Fang, Y.; Yeung, M.S.; Sung, J.J.Y. Global temporal patterns of pancreatic cancer and association with socioeconomic development. Sci. Rep., 2017, 7(1), 3165.
[http://dx.doi.org/10.1038/s41598-017-02997-2] [PMID: 28600530]
[4]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[5]
Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; Leach, S.D.; Stanger, B.Z. EMT and dissemination precede pancreatic tumor formation. Cell, 2012, 148(1-2), 349-361.
[http://dx.doi.org/10.1016/j.cell.2011.11.025] [PMID: 22265420]
[6]
Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; Falconi, M.; Pederzoli, P.; Pap, A.; Spooner, D.; Kerr, D.J.; Büchler, M.W. European Study Group for Pancreatic Cancer. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med., 2004, 350(12), 1200-1210.
[http://dx.doi.org/10.1056/NEJMoa032295] [PMID: 15028824]
[7]
Neoptolemos, J.P.; Palmer, D.H.; Ghaneh, P.; Psarelli, E.E.; Valle, J.W.; Halloran, C.M.; Faluyi, O.; O’Reilly, D.A.; Cunningham, D.; Wadsley, J.; Darby, S.; Meyer, T.; Gillmore, R.; Anthoney, A.; Lind, P.; Glimelius, B.; Falk, S.; Izbicki, J.R.; Middleton, G.W.; Cummins, S.; Ross, P.J.; Wasan, H.; McDonald, A.; Crosby, T.; Ma, Y.T.; Patel, K.; Sherriff, D.; Soomal, R.; Borg, D.; Sothi, S.; Hammel, P.; Hackert, T.; Jackson, R.; Büchler, M.W. European Study Group for Pancreatic Cancer. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet, 2017, 389(10073), 1011-1024.
[http://dx.doi.org/10.1016/S0140-6736(16)32409-6] [PMID: 28129987]
[8]
Neoptolemos, J.P.; Stocken, D.D.; Tudur Smith, C.; Bassi, C.; Ghaneh, P.; Owen, E.; Moore, M.; Padbury, R.; Doi, R.; Smith, D.; Büchler, M.W. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials. Br. J. Cancer, 2009, 100(2), 246-250.
[http://dx.doi.org/10.1038/sj.bjc.6604838] [PMID: 19127260]
[9]
Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; Sinn, M.; Hinke, A.; Riess, H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 2013, 310(14), 1473-1481.
[http://dx.doi.org/10.1001/jama.2013.279201] [PMID: 24104372]
[10]
Valle, J.W.; Palmer, D.; Jackson, R.; Cox, T.; Neoptolemos, J.P.; Ghaneh, P.; Rawcliffe, C.L.; Bassi, C.; Stocken, D.D.; Cunningham, D.; O’Reilly, D.; Goldstein, D.; Robinson, B.A.; Karapetis, C.; Scarfe, A.; Lacaine, F.; Sand, J.; Izbicki, J.R.; Mayerle, J.; Dervenis, C.; Oláh, A.; Butturini, G.; Lind, P.A.; Middleton, M.R.; Anthoney, A.; Sumpter, K.; Carter, R.; Büchler, M.W. Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: ongoing lessons from the ESPAC-3 study. J. Clin. Oncol., 2014, 32(6), 504-512.
[http://dx.doi.org/10.1200/JCO.2013.50.7657] [PMID: 24419109]
[11]
American Cancer Society. Survival Rates for Pancreatic Cancer. Available from:. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html
[12]
Schanen, B.C.; Li, X. Transcriptional regulation of mammalian miRNA genes. Genomics, 2011, 97(1), 1-6.
[http://dx.doi.org/10.1016/j.ygeno.2010.10.005] [PMID: 20977933]
[13]
Galatenko, V.V.; Galatenko, A.V.; Samatov, T.R.; Turchinovich, A.A.; Shkurnikov, M.Y.; Makarova, J.A.; Tonevitsky, A.G. Comprehensive network of miRNA-induced intergenic interactions and a biological role of its core in cancer. Sci. Rep., 2018, 8(1), 2418.
[http://dx.doi.org/10.1038/s41598-018-20215-5] [PMID: 29402894]
[14]
Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; Li, Q.; Li, X.; Wang, W.; Zhang, Y.; Wang, J.; Jiang, X.; Xiang, Y.; Xu, C.; Zheng, P.; Zhang, J.; Li, R.; Zhang, H.; Shang, X.; Gong, T.; Ning, G.; Wang, J.; Zen, K.; Zhang, J.; Zhang, C.Y. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008, 18(10), 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[15]
Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; Lin, D.W.; Urban, N.; Drescher, C.W.; Knudsen, B.S.; Stirewalt, D.L.; Gentleman, R.; Vessella, R.L.; Nelson, P.S.; Martin, D.B.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10513-10518.
[http://dx.doi.org/10.1073/pnas.0804549105] [PMID: 18663219]
[16]
Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem., 2010, 56(11), 1733-1741.
[http://dx.doi.org/10.1373/clinchem.2010.147405] [PMID: 20847327]
[17]
Taylor, D.D.; Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[18]
Su, M.J.; Aldawsari, H.; Amiji, M. Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of microRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci. Rep., 2016, 6, 30110.
[http://dx.doi.org/10.1038/srep30110] [PMID: 27443190]
[19]
Falcone, G.; Felsani, A.; D’Agnano, I. Signaling by exosomal microRNAs in cancer. J. Exp. Clin. Cancer Res., 2015, 34, 32.
[http://dx.doi.org/10.1186/s13046-015-0148-3] [PMID: 25886763]
[20]
Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res., 2011, 39(16), 7223-7233.
[http://dx.doi.org/10.1093/nar/gkr254] [PMID: 21609964]
[21]
Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; Tait, J.F.; Tewari, M. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA, 2011, 108(12), 5003-5008.
[http://dx.doi.org/10.1073/pnas.1019055108] [PMID: 21383194]
[22]
Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res., 2010, 38(20), 7248-7259.
[http://dx.doi.org/10.1093/nar/gkq601] [PMID: 20615901]
[23]
Turchinovich, A.; Burwinkel, B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol., 2012, 9(8), 1066-1075.
[http://dx.doi.org/10.4161/rna.21083] [PMID: 22858679]
[24]
Jiang, L.; Paone, S.; Caruso, S.; Atkin-Smith, G.K.; Phan, T.K.; Hulett, M.D.; Poon, I.K.H. Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci. Rep., 2017, 7(1), 14444.
[http://dx.doi.org/10.1038/s41598-017-14305-z] [PMID: 29089562]
[25]
Zernecke, A.; Bidzhekov, K.; Noels, H.; Shagdarsuren, E.; Gan, L.; Denecke, B.; Hristov, M.; Köppel, T.; Jahantigh, M.N.; Lutgens, E.; Wang, S.; Olson, E.N.; Schober, A.; Weber, C. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal., 2009, 2(100), ra81.
[http://dx.doi.org/10.1126/scisignal.2000610] [PMID: 19996457]
[26]
Tiberio, P.; Callari, M.; Angeloni, V.; Daidone, M.G.; Appierto, V. Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res. Int., 2015. 2015731479
[http://dx.doi.org/10.1155/2015/731479] [PMID: 25874226]
[27]
Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res. (Phila.), 2012, 5(3), 492-497.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0370] [PMID: 22158052]
[28]
Moret, I.; Sánchez-Izquierdo, D.; Iborra, M.; Tortosa, L.; Navarro-Puche, A.; Nos, P.; Cervera, J.; Beltrán, B. Assessing an improved protocol for plasma microRNA extraction. PLoS One, 2013, 8(12) e82753
[http://dx.doi.org/10.1371/journal.pone.0082753] [PMID: 24376572]
[29]
Kroh, E.M.; Parkin, R.K.; Mitchell, P.S.; Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 2010, 50(4), 298-301.
[http://dx.doi.org/10.1016/j.ymeth.2010.01.032] [PMID: 20146939]
[30]
McAlexander, M.A.; Phillips, M.J.; Witwer, K.W. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front. Genet., 2013, 4, 83.
[http://dx.doi.org/10.3389/fgene.2013.00083] [PMID: 23720669]
[31]
Duy, J.; Koehler, J.W.; Honko, A.N.; Minogue, T.D. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics, 2015, 16, 95.
[http://dx.doi.org/10.1186/s12864-015-1299-5] [PMID: 25765146]
[32]
Kopkova, A.; Sana, J.; Fadrus, P.; Slaby, O. Cerebrospinal fluid microRNAs as diagnostic biomarkers in brain tumors. Clin. Chem. Lab. Med., 2018, 56(6), 869-879.
[http://dx.doi.org/10.1515/cclm-2017-0958] [PMID: 29451858]
[33]
Garcia-Elias, A.; Alloza, L.; Puigdecanet, E.; Nonell, L.; Tajes, M.; Curado, J.; Enjuanes, C.; Díaz, O.; Bruguera, J.; Martí-Almor, J.; Comín-Colet, J.; Benito, B. Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs. Sci. Rep., 2017, 7(1), 7725.
[http://dx.doi.org/10.1038/s41598-017-08134-3] [PMID: 28798363]
[34]
Zampetaki, A.; Mayr, M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb. Haemost., 2012, 108(4), 592-598.
[PMID: 22627831]
[35]
Poel, D.; Buffart, T.E.; Oosterling-Jansen, J.; Verheul, H.M.; Voortman, J. Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp. Mol. Med., 2018, 50(3)e454
[http://dx.doi.org/10.1038/emm.2017.288] [PMID: 29520111]
[36]
Pimentel, F.; Bonilla, P.; Ravishankar, Y.G.; Contag, A.; Gopal, N.; LaCour, S.; Lee, T.; Niemz, A. Technology in microRNA profiling: circulating MicroRNAs as noninvasive cancer biomarkers in breast cancer. J. Lab. Autom., 2015, 20(5), 574-588.
[http://dx.doi.org/10.1177/2211068214561788] [PMID: 25524488]
[37]
Mattie, M.D.; Benz, C.C.; Bowers, J.; Sensinger, K.; Wong, L.; Scott, G.K.; Fedele, V.; Ginzinger, D.; Getts, R.; Haqq, C. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer, 2006, 5, 24.
[http://dx.doi.org/10.1186/1476-4598-5-24] [PMID: 16784538]
[38]
Tan, G.W.; Khoo, A.S.; Tan, L.P. Evaluation of extraction kits and RT-qPCR systems adapted to high-throughput platform for circulating miRNAs. Sci. Rep., 2015, 5, 9430.
[http://dx.doi.org/10.1038/srep09430] [PMID: 25800946]
[39]
Rubio, M.; Bustamante, M.; Hernandez-Ferrer, C.; Fernandez-Orth, D.; Pantano, L.; Sarria, Y.; Piqué-Borras, M.; Vellve, K.; Agramunt, S.; Carreras, R.; Estivill, X.; Gonzalez, J.R.; Mayor, A. Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One, 2018, 13(3)e0193527
[http://dx.doi.org/10.1371/journal.pone.0193527] [PMID: 29505615]
[40]
Vorvis, C.; Koutsioumpa, M.; Iliopoulos, D. Developments in miRNA gene signaling pathways in pancreatic cancer. Future Oncol., 2016, 12(9), 1135-1150.
[http://dx.doi.org/10.2217/fon-2015-0050] [PMID: 26984178]
[41]
Bryant, K.L.; Mancias, J.D.; Kimmelman, A.C.; Der, C.J. KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci., 2014, 39(2), 91-100.
[http://dx.doi.org/10.1016/j.tibs.2013.12.004] [PMID: 24388967]
[42]
Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; Hong, S.M.; Fu, B.; Lin, M.T.; Calhoun, E.S.; Kamiyama, M.; Walter, K.; Nikolskaya, T.; Nikolsky, Y.; Hartigan, J.; Smith, D.R.; Hidalgo, M.; Leach, S.D.; Klein, A.P.; Jaffee, E.M.; Goggins, M.; Maitra, A.; Iacobuzio-Donahue, C.; Eshleman, J.R.; Kern, S.E.; Hruban, R.H.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 2008, 321(5897), 1801-1806.
[http://dx.doi.org/10.1126/science.1164368] [PMID: 18772397]
[43]
di Magliano, M.P.; Logsdon, C.D. Roles for KRAS in pancreatic tumor development and progression. Gastroenterology, 2013, 144(6), 1220-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.01.071] [PMID: 23622131]
[44]
Jonckheere, N.; Vasseur, R.; Van Seuningen, I. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: from cell signaling network, target genes, biological processes to therapeutic targeting. Crit. Rev. Oncol. Hematol., 2017, 111, 7-19.
[http://dx.doi.org/10.1016/j.critrevonc.2017.01.002] [PMID: 28259298]
[45]
Zhao, W.G.; Yu, S.N.; Lu, Z.H.; Ma, Y.H.; Gu, Y.M.; Chen, J. The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis, 2010, 31(10), 1726-1733.
[http://dx.doi.org/10.1093/carcin/bgq160] [PMID: 20675343]
[46]
Giovannetti, E.; Funel, N.; Peters, G.J.; Del Chiaro, M.; Erozenci, L.A.; Vasile, E.; Leon, L.G.; Pollina, L.E.; Groen, A.; Falcone, A.; Danesi, R.; Campani, D.; Verheul, H.M.; Boggi, U. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res., 2010, 70(11), 4528-4538.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-4467] [PMID: 20460539]
[47]
Paik, W.H.; Kim, H.R.; Park, J.K.; Song, B.J.; Lee, S.H.; Hwang, J.H. Chemosensitivity induced by down-regulation of microRNA-21 in gemcitabine-resistant pancreatic cancer cells by indole-3-carbinol. Anticancer Res., 2013, 33(4), 1473-1481.
[PMID: 23564788]
[48]
Wei, X.; Wang, W.; Wang, L.; Zhang, Y.; Zhang, X.; Chen, M.; Wang, F.; Yu, J.; Ma, Y.; Sun, G. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med., 2016, 5(4), 693-702.
[http://dx.doi.org/10.1002/cam4.626] [PMID: 26864640]
[49]
Mikamori, M.; Yamada, D.; Eguchi, H.; Hasegawa, S.; Kishimoto, T.; Tomimaru, Y.; Asaoka, T.; Noda, T.; Wada, H.; Kawamoto, K.; Gotoh, K.; Takeda, Y.; Tanemura, M.; Mori, M.; Doki, Y. MicroRNA-155 controls exosome synthesis and promotes gemcitabine resistance in pancreatic ductal adenocarcinoma. Sci. Rep., 2017, 7, 42339.
[http://dx.doi.org/10.1038/srep42339] [PMID: 28198398]
[50]
Tang, Y.; Tang, Y.; Cheng, Y.S. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Sci. Rep., 2017, 7, 38232.
[http://dx.doi.org/10.1038/srep38232] [PMID: 28145431]
[51]
Ji, Q.; Hao, X.; Zhang, M.; Tang, W.; Yang, M.; Li, L.; Xiang, D.; Desano, J.T.; Bommer, G.T.; Fan, D.; Fearon, E.R.; Lawrence, T.S.; Xu, L. MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One, 2009, 4(8) e6816
[http://dx.doi.org/10.1371/journal.pone.0006816] [PMID: 19714243]
[52]
Gu, J.; Wang, D.; Zhang, J.; Zhu, Y.; Li, Y.; Chen, H.; Shi, M.; Wang, X.; Shen, B.; Deng, X.; Zhan, Q.; Wei, G.; Peng, C. GFRα2 prompts cell growth and chemoresistance through down-regulating tumor suppressor gene PTEN via Mir-17-5p in pancreatic cancer. Cancer Lett., 2016, 380(2), 434-441.
[http://dx.doi.org/10.1016/j.canlet.2016.06.016] [PMID: 27400681]
[53]
Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Asbun, H.; Bain, A.; Behrman, S.W.; Benson, A.B., III; Binder, E.; Cardin, D.B.; Cha, C.; Chiorean, E.G.; Chung, V.; Czito, B.; Dillhoff, M.; Dotan, E.; Ferrone, C.R.; Hardacre, J.; Hawkins, W.G.; Herman, J.; Ko, A.H.; Komanduri, S.; Koong, A.; LoConte, N.; Lowy, A.M.; Moravek, C.; Nakakura, E.K.; O’Reilly, E.M.; Obando, J.; Reddy, S.; Scaife, C.; Thayer, S.; Weekes, C.D.; Wolff, R.A.; Wolpin, B.M.; Burns, J.; Darlow, S. Pancreatic adenocarcinoma, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw., 2017, 15(8), 1028-1061.
[http://dx.doi.org/10.6004/jnccn.2017.0131] [PMID: 28784865]
[54]
Ballehaninna, U.K.; Chamberlain, R.S. Serum CA 19-9 as a biomarker for pancreatic cancer-a comprehensive review. Indian J. Surg. Oncol., 2011, 2(2), 88-100.
[http://dx.doi.org/10.1007/s13193-011-0042-1] [PMID: 22693400]
[55]
Wang, J.; Chen, J.; Chang, P.; LeBlanc, A.; Li, D.; Abbruzzesse, J.L.; Frazier, M.L.; Killary, A.M.; Sen, S. MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila.), 2009, 2(9), 807-813.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0094] [PMID: 19723895]
[56]
Ho, A.S.; Huang, X.; Cao, H.; Christman-Skieller, C.; Bennewith, K.; Le, Q.T.; Koong, A.C. Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl. Oncol., 2010, 3(2), 109-113.
[http://dx.doi.org/10.1593/tlo.09256] [PMID: 20360935]
[57]
Morimura, R.; Komatsu, S.; Ichikawa, D.; Takeshita, H.; Tsujiura, M.; Nagata, H.; Konishi, H.; Shiozaki, A.; Ikoma, H.; Okamoto, K.; Ochiai, T.; Taniguchi, H.; Otsuji, E. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br. J. Cancer, 2011, 105(11), 1733-1740.
[http://dx.doi.org/10.1038/bjc.2011.453] [PMID: 22045190]
[58]
Cote, G.A.; Gore, A.J.; McElyea, S.D.; Heathers, L.E.; Xu, H.; Sherman, S.; Korc, M. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am. J. Gastroenterol., 2014, 109(12), 1942-1952.
[http://dx.doi.org/10.1038/ajg.2014.331] [PMID: 25350767]
[59]
Alemar, B.; Izetti, P.; Gregório, C.; Macedo, G.S.; Castro, M.A.; Osvaldt, A.B.; Matte, U.; Ashton-Prolla, P. miRNA-21 and miRNA-34a are potential minimally invasive biomarkers for the diagnosis of pancreatic ductal adenocarcinoma. Pancreas, 2016, 45(1), 84-92.
[http://dx.doi.org/10.1097/MPA.0000000000000383] [PMID: 26262588]
[60]
Deng, T.; Yuan, Y.; Zhang, C.; Zhang, C.; Yao, W.; Wang, C.; Liu, R.; Ba, Y. Identification of circulating MiR-25 as a potential biomarker for pancreatic cancer diagnosis. Cell. Physiol. Biochem., 2016, 39(5), 1716-1722.
[http://dx.doi.org/10.1159/000447872] [PMID: 27639768]
[61]
Ganepola, G.A.; Rutledge, J.R.; Suman, P.; Yiengpruksawan, A.; Chang, D.H. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J. Gastrointest. Oncol., 2014, 6(1), 22-33.
[http://dx.doi.org/10.4251/wjgo.v6.i1.22] [PMID: 24578785]
[62]
Abue, M.; Yokoyama, M.; Shibuya, R.; Tamai, K.; Yamaguchi, K.; Sato, I.; Tanaka, N.; Hamada, S.; Shimosegawa, T.; Sugamura, K.; Satoh, K. Circulating miR-483-3p and miR-21 is highly expressed in plasma of pancreatic cancer. Int. J. Oncol., 2015, 46(2), 539-547.
[http://dx.doi.org/10.3892/ijo.2014.2743] [PMID: 25384963]
[63]
Permuth-Wey, J.; Chen, D.T.; Fulp, W.J.; Yoder, S.J.; Zhang, Y.; Georgeades, C.; Husain, K.; Centeno, B.A.; Magliocco, A.M.; Coppola, D.; Malafa, M. Plasma microRNAs as novel biomarkers for patients with intraductal papillary mucinous neoplasms of the pancreas. Cancer Prev. Res. (Phila.), 2015, 8(9), 826-834.
[http://dx.doi.org/10.1158/1940-6207.CAPR-15-0094] [PMID: 26314797]
[64]
Goto, T.; Fujiya, M.; Konishi, H.; Sasajima, J.; Fujibayashi, S.; Hayashi, A.; Utsumi, T.; Sato, H.; Iwama, T.; Ijiri, M.; Sakatani, A.; Tanaka, K.; Nomura, Y.; Ueno, N.; Kashima, S.; Moriichi, K.; Mizukami, Y.; Kohgo, Y.; Okumura, T. An elevated expression of serum exosomal microRNA-191, - 21, -451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer, 2018, 18(1), 116.
[http://dx.doi.org/10.1186/s12885-018-4006-5] [PMID: 29385987]
[65]
Duell, E.J.; Lujan-Barroso, L.; Sala, N.; Deitz McElyea, S.; Overvad, K.; Tjonneland, A.; Olsen, A.; Weiderpass, E.; Busund, L.T.; Moi, L.; Muller, D.; Vineis, P.; Aune, D.; Matullo, G.; Naccarati, A.; Panico, S.; Tagliabue, G.; Tumino, R.; Palli, D.; Kaaks, R.; Katzke, V.A.; Boeing, H.; Bueno-de-Mesquita, H.B.A.; Peeters, P.H.; Trichopoulou, A.; Lagiou, P.; Kotanidou, A.; Travis, R.C.; Wareham, N.; Khaw, K.T.; Ramon Quiros, J.; Rodríguez-Barranco, M.; Dorronsoro, M.; Chirlaque, M.D.; Ardanaz, E.; Severi, G.; Boutron-Ruault, M.C.; Rebours, V.; Brennan, P.; Gunter, M.; Scelo, G.; Cote, G.; Sherman, S.; Korc, M. Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. Int. J. Cancer, 2017, 141(5), 905-915.
[http://dx.doi.org/10.1002/ijc.30790] [PMID: 28542740]
[66]
Franklin, O.; Jonsson, P.; Billing, O.; Lundberg, E.; Öhlund, D.; Nyström, H.; Lundin, C.; Antti, H.; Sund, M. Plasma micro-RNA alterations appear late in pancreatic cancer. Ann. Surg., 2018, 267(4), 775-781.
[http://dx.doi.org/10.1097/SLA.0000000000002124] [PMID: 28425921]
[67]
Li, A.; Yu, J.; Kim, H.; Wolfgang, C.L.; Canto, M.I.; Hruban, R.H.; Goggins, M. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin. Cancer Res., 2013, 19(13), 3600-3610.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3092] [PMID: 23697990]
[68]
Liu, R.; Chen, X.; Du, Y.; Yao, W.; Shen, L.; Wang, C.; Hu, Z.; Zhuang, R.; Ning, G.; Zhang, C.; Yuan, Y.; Li, Z.; Zen, K.; Ba, Y.; Zhang, C.Y. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin. Chem., 2012, 58(3), 610-618.
[http://dx.doi.org/10.1373/clinchem.2011.172767] [PMID: 22194634]
[69]
Xu, J.; Cao, Z.; Liu, W.; You, L.; Zhou, L.; Wang, C.; Lou, W.; Sun, B.; Miao, Y.; Liu, X.; Zhang, T.; Zhao, Y. Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a multicenter study. Ann. Surg., 2016, 263(6), 1173-1179.
[http://dx.doi.org/10.1097/SLA.0000000000001345] [PMID: 26114496]
[70]
Cao, Z.; Liu, C.; Xu, J.; You, L.; Wang, C.; Lou, W.; Sun, B.; Miao, Y.; Liu, X.; Wang, X.; Zhang, T.; Zhao, Y. Plasma microRNA panels to diagnose pancreatic cancer: Results from a multicenter study. Oncotarget, 2016, 7(27), 41575-41583.
[http://dx.doi.org/10.18632/oncotarget.9491] [PMID: 27223429]
[71]
Xie, Z.; Yin, X.; Gong, B.; Nie, W.; Wu, B.; Zhang, X.; Huang, J.; Zhang, P.; Zhou, Z.; Li, Z. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev. Res. (Phila.), 2015, 8(2), 165-173.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0192] [PMID: 25538087]
[72]
Humeau, M.; Vignolle-Vidoni, A.; Sicard, F.; Martins, F.; Bournet, B.; Buscail, L.; Torrisani, J.; Cordelier, P. Salivary microRNA in pancreatic cancer patients. PLoS One, 2015, 10(6) e0130996
[http://dx.doi.org/10.1371/journal.pone.0130996] [PMID: 26121640]
[73]
Tanase, C.P.; Neagu, M.; Albulescu, R.; Hinescu, M.E. Advances in pancreatic cancer detection. Adv. Clin. Chem., 2010, 51, 145-180.
[http://dx.doi.org/10.1016/S0065-2423(10)51006-0] [PMID: 20857621]
[74]
Ren, Y.; Gao, J.; Liu, J.Q.; Wang, X.W.; Gu, J.J.; Huang, H.J.; Gong, Y.F.; Li, Z.S. Differential signature of fecal microRNAs in patients with pancreatic cancer. Mol. Med. Rep., 2012, 6(1), 201-209.
[PMID: 22504911]
[75]
Yang, J.Y.; Sun, Y.W.; Liu, D.J.; Zhang, J.F.; Li, J.; Hua, R. MicroRNAs in stool samples as potential screening biomarkers for pancreatic ductal adenocarcinoma cancer. Am. J. Cancer Res., 2014, 4(6), 663-673.
[PMID: 25520858]
[76]
Link, A.; Becker, V.; Goel, A.; Wex, T.; Malfertheiner, P. Feasibility of fecal microRNAs as novel biomarkers for pancreatic cancer. PLoS One, 2012, 7(8) e42933
[http://dx.doi.org/10.1371/journal.pone.0042933] [PMID: 22905187]
[77]
Juracek, J.; Peltanova, B.; Dolezel, J.; Fedorko, M.; Pacik, D.; Radova, L.; Vesela, P.; Svoboda, M.; Slaby, O.; Stanik, M. Genome-wide identification of urinary cell-free microRNAs for non-invasive detection of bladder cancer. J. Cell. Mol. Med., 2018, 22(3), 2033-2038.
[http://dx.doi.org/10.1111/jcmm.13487] [PMID: 29363887]
[78]
Braicu, C.; Cojocneanu-Petric, R.; Chira, S.; Truta, A.; Floares, A.; Petrut, B.; Achimas-Cadariu, P.; Berindan-Neagoe, I. Clinical and pathological implications of miRNA in bladder cancer. Int. J. Nanomedicine, 2015, 10, 791-800.
[http://dx.doi.org/10.2147/IJN.S72904] [PMID: 25653521]
[79]
Debernardi, S.; Massat, N.J.; Radon, T.P.; Sangaralingam, A.; Banissi, A.; Ennis, D.P.; Dowe, T.; Chelala, C.; Pereira, S.P.; Kocher, H.M.; Young, B.D.; Bond-Smith, G.; Hutchins, R.; Crnogorac-Jurcevic, T. Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am. J. Cancer Res., 2015, 5(11), 3455-3466.
[PMID: 26807325]
[80]
Kong, X.; Du, Y.; Wang, G.; Gao, J.; Gong, Y.; Li, L.; Zhang, Z.; Zhu, J.; Jing, Q.; Qin, Y.; Li, Z. Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients: miR-196a could be a potential marker for poor prognosis. Dig. Dis. Sci., 2011, 56(2), 602-609.
[http://dx.doi.org/10.1007/s10620-010-1285-3] [PMID: 20614181]
[81]
Yu, Q.; Xu, C.; Yuan, W.; Wang, C.; Zhao, P.; Chen, L.; Ma, J. Evaluation of plasma microRNAs as diagnostic and prognostic biomarkers in pancreatic adenocarcinoma: miR-196a and miR-210 could be negative and positive prognostic markers, respectively. BioMed Res. Int., 2017, 2017 6495867
[http://dx.doi.org/10.1155/2017/6495867] [PMID: 28466015]
[82]
Kawaguchi, T.; Komatsu, S.; Ichikawa, D.; Morimura, R.; Tsujiura, M.; Konishi, H.; Takeshita, H.; Nagata, H.; Arita, T.; Hirajima, S.; Shiozaki, A.; Ikoma, H.; Okamoto, K.; Ochiai, T.; Taniguchi, H.; Otsuji, E. Clinical impact of circulating miR-221 in plasma of patients with pancreatic cancer. Br. J. Cancer, 2013, 108(2), 361-369.
[http://dx.doi.org/10.1038/bjc.2012.546] [PMID: 23329235]
[83]
Sun, B.; Liu, X.; Gao, Y.; Li, L.; Dong, Z. Downregulation of miR-124 predicts poor prognosis in pancreatic ductal adenocarcinoma patients. Br. J. Biomed. Sci., 2016, 73(4), 152-157.
[http://dx.doi.org/10.1080/09674845.2016.1220706] [PMID: 27922430]
[84]
Chen, Q.; Yang, L.; Xiao, Y.; Zhu, J.; Li, Z. Circulating microRNA-182 in plasma and its potential diagnostic and prognostic value for pancreatic cancer. Med. Oncol., 2014, 31(11), 225.
[http://dx.doi.org/10.1007/s12032-014-0225-z] [PMID: 25326859]
[85]
Miyamae, M.; Komatsu, S.; Ichikawa, D.; Kawaguchi, T.; Hirajima, S.; Okajima, W.; Ohashi, T.; Imamura, T.; Konishi, H.; Shiozaki, A.; Morimura, R.; Ikoma, H.; Ochiai, T.; Okamoto, K.; Taniguchi, H.; Otsuji, E. Plasma microRNA profiles: identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. Br. J. Cancer, 2015, 113(10), 1467-1476.
[http://dx.doi.org/10.1038/bjc.2015.366] [PMID: 26505678]
[86]
Imamura, T.; Komatsu, S.; Ichikawa, D.; Miyamae, M.; Okajima, W.; Ohashi, T.; Kiuchi, J.; Nishibeppu, K.; Konishi, H.; Shiozaki, A.; Morimura, R.; Ikoma, H.; Ochiai, T.; Okamoto, K.; Taniguchi, H.; Otsuji, E. Depleted tumor suppressor miR-107 in plasma relates to tumor progression and is a novel therapeutic target in pancreatic cancer. Sci. Rep., 2017, 7(1), 5708.
[http://dx.doi.org/10.1038/s41598-017-06137-8] [PMID: 28720759]
[87]
Hua, Y.; Chen, H.; Wang, L.; Wang, F.; Wang, P.; Ning, Z.; Li, Y.; Liu, L.; Chen, Z.; Meng, Z. Low serum miR-373 predicts poor prognosis in patients with pancreatic cancer. Cancer Biomark., 2017, 20(1), 95-100.
[http://dx.doi.org/10.3233/CBM-170231] [PMID: 28759959]
[88]
Takahasi, K.; Iinuma, H.; Wada, K.; Minezaki, S.; Kawamura, S.; Kainuma, M.; Ikeda, Y.; Shibuya, M.; Miura, F.; Sano, K. Usefulness of exosome-encapsulated microRNA-451a as a minimally invasive biomarker for prediction of recurrence and prognosis in pancreatic ductal adenocarcinoma. J. Hepatobiliary Pancreat. Sci., 2018, 25(2), 155-161.
[http://dx.doi.org/10.1002/jhbp.524] [PMID: 29130611]
[89]
Negoi, I.; Hostiuc, S.; Sartelli, M.; Negoi, R.I.; Beuran, M. MicroRNA-21 as a prognostic biomarker in patients with pancreatic cancer - A systematic review and meta-analysis. Am. J. Surg., 2017, 214(3), 515-524.
[http://dx.doi.org/10.1016/j.amjsurg.2017.03.049] [PMID: 28477839]
[90]
Wang, P.; Zhuang, L.; Zhang, J.; Fan, J.; Luo, J.; Chen, H.; Wang, K.; Liu, L.; Chen, Z.; Meng, Z. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol. Oncol., 2013, 7(3), 334-345.
[http://dx.doi.org/10.1016/j.molonc.2012.10.011] [PMID: 23177026]
[91]
Karasek, P.; Gablo, N.; Hlavsa, J.; Kiss, I.; Vychytilova-Faltejskova, P.; Hermanova, M.; Kala, Z.; Slaby, O.; Prochazka, V. Pre-operative plasma miR-21-5p is a sensitive biomarker and independent prognostic factor in patients with pancreatic ductal adenocarcinoma undergoing surgical resection. Cancer Genomics Proteomics, 2018, 15(4), 321-327.
[http://dx.doi.org/10.21873/cgp.20090] [PMID: 29976637]
[92]
Que, R.; Ding, G.; Chen, J.; Cao, L. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J. Surg. Oncol., 2013, 11, 219.
[http://dx.doi.org/10.1186/1477-7819-11-219] [PMID: 24007214]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy