Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Microneedle-Assisted Percutaneous Transport of Magnesium Sulfate

Author(s): Karna B. Ghimirey and Kevin Ita*

Volume 17, Issue 2, 2020

Page: [140 - 147] Pages: 8

DOI: 10.2174/1567201817666191217093936

Price: $65

Abstract

Objective: In vitro diffusion experiments were performed to assess the permeation of magnesium sulfate across pig skin.

Methods: The mean thickness of the dermatomed porcine skin was 648 ± 12 µm. Magnesium concentration was measured using inductively coupled plasma-optical emission spectroscopy. Transdermal flux of magnesium sulfate across MN-treated and untreated porcine skin was obtained from the slope of the steady-state linear portion of cumulative amount versus time curve.

Results: Statistical analysis of the results was done with Student’s t-test. The transdermal flux of magnesium sulfate across microneedle-treated porcine skin was 134.19 ± 2.4 µg/cm2/h and transdermal flux across untreated porcine skin was 4.64 ± 0.05 µg/cm2/h. Confocal microscopy was used to visualize the microchannels created by a solid microneedle roller (500 µm).

Conclusion: From our confocal microscopy studies, it was evident that the 500 μm long microneedles disrupted the stratum corneum and created microchannels measuring 191 ± 37 µm. The increase in transdermal flux across the microneedle-treated skin was statistically significant compared to that of controls, i.e., without the application of microneedles. With the application of microneedles, the transdermal flux of magnesium permeated over 12 h was approximately 33-fold higher in comparison to passive diffusion across an intact stratum corneum.

Keywords: Magnesium sulfate, inductively coupled plasma-optical emission spectroscopy, transdermal flux, microneedle roller, confocal microscopy, microchannels.

Graphical Abstract

[1]
Hashizume, N.; Mori, M. An analysis of hypermagnesemia and hypomagnesemia. Jpn. J. Med., 1990, 29(4), 368-372.
[http://dx.doi.org/10.2169/internalmedicine1962.29.368] [PMID: 2273620]
[2]
de Baaij, J.H.F.; Hoenderop, J.G.J.; Bindels, R.J.M. Magnesium in man: Implications for health and disease. Physiol. Rev., 2015, 95(1), 1-46.
[http://dx.doi.org/10.1152/physrev.00012.2014] [PMID: 25540137]
[3]
I. Institute of Medicine Subcommittee on. I. Institute of Medicine Subcommittee on, I. Uses of Dietary Reference, I. Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference, DRI Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press: Washington, (DC), US, 2000.
[4]
King, D.E.; Mainous, A.G., III; Geesey, M.E.; Woolson, R.F. Dietary magnesium and C-reactive protein levels. J. Am. Coll. Nutr., 2005, 24(3), 166-171.
[http://dx.doi.org/10.1080/07315724.2005.10719461] [PMID: 15930481]
[5]
Seo, J.W.; Park, T.J. Magnesium metabolism. Electrolyte Blood Press., 2008, 6(2), 86-95.
[http://dx.doi.org/10.5049/EBP.2008.6.2.86] [PMID: 24459527]
[6]
Lu, J.F.; Nightingale, C.H. Magnesium sulfate in eclampsia and pre-eclampsia: Pharmacokinetic principles. Clin. Pharmacokinet., 2000, 38(4), 305-314.
[http://dx.doi.org/10.2165/00003088-200038040-00002] [PMID: 10803454]
[7]
Euser, A.G.; Cipolla, M.J. Magnesium sulfate for the treatment of eclampsia: A brief review. Stroke, 2009, 40(4), 1169-1175.
[http://dx.doi.org/10.1161/STROKEAHA.108.527788] [PMID: 19211496]
[8]
Sibai, B.M. Magnesium sulfate is the ideal anticonvulsant in preeclampsia-eclampsia. Am. J. Obstet. Gynecol., 1990, 162(5), 1141-1145.
[http://dx.doi.org/10.1016/0002-9378(90)90002-O] [PMID: 2288560]
[9]
Dhote, V.; Bhatnagar, P.; Mishra, P.K.; Mahajan, S.C.; Mishra, D.K. Iontophoresis: A potential emergence of a transdermal drug delivery system. Sci. Pharm., 2012, 80(1), 1-28.
[http://dx.doi.org/10.3797/scipharm.1108-20] [PMID: 22396901]
[10]
Ita, K.B. Transdermal drug delivery: Progress and challenges. J. Drug Deliv. Sci. Technol., 2014, 24, 245-250.
[http://dx.doi.org/10.1016/S1773-2247(14)50041-X]
[11]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[12]
Ita, K. Transdermal delivery of heparin: Physical enhancement techniques. Int. J. Pharm., 2015, 496(2), 240-249.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.023] [PMID: 26611668]
[13]
Chandrasekaran, N.C.; Sanchez, W.Y.; Mohammed, Y.H.; Grice, J.E.; Roberts, M.S.; Barnard, R.T. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles. Magnes. Res., 2016, 29(2), 35-42.
[http://dx.doi.org/10.1684/mrh.2016.0402] [PMID: 27624531]
[14]
Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv., 2016, 23(2), 564-578.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[15]
Ali, S.; Shabbir, M.; Nabeel Shahid, M. The structure of skin and transdermal drug delivery system. Res. J. Pharm. Technol., 2015, 8(2), 103.
[http://dx.doi.org/10.5958/0974-360X.2015.00019.0]
[16]
Park, J.; Lee, H.; Lim, G.S.; Kim, N.; Kim, D.; Kim, Y.C. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech, 2019, 20(3), 96.
[http://dx.doi.org/10.1208/s12249-019-1309-z] [PMID: 30694397]
[17]
Tan, G.; Xu, P.; Lawson, L.B.; He, J.; Freytag, L.C.; Clements, J.D.; John, V.T. Hydration effects on skin microstructure as probed by high-resolution cryo-scanning electron microscopy and mechanistic implications to enhanced transcutaneous delivery of biomacromolecules. J. Pharm. Sci., 2010, 99(2), 730-740.
[http://dx.doi.org/10.1002/jps.21863] [PMID: 19582754]
[18]
Kim, Y-C.; Park, J-H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64(14), 1547-1568.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[19]
Pierre, M.B.; Rossetti, F.C. Microneedle-based drug delivery systems for transdermal route. Curr. Drug Targets, 2014, 15(3), 281-291.
[http://dx.doi.org/10.2174/13894501113146660232] [PMID: 24144208]
[20]
Ita, K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics, 2015, 7(3), 90-105.
[http://dx.doi.org/10.3390/pharmaceutics7030090] [PMID: 26131647]
[21]
Hao, Y.; Li, W.; Zhou, X.; Yang, F.; Qian, Z. Microneedles-based transdermal drug delivery systems: A review. J. Biomed. Nanotechnol., 2017, 13(12), 1581-1597.
[http://dx.doi.org/10.1166/jbn.2017.2474] [PMID: 29490749]
[22]
McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.-H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. 2003, 100(2003), 13755-13760.
[23]
Devadasu, V.R.; Mogusala, N.R.; Venisetty, R.K. Fabrication of microneedle molds and polymer based biodegradable microneedle patches: A Novel Method. 2015.
[24]
Tas, C.; Mansoor, S.; Kalluri, H.; Zarnitsyn, V.G.; Choi, S-O.; Banga, A.K.; Prausnitz, M.R. Delivery of salmon calcitonin using a microneedle patch. Int. J. Pharm., 2012, 423(2), 257-263.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.046] [PMID: 22172290]
[25]
Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans. Biomed. Eng., 2005, 52(5), 909-915.
[http://dx.doi.org/10.1109/TBME.2005.845240] [PMID: 15887540]
[26]
Prausnitz, M.R.; Mikszta, J.A.; Cormier, M.; Andrianov, A.K. Microneedle-based vaccines. Curr. Top. Microbiol. Immunol., 2009, 333, 369-393.
[http://dx.doi.org/10.1007/978-3-540-92165-3_18] [PMID: 19768415]
[27]
Zhang, S.; Zhao, S.; Jin, X.; Wang, B.; Zhao, G. Microneedles improve the immunogenicity of DNA vaccines. Hum. Gene Ther., 2018, 29(9), 1004-1010.
[http://dx.doi.org/10.1089/hum.2018.073] [PMID: 29968486]
[28]
Martin, A.; McConville, A.; Anderson, A.; McLister, A.; Davis, J. Microneedle manufacture. Assessing Hazards and Control Measures, 2017, 3, 25.
[29]
Soltani-Arabshahi, R.; Wong, J.W.; Duffy, K.L.; Powell, D.L. Facial allergic granulomatous reaction and systemic hypersensitivity associated with microneedle therapy for skin rejuvenation. JAMA Dermatol., 2014, 150(1), 68-72.
[http://dx.doi.org/10.1001/jamadermatol.2013.6955] [PMID: 24258303]
[30]
Fawcett, W.J.; Haxby, E.J.; Male, D.A. Magnesium: Physiology and pharmacology. Br. J. Anaesth., 1999, 83(2), 302-320.
[http://dx.doi.org/10.1093/bja/83.2.302] [PMID: 10618948]
[31]
Romani, A.M. Cellular magnesium homeostasis. Arch. Biochem. Biophys., 2011, 512(1), 1-23.
[http://dx.doi.org/10.1016/j.abb.2011.05.010] [PMID: 21640700]
[32]
Murphy, E. Mysteries of magnesium homeostasis. Circ. Res., 2000, 86(3), 245-248.
[33]
Apell, H.J.; Hitzler, T.; Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry, 2017, 56(7), 1005-1016.
[http://dx.doi.org/10.1021/acs.biochem.6b01243] [PMID: 28124894]
[34]
Uysal, N.; Kizildag, S.; Yuce, Z.; Guvendi, G.; Kandis, S.; Koc, B.; Karakilic, A.; Camsari, U.M.; Ates, M. Timeline (bioavailability) of magnesium compounds in hours: Which magnesium compound works best? Biol. Trace Elem. Res., 2018, 187(3)
[http://dx.doi.org/10.1007/s12011-018-1351-9] [PMID: 29679349]
[35]
Kumar, K.; Al Arebi, A.; Singh, I. Accidental intravenous infusion of a large dose of magnesium sulphate during labor: A case report. J. Anaesthesiol. Clin. Pharmacol., 2013, 29(3), 377-379.
[http://dx.doi.org/10.4103/0970-9185.117105] [PMID: 24106365]
[36]
Ghavidel, A. What happanes when a large dose of magnesium sulphate is infused intravenously? 2016.
[http://dx.doi.org/10.15171/jarcm.2016.021]
[37]
Norman, J.J.; Arya, J.M.; McClain, M.A.; Frew, P.M.; Meltzer, M.I.; Prausnitz, M.R. Microneedle patches: Usability and acceptability for self-vaccination against influenza. Vaccine, 2014, 32(16), 1856-1862.
[http://dx.doi.org/10.1016/j.vaccine.2014.01.076] [PMID: 24530146]
[38]
Engen, D.J.; McAllister, S.J.; Whipple, M.O.; Cha, S.S.; Dion, L.J.; Vincent, A.; Bauer, B.A.; Wahner-Roedler, D.L. Effects of transdermal magnesium chloride on quality of life for patients with fibromyalgia: A feasibility study. J. Integr. Med., 2015, 13(5), 306-313.
[http://dx.doi.org/10.1016/S2095-4964(15)60195-9] [PMID: 26343101]
[39]
Banks, S.L.; Pinninti, R.R.; Gill, H.S.; Crooks, P.A.; Prausnitz, M.R.; Stinchcomb, A.L. Flux across [corrected] microneedle-treated skin is increased by increasing charge of naltrexone and naltrexol in vitro. Pharm. Res., 2008, 25(7), 1677-1685.
[http://dx.doi.org/10.1007/s11095-008-9578-3] [PMID: 18449628]
[40]
Maurya, A.; Nanjappa, S.H.; Honnavar, S.; Salwa, M.; Murthy, S.N. Rapidly dissolving microneedle patches for transdermal iron replenishment therapy. J. Pharm. Sci., 2018, 107(6), 1642-1647.
[http://dx.doi.org/10.1016/j.xphs.2018.02.011] [PMID: 29462631]
[41]
Laudańska, H.; Lemancewicz, A.; Kretowska, M.; Reduta, T.; Laudański, T. Permeability of human skin to selected anions and cations-in vitro studies. Res. Commun. Mol. Pathol. Pharmacol., 2002, 112(1-4), 16-26.
[PMID: 15080493]
[42]
Abu Hena Mostofa Kamal, M.A.H.M.; Iimura, N.; Nabekura, T.; Kitagawa, S. Enhanced skin permeation of salicylate by ion-pair formation in non-aqueous vehicle and further enhancement by ethanol and l-menthol. Chem. Pharm. Bull. (Tokyo), 2006, 54(4), 481-484.
[http://dx.doi.org/10.1248/cpb.54.481] [PMID: 16595949]
[43]
Alam, M.I.; Khanam, N. An innovation in clinical practice by microneedles. A review, 2018, 8(2), 651-660.
[44]
Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep., 2016, 104, 1-32.
[http://dx.doi.org/10.1016/j.mser.2016.03.001]
[45]
Meyer, W.; Kacza, J.; Zschemisch, N.H.; Godynicki, S.; Seeger, J. Observations on the actual structural conditions in the stratum superficiale dermidis of porcine ear skin, with special reference to its use as model for human skin. Ann. Anat., 2007, 189(2), 143-156.
[http://dx.doi.org/10.1016/j.aanat.2006.09.004] [PMID: 17419547]
[46]
Summerfield, A.; Meurens, F.; Ricklin, M.E. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol., 2015, 66(1), 14-21.
[http://dx.doi.org/10.1016/j.molimm.2014.10.023] [PMID: 25466611]
[47]
Paudel, K.S.; Nalluri, B.N.; Hammell, D.C.; Valiveti, S.; Kiptoo, P.; Hamad, M.O.; Crooks, P.A.; Stinchcomb, A.L. Transdermal delivery of naltrexone and its active metabolite 6-beta-naltrexol in human skin in vitro and guinea pigs in vivo. J. Pharm. Sci., 2005, 94(9), 1965-1975.
[http://dx.doi.org/10.1002/jps.20398] [PMID: 16052561]
[48]
Okusanya, B.O.; Oladapo, O.T.; Long, Q.; Lumbiganon, P.; Carroli, G.; Qureshi, Z.; Duley, L.; Souza, J.P.; Gülmezoglu, A.M. Clinical pharmacokinetic properties of magnesium sulphate in women with pre-eclampsia and eclampsia. BJOG, 2016, 123(3), 356-366.
[http://dx.doi.org/10.1111/1471-0528.13753] [PMID: 26599617]
[49]
Herroeder, S.; Schönherr, M.E.; De Hert, S.G.; Hollmann, M.W. Magnesium-essentials for anesthesiologists. Anesthesiology, 2011, 114(4), 971-993.
[http://dx.doi.org/10.1097/ALN.0b013e318210483d] [PMID: 21364460]
[50]
Donnelly, R.F.; McCrudden, M.T.C.; Zaid Alkilani, A.; Larrañeta, E.; McAlister, E.; Courtenay, A.J.; Kearney, M-C.; Singh, T.R.R.; McCarthy, H.O.; Kett, V.L.; Caffarel-Salvador, E.; Al-Zahrani, S.; Woolfson, A.D. Hydrogel-forming microneedles prepared from “super swelling” polymers combined with lyophilised wafers for transdermal drug delivery. PLoS One, 2014, 9(10)e111547
[http://dx.doi.org/10.1371/journal.pone.0111547] [PMID: 25360806]
[51]
Eltayib, E.; Brady, A.J.; Caffarel-Salvador, E.; Gonzalez-Vazquez, P.; Zaid Alkilani, A.; McCarthy, H.O.; McElnay, J.C.; Donnelly, R.F. Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring. Eur. J. Pharm. Biopharm., 2016, 102, 123-131.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.009] [PMID: 26969262]
[52]
Kearney, M-C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.026] [PMID: 27018330]
[53]
Iriarte, C.; Awosika, O.; Rengifo-Pardo, M.; Ehrlich, A. Review of applications of microneedling in dermatology. Clin. Cosmet. Investig. Dermatol., 2017, 10, 289-298.
[http://dx.doi.org/10.2147/CCID.S142450] [PMID: 28848356]
[54]
Thakur Singh, R.R.; Tekko, I.; McAvoy, K.; McMillan, H.; Jones, D.; Donnelly, R.F. Minimally invasive microneedles for ocular drug delivery. Expert Opin. Drug Deliv., 2017, 14(4), 525-537.
[http://dx.doi.org/10.1080/17425247.2016.1218460] [PMID: 27485251]
[55]
Sachdeva, V.; Zhou, Y.; Banga, A.K. In vivo transdermal delivery of leuprolide using microneedles and iontophoresis. Curr. Pharm. Biotechnol., 2013, 14(2), 180-193.
[PMID: 23157712]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy