[1]
Bhola A, Singh S. Gene selection using high dimensional gene expression data: an appraisal. Curr Bioinform 2018; 13(3): 225-33.
[2]
Lin Y, Min X, Li L, et al. Using a machine-learning approach to predict discontinuous antibody-specific B-cell epitopes. Curr Bioinform 2017; 12(5): 406-15.
[3]
Tanchotsrinon W, Lursinsap C, Poovorawan Y. An efficient prediction of HPV genotypes from partial coding sequences by Chaos game representation and Fuzzy k-nearest neighbor technique. Curr Bioinform 2017; 12(5): 431-40.
[4]
Li B-Q, Zhang Y-H, Jin M-L, Huang T, Cai Y-D. Prediction of protein-peptide interactions with a nearest neighbor algorithm. Curr Bioinform 2018; 13(1): 14-24.
[5]
Nie L, Deng L, Fan C, Zhan W, Tang Y. Prediction of protein S-sulfenylation sites using a deep belief network. Curr Bioinform 2018; 13(5): 461-7.
[6]
Yu L, Sun X, Tian S, Shi X, Yan Y. Drug and nondrug classification based on deep learning with various feature selection strategies. Curr Bioinform 2018; 13(3): 253-9.
[7]
Yuan LZ, Feng YE, Zhao W, Shan KG. Using quadratic discriminant analysis to predict protein secondary structure based on chemical shifts. Curr Bioinform 2017; 12(1): 52-6.
[8]
Liao Z, Wan S, He Y, Zou Q. Classification of small gtpases with hybrid protein features and advanced machine learning techniques. Curr Bioinform 2018; 13(5): 492-500.
[9]
Heng HHQ, Regan S. A systems biology perspective on molecular cytogenetics. Curr Bioinform 2017; 12(1): 4-10.
[10]
Graña O, Rubio-Camarillo M, Fdez-Riverola F, Pisano DG, Glez-Peña D. Nextpresso: next generation sequencing expression analysis pipeline. Curr Bioinform 2018; 13(6): 583-91.
[11]
Long H, Wang M, Fu H. Deep convolutional neural networks for predicting hydroxyproline in proteins. Curr Bioinform 2017; 12(3): 233-8.
[12]
Peng L, Peng M, Liao B, Huang G, Li W, Xie D. The advances and challenges of deep learning application in biological big data processing. Curr Bioinform 2018; 13(4): 352-9.