Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Research Article

Mathura (MBI) - A Novel Imputation Measure for Imputation of Missing Values in Medical Datasets

Author(s): B. Mathura Bai, N. Mangathayaru*, B. Padmaja Rani and Shadi Aljawarneh

Volume 14, Issue 5, 2021

Published on: 16 December, 2019

Page: [1358 - 1369] Pages: 12

DOI: 10.2174/2666255813666191216123352

Price: $65

Abstract

Aims: Propose an imputation measure for filling missing data values so as to make the incomplete medical datasets as complete datasets. Apply this imputation measure on imputed datasets to achieve improved classifier accuracies.

Objective: The basic intention of the present study is to present an imputation measure to find the proximity between medical records and an approach for imputation of missing values in medical datasets to improve the accuracy of existing classifiers.

Methods: The performance of proposed approach is compared to existing approaches with respect to classifier accuracy and also by performing non-parametric test called Wilcoxon test.

Results & Conclusion: Experiments are conducted by considering three benchmark datasets CLEVALAND, PIMA, ECOLI and by applying proposed imputation technique with KNN, J48 and SMO classifiers and classifier accuracies are determined. The results obtained are then compared to thirteen existing benchmark imputation techniques available in KEEL repository. Experiment results proved the importance of the proposed imputation technique.

Keywords: Imputation, missing value, classification, accuracy, cross fold validation, RBFN.

Graphical Abstract


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy