Abstract
Aims and Objective: Cancer is one of the deadliest diseases, taking the lives of millions every year. Traditional methods of treating cancer are expensive and toxic to normal cells. Fortunately, anti-cancer peptides (ACPs) can eliminate this side effect. However, the identification and development of new anti-cancer peptides through experiments take a lot of time and money, therefore, it is necessary to develop a fast and accurate calculation model to identify the anti-cancer peptide. Machine learning algorithms are a good choice.
Materials and Methods: In our study, a multi-classifier system was used, combined with multiple machine learning models, to predict anti-cancer peptides. These individual learners are composed of different feature information and algorithms, and form a multi-classifier system by voting.
Results and Conclusion: The experiments show that the overall prediction rate of each individual learner is above 80% and the overall accuracy of multi-classifier system for anti-cancer peptides prediction can reach 95.93%, which is better than the existing prediction model.
Keywords: Anti-cancer peptides, machine learning, individual learner, feature extraction, multi-classifier system, prediction model.
[http://dx.doi.org/10.3390/ijms12118027] [PMID: 22174648]
[http://dx.doi.org/10.1023/A:1015976430790] [PMID: 12162424]
[http://dx.doi.org/10.1093/nar/gkx449] [PMID: 28525573]
[http://dx.doi.org/10.3389/fmicb.2013.00294] [PMID: 24101917]
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009]
[http://dx.doi.org/10.2174/1574893613666180118104250]
[http://dx.doi.org/10.2174/1574893612666170125124538]
[http://dx.doi.org/10.1074/mcp.RA118.001169] [PMID: 31097671]
[http://dx.doi.org/10.1016/j.bbamem.2007.11.008]
[http://dx.doi.org/10.1109/TIP.2018.2885238] [PMID: 30530365]
[http://dx.doi.org/10.1109/TMM.2018.2875360]
[http://dx.doi.org/10.1109/ACCESS.2019.2930550]
[http://dx.doi.org/10.1038/srep02984] [PMID: 24136089]
[http://dx.doi.org/10.1016/j.jtbi.2013.08.037] [PMID: 24035842]
[http://dx.doi.org/10.1155/2016/5413903] [PMID: 27597968]
[http://dx.doi.org/10.1155/2016/1654623] [PMID: 27437396]
[http://dx.doi.org/10.1093/bib/bby130] [PMID: 30689717]
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[http://dx.doi.org/10.1371/journal.pone.0075726] [PMID: 24130738]
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[http://dx.doi.org/10.1109/TCYB.2017.2762344] [PMID: 29990033]
[http://dx.doi.org/10.24963/ijcai.2017/651]
[http://dx.doi.org/10.1074/jbc.M401932200] [PMID: 15039428]
[http://dx.doi.org/10.1016/j.mimet.2010.10.013] [PMID: 21044646]
[http://dx.doi.org/10.1021/acschemneuro.7b00490] [PMID: 29300091]
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[http://dx.doi.org/10.1039/C4MB00645C] [PMID: 25437899]
[http://dx.doi.org/10.1093/bioinformatics/bty140] [PMID: 29528364]
[http://dx.doi.org/10.1002/jcc.21053] [PMID: 18567007]
[http://dx.doi.org/10.1016/j.bbrc.2007.02.040] [PMID: 17316561]
[http://dx.doi.org/10.1186/1472-6807-7-25] [PMID: 17437643]
[http://dx.doi.org/10.3389/fphar.2018.00681] [PMID: 29997509]
[http://dx.doi.org/10.1145/130385.130417]
[http://dx.doi.org/10.1093/nar/gkx870] [PMID: 29036709]
[http://dx.doi.org/10.1016/j.ygeno.2013.04.010] [PMID: 23628645]
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]
[http://dx.doi.org/10.1093/nar/gkn823]
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[http://dx.doi.org/10.1093/bib/bby090]
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[http://dx.doi.org/10.1093/nar/gkw679] [PMID: 27484480]
[http://dx.doi.org/10.1093/bioinformatics/btt605] [PMID: 24149053]
[http://dx.doi.org/10.1039/C5MB00883B] [PMID: 26883492]
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[http://dx.doi.org/10.1155/2013/567529] [PMID: 24062796]
[http://dx.doi.org/10.1109/ANZIIS.1994.396988.]
[http://dx.doi.org/10.2174/157016461302160514000940]
[http://dx.doi.org/10.2174/1574893611666160608075753]
[http://dx.doi.org/10.2174/1574893611666160608102537]
[http://dx.doi.org/10.1089/cmb.2018.0004] [PMID: 30113871]
[http://dx.doi.org/10.7150/ijbs.24174] [PMID: 29989085]
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[http://dx.doi.org/10.1016/j.ins.2017.08.045]
[http://dx.doi.org/10.1093/bib/bbv033] [PMID: 26059461]
[http://dx.doi.org/10.1186/s12920-017-0313-y] [PMID: 29297351]
[http://dx.doi.org/10.1109/TCBB.2017.2776280] [PMID: 29990255]
[http://dx.doi.org/10.1155/2017/5652041] [PMID: 28337450]
[http://dx.doi.org/10.1016/j.artmed.2017.09.003] [PMID: 28935226]
[http://dx.doi.org/10.1093/database/bau019] [PMID: 3949006]
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[PMID: 31157855]
[http://dx.doi.org/10.1093/bioinformatics/bty827] [PMID: 30247625]
[PMID: 30428009]
[http://dx.doi.org/10.2174/1574893613666181113131415]
[http://dx.doi.org/10.1093/bioinformatics/btx479] [PMID: 28961687]
[http://dx.doi.org/10.1016/j.artmed.2017.03.001] [PMID: 28320624]
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[http://dx.doi.org/10.1186/s12864-018-5273-x]
[http://dx.doi.org/10.1093/bioinformatics/bty112] [PMID: 29490018]
[http://dx.doi.org/10.1109/TCBB.2016.2550432] [PMID: 27076459]
[http://dx.doi.org/10.3389/fgene.2018.00657] [PMID: 30619477]
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]