Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Inorganic Gold and Polymeric Poly(Lactide-co-glycolide) Nanoparticles as Novel Strategies to Ameliorate the Biological Properties of Antimicrobial Peptides

Author(s): Bruno Casciaro*, Francesca Ghirga, Deborah Quaglio and Maria Luisa Mangoni*

Volume 21, Issue 4, 2020

Page: [429 - 438] Pages: 10

DOI: 10.2174/1389203720666191203101947

Price: $65

Abstract

Cationic antimicrobial peptides (AMPs) are an interesting class of gene-encoded molecules endowed with a broad-spectrum of anti-infective activity and immunomodulatory properties. They represent promising candidates for the development of new antibiotics, mainly due to their membraneperturbing mechanism of action that very rarely induces microbial resistance. However, bringing AMPs into the clinical field is hampered by some intrinsic limitations, encompassing low peptide bioavailability at the target site and high peptide susceptibility to proteolytic degradation. In this regard, nanotechnologies represent an innovative strategy to circumvent these issues. According to the literature, a large variety of nanoparticulate systems have been employed for drug-delivery, bioimaging, biosensors or nanoantibiotics. The possibility of conjugating different types of molecules, including AMPs, to these systems, allows the production of nanoformulations able to enhance the biological profile of the compound while reducing its cytotoxicity and prolonging its residence time. In this minireview, inorganic gold nanoparticles (NPs) and biodegradable polymeric NPs made of poly(lactide-coglycolide) are described with particular emphasis on examples of the conjugation of AMPs to them, to highlight the great potential of such nanoformulations as alternative antimicrobials.

Keywords: Antimicrobial peptides, antibiotic-resistance, drug delivery, nanoparticles, AMPs, nanoformulation.

« Previous
Graphical Abstract

[1]
Moser, C.; Lerche, C.J.; Thomsen, K.; Hartvig, T.; Schierbeck, J.; Jensen, P.O.; Ciofu, O.; Høiby, N. Antibiotic therapy as personalized medicine - general considerations and complicating factors. APMIS, 2019, 127(5), 361-371.
[http://dx.doi.org/10.1111/apm.12951] [PMID: 30983040]
[2]
Ribeiro da Cunha, B.; Fonseca, L.P.; Calado, C.R.C. Antibiotic discovery: Where have we come from, where do we go? Antibiotics (Basel), 2019, 8(2), E45
[http://dx.doi.org/10.3390/antibiotics8020045] [PMID: 31022923]
[3]
Hofer, U. The cost of antimicrobial resistance. Nat. Rev. Microbiol., 2019, 17(1), 3.
[http://dx.doi.org/10.1038/s41579-018-0125-x] [PMID: 30467331]
[4]
Casciaro, B.; Loffredo, M.R.; Luca, V.; Verrusio, W.; Cacciafesta, M.; Mangoni, M.L. Esculentin-1a derived antipseudomonal peptides: Limited induction of resistance and synergy with aztreonam. Protein Pept. Lett., 2018, 25(12), 1155-1162.
[http://dx.doi.org/10.2174/0929866525666181101104649] [PMID: 30381056]
[5]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[6]
Nuti, R.; Goud, N.S.; Saraswati, A.P.; Alvala, R.; Alvala, M. Antimicrobial peptides: A promising therapeutic strategy in tackling antimicrobial resistance. Curr. Med. Chem., 2017, 24(38), 4303-4314.
[http://dx.doi.org/10.2174/0929867324666170815102441] [PMID: 28814242]
[7]
Amso, Z.; Hayouka, Z. Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria. Chem. Commun. (Camb.), 2019, 55(14), 2007-2014.
[http://dx.doi.org/10.1039/C8CC09961H] [PMID: 30688322]
[8]
Mojsoska, B.; Jenssen, H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel), 2015, 8(3), 366-415.
[http://dx.doi.org/10.3390/ph8030366] [PMID: 26184232]
[9]
Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. J. Colloid Interface Sci., 2019, 537, 163-185.
[http://dx.doi.org/10.1016/j.jcis.2018.10.103] [PMID: 30439615]
[10]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), E4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[11]
Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol., 2005, 3(3), 238-250.
[http://dx.doi.org/10.1038/nrmicro1098] [PMID: 15703760]
[12]
Wimley, W.C. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol., 2010, 5(10), 905-917.
[http://dx.doi.org/10.1021/cb1001558] [PMID: 20698568]
[13]
Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[14]
Lee, T.H.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem., 2016, 16(1), 25-39.
[http://dx.doi.org/10.2174/1568026615666150703121700] [PMID: 26139112]
[15]
Loffredo, M.R.; Ghosh, A.; Harmouche, N.; Casciaro, B.; Luca, V.; Bortolotti, A.; Cappiello, F.; Stella, L.; Bhunia, A.; Bechinger, B.; Mangoni, M.L. Membrane perturbing activities and structural properties of the frog-skin derived peptide Esculentin-1a(1-21)NH2 and its Diastereomer Esc(1-21)-1c: Correlation with their antipseudomonal and cytotoxic activity. Biochim. Biophys. Acta Biomembr., 2017, 1859(12), 2327-2339.
[http://dx.doi.org/10.1016/j.bbamem.2017.09.009] [PMID: 28912103]
[16]
Oren, Z.; Shai, Y. Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers, 1998, 47(6), 451-463.
[http://dx.doi.org/10.1002/(SICI)1097-0282(1998)47:6<451:AID-BIP4>3.0.CO;2-F] [PMID: 10333737]
[17]
Bacalum, M.; Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: An analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther., 2015, 21(1), 47-55.
[http://dx.doi.org/10.1007/s10989-014-9430-z]
[18]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob. Agents Chemother., 2017, 61(4), e02340-e16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[19]
Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel), 2013, 6(12), 1543-1575.
[http://dx.doi.org/10.3390/ph6121543] [PMID: 24287494]
[20]
Casciaro, B.; Lin, Q.; Afonin, S.; Loffredo, M.R.; de Turris, V.; Middel, V.; Ulrich, A.S.; Di, Y.P.; Mangoni, M.L. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. FEBS J., 2019, 286(19), 3874-3891.
[http://dx.doi.org/10.1111/febs.14940] [PMID: 31144441]
[21]
Brand, G.D.; Santos, R.C.; Arake, L.M.; Silva, V.G.; Veras, L.M.; Costa, V.; Costa, C.H.; Kuckelhaus, S.S.; Alexandre, J.G.; Feio, M.J.; Leite, J.R. The skin secretion of the amphibian Phyllomedusa nordestina: a source of antimicrobial and antiprotozoal peptides. Molecules, 2013, 18(6), 7058-7070.
[http://dx.doi.org/10.3390/molecules18067058] [PMID: 23774944]
[22]
Giovati, L.; Ciociola, T.; Magliani, W.; Conti, S. Antimicrobial peptides with antiprotozoal activity: current state and future perspectives. Future Med. Chem., 2018, 10(22), 2569-2572.
[http://dx.doi.org/10.4155/fmc-2018-0460] [PMID: 30499691]
[23]
Bowdish, D.M.; Davidson, D.J.; Scott, M.G.; Hancock, R.E. Immunomodulatory activities of small host defense peptides. Antimicrob. Agents Chemother., 2005, 49(5), 1727-1732.
[http://dx.doi.org/10.1128/AAC.49.5.1727-1732.2005] [PMID: 15855488]
[24]
Hancock, R.E.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol., 2006, 24(12), 1551-1557.
[http://dx.doi.org/10.1038/nbt1267] [PMID: 17160061]
[25]
Haney, E.F.; Hancock, R.E. Peptide design for antimicrobial and immunomodulatory applications. Biopolymers, 2013, 100(6), 572-583.
[http://dx.doi.org/10.1002/bip.22250] [PMID: 23553602]
[26]
Hsieh, I.N.; Hartshorn, K.L. The Role of Antimicrobial Peptides in Influenza Virus Infection and Their Potential as Antiviral and Immunomodulatory Therapy. Pharmaceuticals (Basel), 2016, 9(3), E53
[http://dx.doi.org/10.3390/ph9030053] [PMID: 27608030]
[27]
Carriel-Gomes, M.C.; Kratz, J.M.; Barracco, M.A.; Bachére, E.; Barardi, C.R.; Simões, C.M. In vitro antiviral activity of antimicrobial peptides against herpes simplex virus 1, adenovirus, and rotavirus. Mem. Inst. Oswaldo Cruz, 2007, 102(4), 469-472.
[http://dx.doi.org/10.1590/S0074-02762007005000028] [PMID: 17612767]
[28]
Marcocci, M.E.; Amatore, D.; Villa, S.; Casciaro, B.; Aimola, P.; Franci, G.; Grieco, P.; Galdiero, M.; Palamara, A.T.; Mangoni, M.L.; Nencioni, L. The Amphibian Antimicrobial Peptide Temporin B Inhibits In Vitro Herpes Simplex Virus 1 Infection. Antimicrob. Agents Chemother., 2018, 62(5), e02367-e17.
[http://dx.doi.org/10.1128/AAC.02367-17] [PMID: 29483113]
[29]
Dürr, M.; Peschel, A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense. Infect. Immun., 2002, 70(12), 6515-6517.
[http://dx.doi.org/10.1128/IAI.70.12.6515-6517.2002] [PMID: 12438319]
[30]
Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: versatile biological properties. Int. J. Pept., 2013, 2013, 675391
[http://dx.doi.org/10.1155/2013/675391] [PMID: 23935642]
[31]
Schuerholz, T.; Brandenburg, K.; Marx, G. Antimicrobial peptides and their potential application in inflammation and sepsis. Crit. Care, 2012, 16(2), 207.
[http://dx.doi.org/10.1186/cc11220] [PMID: 22429567]
[32]
Mangoni, M.L.; McDermott, A.M.; Zasloff, M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp. Dermatol., 2016, 25(3), 167-173.
[http://dx.doi.org/10.1111/exd.12929] [PMID: 26738772]
[33]
Ramos, R.; Silva, J.P.; Rodrigues, A.C.; Costa, R.; Guardão, L.; Schmitt, F.; Soares, R.; Vilanova, M.; Domingues, L.; Gama, M. Wound healing activity of the human antimicrobial peptide LL37. Peptides, 2011, 32(7), 1469-1476.
[http://dx.doi.org/10.1016/j.peptides.2011.06.005] [PMID: 21693141]
[34]
Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles. Front Chem., 2017, 5, 26.
[http://dx.doi.org/10.3389/fchem.2017.00026] [PMID: 28487853]
[35]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[36]
Gordon, Y.J.; Romanowski, E.G.; McDermott, A.M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res., 2005, 30(7), 505-515.
[http://dx.doi.org/10.1080/02713680590968637] [PMID: 16020284]
[37]
Biondi, B.; Casciaro, B.; Di Grazia, A.; Cappiello, F.; Luca, V.; Crisma, M.; Mangoni, M.L. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH2. Amino Acids, 2017, 49(1), 139-150.
[http://dx.doi.org/10.1007/s00726-016-2341-x] [PMID: 27726008]
[38]
Waghu, F.H.; Joseph, S.; Ghawali, S.; Martis, E.A.; Madan, T.; Venkatesh, K.V.; Idicula-Thomas, S. Designing Antibacterial Peptides with Enhanced Killing Kinetics. Front. Microbiol., 2018, 9, 325.
[http://dx.doi.org/10.3389/fmicb.2018.00325] [PMID: 29527201]
[39]
Blondelle, S.E.; Lohner, K. Optimization and high-throughput screening of antimicrobial peptides. Curr. Pharm. Des., 2010, 16(28), 3204-3211.
[http://dx.doi.org/10.2174/138161210793292438] [PMID: 20687884]
[40]
Pham, T.N.; Loupias, P.; Dassonville-Klimpt, A.; Sonnet, P. Drug delivery systems designed to overcome antimicrobial resistance. Med. Res. Rev., 2019, 39(6), 2343-2396.
[http://dx.doi.org/10.1002/med.21588] [PMID: 31004359]
[41]
Rajchakit, U.; Sarojini, V. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjug. Chem., 2017, 28(11), 2673-2686.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00368] [PMID: 28892365]
[42]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[43]
Abd Elkodous, M.; El-Sayyad, G.S.; Abdelrahman, I.Y.; El-Bastawisy, H.S.; Mohamed, A.E.; Mosallam, F.M.; Nasser, H.A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; El-Batal, A.I. Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids Surf. B Biointerfaces, 2019, 180, 411-428.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.008] [PMID: 31085460]
[44]
Mohid, S.A.; Ghorai, A.; Ilyas, H.; Mroue, K.H.; Narayanan, G.; Sarkar, A.; Ray, S.K.; Biswas, K.; Bera, A.K.; Malmsten, M.; Midya, A.; Bhunia, A. Application of tungsten disulfide quantum dot-conjugated antimicrobial peptides in bio-imaging and antimicrobial therapy. Colloids Surf. B Biointerfaces, 2019, 176, 360-370.
[http://dx.doi.org/10.1016/j.colsurfb.2019.01.020] [PMID: 30658284]
[45]
Díaz, U.; Corma, A. Organic-inorganic hybrid materials: Multi-functional solids for multi-step reaction processes. Chemistry, 2018, 24(16), 3944-3958.
[http://dx.doi.org/10.1002/chem.201704185] [PMID: 29194811]
[46]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med., 2016, 1(1), 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[47]
Liang, R.; Wei, M.; Evans, D.G.; Duan, X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem. Commun. (Camb.), 2014, 50(91), 14071-14081.
[http://dx.doi.org/10.1039/C4CC03118K] [PMID: 24955443]
[48]
Han, Y.; Noor, M.O.; Sedighi, A.; Uddayasankar, U.; Doughan, S.; Krull, U.J. Inorganic nanoparticles as donors in resonance energy transfer for solid-phase bioassays and biosensors. Langmuir, 2017, 33(45), 12839-12858.
[http://dx.doi.org/10.1021/acs.langmuir.7b01483] [PMID: 28759726]
[49]
Sandhir, R.; Yadav, A.; Sunkaria, A.; Singhal, N. Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochem. Int., 2015, 89, 209-226.
[http://dx.doi.org/10.1016/j.neuint.2015.08.011] [PMID: 26315960]
[50]
Sayed, E.; Haj-Ahmad, R.; Ruparelia, K.; Arshad, M.S.; Chang, M.W.; Ahmad, Z. Porous inorganic drug delivery systems-a review. AAPS PharmSciTech, 2017, 18(5), 1507-1525.
[http://dx.doi.org/10.1208/s12249-017-0740-2] [PMID: 28247293]
[51]
Gozuacik, D.; Yagci-Acar, H.F.; Akkoc, Y.; Kosar, A.; Dogan-Ekici, A.I.; Ekici, S. Anticancer use of nanoparticles as nucleic acid carriers. J. Biomed. Nanotechnol., 2014, 10(9), 1751-1783.
[http://dx.doi.org/10.1166/jbn.2014.1935] [PMID: 25992440]
[52]
Rawal, S.; Patel, M.M. Threatening cancer with nanoparticle aided combination oncotherapy. J. Control. Release, 2019, 301, 76-109.
[http://dx.doi.org/10.1016/j.jconrel.2019.03.015] [PMID: 30890445]
[53]
Carmona-Ribeiro, A.M. Self-assembled antimicrobial nanomaterials. Int. J. Environ. Res. Public Health, 2018, 15(7), E1408
[http://dx.doi.org/10.3390/ijerph15071408] [PMID: 29973521]
[54]
Reshma, V.G.; Syama, S.; Sruthi, S.; Reshma, S.C.; Remya, N.S.; Mohanan, P.V. Engineered Nanoparticles with Antimicrobial Property. Curr. Drug Metab., 2017, 18(11), 1040-1054.
[http://dx.doi.org/10.2174/1389200218666170925122201] [PMID: 28952436]
[55]
Malekkhaiat Häffner, S.; Malmsten, M. Membrane interactions and antimicrobial effects of inorganic nanoparticles. Adv. Colloid Interface Sci., 2017, 248, 105-128.
[http://dx.doi.org/10.1016/j.cis.2017.07.029] [PMID: 28807368]
[56]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[57]
Allahverdiyev, A.M.; Kon, K.V.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti Infect. Ther., 2011, 9(11), 1035-1052.
[http://dx.doi.org/10.1586/eri.11.121] [PMID: 22029522]
[58]
Zoroddu, M.A.; Medici, S.; Ledda, A.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem., 2014, 21(33), 3837-3853.
[http://dx.doi.org/10.2174/0929867321666140601162314] [PMID: 25306903]
[59]
Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small, 2008, 4(1), 26-49.
[http://dx.doi.org/10.1002/smll.200700595] [PMID: 18165959]
[60]
Zhu, M.T.; Feng, W.Y.; Wang, B.; Wang, T.C.; Gu, Y.Q.; Wang, M.; Wang, Y.; Ouyang, H.; Zhao, Y.L.; Chai, Z.F. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology, 2008, 247(2-3), 102-111.
[http://dx.doi.org/10.1016/j.tox.2008.02.011] [PMID: 18394769]
[61]
Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 2017, 28(6), 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[62]
De Matteis, V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 2017, 5(4), E29
[http://dx.doi.org/10.3390/toxics5040029] [PMID: 29051461]
[63]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[64]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[65]
Gao, W.; Thamphiwatana, S.; Angsantikul, P.; Zhang, L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2014, 6(6), 532-547.
[http://dx.doi.org/10.1002/wnan.1282] [PMID: 25044325]
[66]
Prajitha, N.; Athira, S.S.; Mohanan, P.V. Bio-interactions and risks of engineered nanoparticles. Environ. Res., 2019, 172, 98-108.
[http://dx.doi.org/10.1016/j.envres.2019.02.003] [PMID: 30782540]
[67]
Jang, H.L.; Zhang, Y.S.; Khademhosseini, A. Boosting clinical translation of nanomedicine. Nanomedicine (Lond.), 2016, 11(12), 1495-1497.
[http://dx.doi.org/10.2217/nnm-2016-0133] [PMID: 27176482]
[68]
Panahi, Y.; Mohammadhosseini, M.; Nejati-Koshki, K.; Abadi, A.J.; Moafi, H.F.; Akbarzadeh, A.; Farshbaf, M. Preparation, surface properties, and therapeutic applications of gold nanoparticles in biomedicine. Drug Res. (Stuttg.), 2017, 67(2), 77-87.
[PMID: 27824433]
[69]
Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res., 2015, 8(6), 1771-1799.
[http://dx.doi.org/10.1007/s12274-014-0697-3]
[70]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond.), 2007, 2(5), 681-693.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[71]
Shah, M.; Badwaik, V.; Kherde, Y.; Waghwani, H.K.; Modi, T.; Aguilar, Z.P.; Rodgers, H.; Hamilton, W.; Marutharaj, T.; Webb, C.; Lawrenz, M.B.; Dakshinamurthy, R. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front. Biosci., 2014, 19, 1320-1344.
[http://dx.doi.org/10.2741/4284] [PMID: 24896353]
[72]
Fu, X.; Cai, J.; Zhang, X.; Li, W.D.; Ge, H.; Hu, Y. Top-down fabrication of shape-controlled, monodisperse nanoparticles for biomedical applications. Adv. Drug Deliv. Rev., 2018, 132, 169-187.
[http://dx.doi.org/10.1016/j.addr.2018.07.006] [PMID: 30009884]
[73]
Delong, R.K.; Reynolds, C.M.; Malcolm, Y.; Schaeffer, A.; Severs, T.; Wanekaya, A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol. Sci. Appl., 2010, 3, 53-63.
[http://dx.doi.org/10.2147/NSA.S8984] [PMID: 24198471]
[74]
Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012]
[75]
Valetti, S.; Mura, S.; Noiray, M.; Arpicco, S.; Dosio, F.; Vergnaud, J.; Desmaële, D.; Stella, B.; Couvreur, P. Peptide conjugation: before or after nanoparticle formation? Bioconjug. Chem., 2014, 25(11), 1971-1983.
[http://dx.doi.org/10.1021/bc5003423] [PMID: 25313527]
[76]
Rai, A.; Pinto, S.; Velho, T.R.; Ferreira, A.F.; Moita, C.; Trivedi, U.; Evangelista, M.; Comune, M.; Rumbaugh, K.P.; Simões, P.N.; Moita, L.; Ferreira, L. One-step synthesis of high-density peptide-conjugated gold nanoparticles with antimicrobial efficacy in a systemic infection model. Biomaterials, 2016, 85, 99-110.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.051] [PMID: 26866877]
[77]
Pal, S.; Mitra, K.; Azmi, S.; Ghosh, J.K.; Chakraborty, T.K. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption. Org. Biomol. Chem., 2011, 9(13), 4806-4810.
[http://dx.doi.org/10.1039/c1ob05338h] [PMID: 21590000]
[78]
Wadhwani, P.; Heidenreich, N.; Podeyn, B.; Bürck, J.; Ulrich, A.S. Antibiotic gold: tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci., 2017, 5(4), 817-827.
[http://dx.doi.org/10.1039/C7BM00069C] [PMID: 28275774]
[79]
Gu, H.W.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[80]
Lai, H.Z.; Chen, W.Y.; Wu, C.Y.; Chen, Y.C. Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl. Mater. Interfaces, 2015, 7(3), 2046-2054.
[http://dx.doi.org/10.1021/am507919m] [PMID: 25584802]
[81]
Chowdhury, R.; Ilyas, H.; Ghosh, A.; Ali, H.; Ghorai, A.; Midya, A.; Jana, N.R.; Das, S.; Bhunia, A. Multivalent gold nanoparticle-peptide conjugates for targeting intracellular bacterial infections. Nanoscale, 2017, 9(37), 14074-14093.
[http://dx.doi.org/10.1039/C7NR04062H] [PMID: 28901372]
[82]
Jalaei, J.; Layeghi-Ghalehsoukhteh, S.; Hosseini, A.; Fazeli, M. Antibacterial effects of gold nanoparticles functionalized with the extracted peptide from Vespa orientalis wasp venom. J. Pept. Sci., 2018, 24(12), e3124
[http://dx.doi.org/10.1002/psc.3124] [PMID: 30358026]
[83]
Casciaro, B.; Moros, M.; Rivera-Fernández, S.; Bellelli, A.; de la Fuente, J.M.; Mangoni, M.L. Gold-nanoparticles coated with the antimicrobial peptide esculentin-1a(1-21)NH2 as a reliable strategy for antipseudomonal drugs. Acta Biomater., 2017, 47, 170-181.
[http://dx.doi.org/10.1016/j.actbio.2016.09.041] [PMID: 27693686]
[84]
Vhora, I.; Patil, S.; Bhatt, P.; Misra, A. Protein- and Peptide-drug conjugates: an emerging drug delivery technology. Adv. Protein Chem. Struct. Biol., 2015, 98, 1-55.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.001] [PMID: 25819275]
[85]
Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov., 2003, 2(5), 347-360.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[86]
Singh, S.; Datta, A.; Borro, B.C.; Davoudi, M.; Schmidtchen, A.; Bhunia, A.; Malmsten, M. Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels. ACS Appl. Mater. Interfaces, 2017, 9(46), 40094-40106.
[http://dx.doi.org/10.1021/acsami.7b13714] [PMID: 29087182]
[87]
Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical applications of biodegradable polymers. J. Polym. Sci., B, Polym. Phys., 2011, 49(12), 832-864.
[http://dx.doi.org/10.1002/polb.22259] [PMID: 21769165]
[88]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[89]
Tancini, B.; Tosi, G.; Bortot, B.; Dolcetta, D.; Magini, A.; De Martino, E.; Urbanelli, L.; Ruozi, B.; Forni, F.; Emiliani, C.; Vandelli, M.A.; Severini, G.M. Use of polylactide-co-glycolide-nanoparticles for lysosomal delivery of a therapeutic enzyme in glycogenosis type II fibroblasts. J. Nanosci. Nanotechnol., 2015, 15(4), 2657-2666.
[http://dx.doi.org/10.1166/jnn.2015.9251] [PMID: 26353478]
[90]
Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm., 2007, 65(3), 259-269.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.009] [PMID: 17196803]
[91]
d’Angelo, I.; Quaglia, F.; Ungaro, F. PLGA carriers for inhalation: where do we stand, where are we headed? Ther. Deliv., 2015, 6(10), 1139-1144.
[http://dx.doi.org/10.4155/tde.15.37] [PMID: 26606854]
[92]
Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv. Drug Deliv. Rev., 2014, 71, 2-14.
[http://dx.doi.org/10.1016/j.addr.2013.08.008] [PMID: 23981489]
[93]
Ma, W.; Chen, M.; Kaushal, S.; McElroy, M.; Zhang, Y.; Ozkan, C.; Bouvet, M.; Kruse, C.; Grotjahn, D.; Ichim, T.; Minev, B. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int. J. Nanomedicine, 2012, 7, 1475-1487.
[http://dx.doi.org/10.2147/IJN.S29506] [PMID: 22619507]
[94]
Sneh-Edri, H.; Likhtenshtein, D.; Stepensky, D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm., 2011, 8(4), 1266-1275.
[http://dx.doi.org/10.1021/mp200198c] [PMID: 21661745]
[95]
Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R.H.; Zhang, L.; Lu, W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Release, 2017, 264, 102-111.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.027] [PMID: 28842313]
[96]
Imanparast, F.; Faramarzi, M.A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc. Res., 2017, 112, 14-19.
[http://dx.doi.org/10.1016/j.mvr.2017.02.002] [PMID: 28161429]
[97]
Di-Wen, S.; Pan, G.Z.; Hao, L.; Zhang, J.; Xue, Q.Z.; Wang, P.; Yuan, Q.Z. Improved antitumor activity of epirubicin-loaded CXCR4-targeted polymeric nanoparticles in liver cancers. Int. J. Pharm., 2016, 500(1-2), 54-61.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.066] [PMID: 26748365]
[98]
Yousry, C.; Elkheshen, S.A.; El-Laithy, H.M.; Essam, T.; Fahmy, R.H. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur. J. Pharm. Sci., 2017, 100, 142-154.
[http://dx.doi.org/10.1016/j.ejps.2017.01.013] [PMID: 28089661]
[99]
López-López, M.; Fernández-Delgado, A.; Moyá, M.L.; Blanco-Arévalo, D.; Carrera, C.; de la Haba, R.R.; Ventosa, A.; Bernal, E.; López-Cornejo, P. Optimized Preparation of Levofloxacin Loaded Polymeric Nanoparticles. Pharmaceutics, 2019, 11(2), E57
[http://dx.doi.org/10.3390/pharmaceutics11020057] [PMID: 30704034]
[100]
Rani, S.; Gothwal, A.; Pandey, P.K.; Chauhan, D.S.; Pachouri, P.K.; Gupta, U.D.; Gupta, U. HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin. Pharm. Res., 2018, 36(1), 19.
[http://dx.doi.org/10.1007/s11095-018-2543-x] [PMID: 30511238]
[101]
Costabile, G.; Gasteyer, K.I.; Nadithe, V.; Van Denburgh, K.; Lin, Q.; Sharma, S.; Reineke, J.J.; Firestine, S.M.; Merkel, O.M. Physicochemical and In Vitro Evaluation of Drug Delivery of an Antibacterial Synthetic Benzophenone in Biodegradable PLGA Nanoparticles. AAPS PharmSciTech, 2018, 19(8), 3561-3570.
[http://dx.doi.org/10.1208/s12249-018-1187-9] [PMID: 30255472]
[102]
Vijayan, A.; James, P.P.; Nanditha, C.K.; Kumar, G.S.V. Multiple cargo deliveries of growth factors and antimicrobial peptide using biodegradable nanopolymer as a potential wound healing system. Int. J. Nanomedicine, 2019, 14, 2253-2263.
[http://dx.doi.org/10.2147/IJN.S190321] [PMID: 30992665]
[103]
Pola, C.C.; Moraes, A.R.F.; Medeiros, E.A.A.; Teófilo, R.F.; Soares, N.F.F.; Gomes, C.L. Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food Chem., 2019, 295, 671-679.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.165] [PMID: 31174811]
[104]
Madani, F.; Esnaashari, S.S.; Mujokoro, B.; Dorkoosh, F.; Khosravani, M.; Adabi, M. Investigation of effective parameters on size of paclitaxel loaded PLGA nanoparticles. Adv. Pharm. Bull., 2018, 8(1), 77-84.
[http://dx.doi.org/10.15171/apb.2018.010] [PMID: 29670842]
[105]
Uttley, L.; Harnan, S.; Cantrell, A.; Taylor, C.; Walshaw, M.; Brownlee, K.; Tappenden, P. Systematic review of the dry powder inhalers colistimethate sodium and tobramycin in cystic fibrosis. Eur. Respir. Rev., 2013, 22(130), 476-486.
[http://dx.doi.org/10.1183/09059180.00001513] [PMID: 24293463]
[106]
d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
[107]
Casciaro, B.; d’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide- co-glycolide) nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: in vitro and in vivo studies. Biomacromolecules, 2019, 20(5), 1876-1888.
[http://dx.doi.org/10.1021/acs.biomac.8b01829] [PMID: 31013061]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy