Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Methods Applied in the Preparation of Coumarin-based Compounds

Author(s): Carla S. Francisco, Cristina S. Francisco, André F. Constantino, Álvaro Cunha Neto and Valdemar Lacerda Jr.*

Volume 23, Issue 24, 2019

Page: [2722 - 2750] Pages: 29

DOI: 10.2174/1385272823666191121150047

Price: $65

Abstract

Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific interest due to their important biological and pharmaceutical properties such as antitumor, antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors related to neurodegenerative diseases. Due to their structural variability, this compound class has been attracting considerable interest in the natural products and synthetic organic chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods, including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel condensations, and Claisen rearrangement, among others. In the present review we report the different synthetic methods used in the preparation of coumarin derivatives exploited in the last ten years (from 2008 to 2018), regarding the research demand for new structural scaffolds.

Keywords: Review, coumarin, 2H-chromen-2-ones, coumarin derivatives, synthetic methods, condensation reaction.

Graphical Abstract

[1]
Galayev, O.; Garazd, Y.; Garazd, M.; Lesyk, R. Synthesis and anticancer activity of 6-heteroarylcoumarins. Eur. J. Med. Chem., 2015, 105, 171-181.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.021] [PMID: 26491980]
[2]
Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: a review. Synth. Commun., 2014, 44, 2756-2788.
[http://dx.doi.org/10.1080/00397911.2014.926374]
[3]
Abbasi, Z.; Rezayati, S.; Bagheri, M.; Hajinasiri, R. Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@HAp-Ag nanoparticles, and a solvent- and halogen-free protocol for the synthesis of coumarin derivatives. Chin. Chem. Lett., 2017, 28, 75-82.
[http://dx.doi.org/10.1016/j.cclet.2016.06.022]
[4]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[5]
Belluti, F.; Fontana, G.; Dal Bo, L.; Carenini, N.; Giommarelli, C.; Zunino, F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: identification of novel proapoptotic agents., Bioorg. Med. Chem., 2010, 18(10), 3543-3550.
[http://dx.doi.org/10.1016/j.bmc.2010.03.069] [PMID: 20409723]
[6]
Riveiro, M.E.; Moglioni, A.; Vazquez, R.; Gomez, N.; Facorro, G.; Piehl, L.; de Celis, E.R.; Shayo, C.; Davio, C. Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells. Bioorg. Med. Chem., 2008, 16(5), 2665-2675.
[http://dx.doi.org/10.1016/j.bmc.2007.11.038] [PMID: 18060791]
[7]
Hamulakova, S.; Kozurkova, M.; Kuca, K. Coumarin derivatives in pharmacotherapy of Alzheimer’s disease. Curr. Org. Chem., 2017, 21, 602-612.
[http://dx.doi.org/10.2174/1385272820666160601155411]
[8]
Patil, P.O.; Bari, S.B.; Firke, S.D.; Deshmukh, P.K.; Donda, S.T.; Patil, D.A. A comprehensive review on synthesis and designing aspects of coumarin derivatives as monoamine oxidase inhibitors for depression and Alzheimer’s disease. Bioorg. Med. Chem., 2013, 21(9), 2434-2450.
[http://dx.doi.org/10.1016/j.bmc.2013.02.017] [PMID: 23517722]
[9]
Utreja, D.; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2509-2536.
[10]
Francisco, C.S.; Valim, T.C.; Neto, A.C.; Lacerda Jr, V. Coumarin-based hybrids as fluorescent probes for highly selective chemosensing and biological target imaging. Aldrichim Acta, 2019, 52, 51-60.
[11]
Sharma, R. Kr.; Katiyar, D. Recent advances in transition-metal-catalyzed synthesis of coumarins. Synthesis, 2016, 48, 2303-2322.
[12]
Bhatia, R.; Pathania, S.; Singh, V.; Rawal, R.K. Metal-catalyzed synthetic strategies toward coumarin derivatives. Chem. Heterocycl. Compd., 2018, 54, 280-291.
[http://dx.doi.org/10.1007/s10593-018-2262-6]
[13]
Salem, M.A.; Helal, M.H.; Gouda, M.A.; Ammar, Y.A.; El-Gaby, M.S.A.; Abbas, S.Y. An overview on synthetic strategies to coumarins. Synth. Commun., 2018, 48, 1534-1550.
[http://dx.doi.org/10.1080/00397911.2018.1455873]
[14]
Kang, D.; Ahn, K.; Hong, S. Site-Selective C−H bond functionalization of chromones and coumarins. Asian J. Org. Chem., 2018, 7, 1136-1150.
[http://dx.doi.org/10.1002/ajoc.201800128]
[15]
Choi, H.; Kim, J.; Lee, K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett., 2016, 57, 3600-3603.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.039]
[16]
Sivaguru, P.; Sandhiya, R.; Adhiyaman, M.; Lalitha, A. Synthesis and antioxidant properties of novel 2H-chromene-3-carboxylate and 3-acetyl-2H-chromene derivatives. Tetrahedron Lett., 2016, 57, 2496-2501.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.097]
[17]
Aider, N.; Smuszkiewicz, A.; Pérez-Mayoral, E.; Soriano, E.; Martín-Aranda, R.M.; Halliche, D.; Menad, S. Amino-grafted SBA-15 material as dual acid-base catalyst for the synthesis of coumarin derivatives. Catal. Today, 2014, 227, 215-222.
[http://dx.doi.org/10.1016/j.cattod.2013.10.016]
[18]
Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N.PhI. (OAc)2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett., 2017, 58, 3183-3187.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.018]
[19]
He, X.; Chen, Y.Y.; Shi, J.B.; Tang, W.J.; Pan, Z.X.; Dong, Z.Q.; Song, B.A.; Li, J.; Liu, X.H. New coumarin derivatives: design, synthesis and use as inhibitors of hMAO. Bioorg. Med. Chem., 2014, 22(14), 3732-3738.
[http://dx.doi.org/10.1016/j.bmc.2014.05.002] [PMID: 24856304]
[20]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[21]
Ghanei-Nasab, S.; Khoobi, M.; Hadizadeh, F.; Marjani, A.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur. J. Med. Chem., 2016, 121, 40-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.014] [PMID: 27214510]
[22]
Babür, B.; Seferoğlu, N.; Seferoğlu, Z. A coumarin-pyrazolone based fluorescent probe for selective colorimetric and fluorimetric fluoride detection: synthesis, spectroscopic properties and DFT calculations. J. Mol. Struct., 2018, 1161, 218-225.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.076]
[23]
Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: synthesis and anti-inflammatory activity. Eur. J. Med. Chem., 2017, 138, 170-181.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.044] [PMID: 28667873]
[24]
Bekhradnia, A.; Domehri, E.; Khosravi, M. Novel coumarin-based fluorescent probe for selective detection of Cu(II). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 18-22.
[http://dx.doi.org/10.1016/j.saa.2015.07.029] [PMID: 26186393]
[25]
He, G.; Liu, X.; Xu, J.; Ji, L.; Yang, L.; Fan, A.; Wang, S.; Wang, Q. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 190, 116-120.
[http://dx.doi.org/10.1016/j.saa.2017.09.028] [PMID: 28918220]
[26]
Kurt, B.Z.; Ozten Kandas, N.; Dag, A.; Sonmez, F.; Kucukislamoglu, M. Synthesis and biological evaluation of novel coumarin-chalcone derivatives containing urea moiety as potential anticancer agents. Arab. J. Chem., 2017.
[http://dx.doi.org/10.1016/j.arabjc.2017.10.001]
[27]
Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: a rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem., 2018, 40(Pt A), 78-83.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.022] [PMID: 28946485]
[28]
Schwendt, G.; Glasnov, T. Intensified synthesis of [3,4-d]triazole-fused chromenes, coumarins, and quinolones. Monatsh. Chem., 2017, 148, 69-75.
[http://dx.doi.org/10.1007/s00706-016-1885-5]
[29]
Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem., 2012, 20(3), 1175-1180.
[http://dx.doi.org/10.1016/j.bmc.2011.12.042] [PMID: 22257528]
[30]
Alizadeh, A.; Ghanbaripour, R.; Zhu, L.G. An efficient approach to the synthesis of coumarin-bearing 2,3-dihydro-4(1H)-quinazolinone derivatives using a piperidine and molecular iodine dual-catalyst system. Synlett, 2014, 25, 1596-1600.
[http://dx.doi.org/10.1055/s-0033-1341202]
[31]
Alizadeh, A.; Ghanbaripour, R.; Zhu, L.G. Piperidine-iodine a dual system catalyst for synthesis of coumarin bearing pyrrolo[1,2-a]quinoxaline derivatives via a one-pot three-component reaction. Tetrahedron, 2014, 70, 2048-2053.
[http://dx.doi.org/10.1016/j.tet.2014.01.038]
[32]
García, S.; Vázquez, J.L.; Rentería, M.; Aguilar-Garduño, I.G.; Delgado, F.; Trejo-Durán, M.; García-Revilla, M.A.; Alvarado-Méndez, E.; Vázquez, M.A. Synthesis and experimental-computational characterization of nonlinear optical properties of triazacyclopentafluorene-coumarin derivatives. Opt. Mater. (Amst), 2016, 62, 231-239.
[http://dx.doi.org/10.1016/j.optmat.2016.09.065]
[33]
Yang, Y.; Liu, Q.W.; Shi, Y.; Song, Z.G.; Jin, Y.H.; Liu, Z.Q. Design and synthesis of coumarin-3-acylamino derivatives to scavenge radicals and to protect DNA. Eur. J. Med. Chem., 2014, 84, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.009] [PMID: 25011038]
[34]
Fiorito, S.; Genovese, S.; Taddeo, V.A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett., 2015, 56, 2434-2436.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.079]
[35]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57, 4795-4798.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.023]
[36]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: in vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.013] [PMID: 29421707]
[37]
Das, D.K.; Sarkar, S.; Khan, M.; Belal, M.; Khan, A.T. A mild and efficient method for large scale synthesis of 3-aminocoumarins and its further application for the preparation of 4-bromo-3-aminocoumarins. Tetrahedron Lett., 2014, 55, 4869-4874.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.035]
[38]
Yang, L.; Hu, Z.; Luo, J.; Tang, C.; Zhang, S.; Ning, W.; Dong, C.; Huang, J.; Liu, X.; Zhou, H.B. Dual functional small molecule fluorescent probes for image-guided estrogen receptor-specific targeting coupled potent antiproliferative potency for breast cancer therapy. Bioorg. Med. Chem., 2017, 25(13), 3531-3539.
[http://dx.doi.org/10.1016/j.bmc.2017.05.002] [PMID: 28506582]
[39]
Costas-Lago, M.C.; Besada, P.; Rodríguez-Enríquez, F.; Viña, D.; Vilar, S.; Uriarte, E.; Borges, F.; Terán, C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur. J. Med. Chem., 2017, 139, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.045] [PMID: 28797881]
[40]
Seydimemet, M.; Ablajan, K.; Hamdulla, M.; Li, W.; Omar, A. catalyzed four-component one-pot synthesis of coumarin-containing dihydropyrano [2,3-c] pyrazoles under ultrasonic irradiation L-Proline. Tetrahedron, 2016, 72, 7599-7605.
[http://dx.doi.org/10.1016/j.tet.2016.10.016]
[41]
Yahyavi, H.; Heravi, M.M.; Mahdavi, M.; Foroumadi, A. Iodine-catalyzed tandem oxidative coupling reaction: a one-pot strategy for the synthesis of new coumarin-fused pyrroles. Tetrahedron Lett., 2018, 59, 94-98.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.055]
[42]
Zhang, R.R.; Liu, J.; Zhang, Y.; Hou, M.Q.; Zhang, M.Z.; Zhou, F.; Zhang, W.H. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: pyrano[3,2-c]chromene-2,5-diones. Eur. J. Med. Chem., 2016, 116, 76-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.069] [PMID: 27060759]
[43]
Warde, U.; Sekar, N. Solvatochromic benzo[h] coumarins: synthesis, solvatochromism, NLO and DFT study. Opt. Mater. (Amst), 2017, 72, 346-358.
[http://dx.doi.org/10.1016/j.optmat.2017.06.027]
[44]
Ali, Z.; Khalid, M.N.; Gilani, S.R.; Hussain, H.; Rehman, H.; Hussain, I.; Sadiqa, A. Synthesis and antibacterial activity of coumarin and its derivatives. Asian J. Chem., 2015, 27(9), 3321-3324.
[45]
Atghia, S.V.; Beigbaghlou, S.S. Use of a highly efficient and recyclable solid-phase catalyst based on nanocrystalline titania for the pechmann condensation. C. R. Chim., 2014, 17, 1155-1159.
[http://dx.doi.org/10.1016/j.crci.2014.04.001]
[46]
Peng, M.M.; Hemalatha, P.; Ganesh, M.; Palanichamy, M.; Jang, H.T. Solvent free synthesis of coumarin derivative by the use of AlSBA-1 molecular sieves. J. Ind. Eng. Chem., 2014, 20, 953-960.
[http://dx.doi.org/10.1016/j.jiec.2013.06.028]
[47]
Karami, B.; Kiani, M. ZrOCl2.8H2O/SiO2: an efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catal. Commun., 2011, 14, 62-67.
[http://dx.doi.org/10.1016/j.catcom.2011.07.002]
[48]
Karami, B.; Kiani, M.; Hoseini, M.A. In(OTf)3 as a powerful and recyclable catalyst for Pechmann condensation without solvent. Chin. J. Catal., 2014, 35, 1206-1211.
[http://dx.doi.org/10.1016/S1872-2067(14)60090-5]
[49]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.F.S.A.; Oliveira-Campos, A.M.F.; Rodrigues, L.M. Synthesis of novel benzofurocoumarin analogues and their anti-proliferative effect on human cancer cell lines. Eur. J. Med. Chem., 2012, 47(1), 370-376.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.005] [PMID: 22119152]
[50]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.F.S.A.; Oliveira-Campos, A.M.F.; Esteves, A.P. Novel benzopsoralen analogues: synthesis, biological activity and molecular docking studies. Eur. J. Med. Chem., 2014, 87, 298-305.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.066] [PMID: 25262050]
[51]
Zareyee, D.; Serehneh, M. Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. J. Mol. Catal. Chem., 2014, 391, 88-91.
[http://dx.doi.org/10.1016/j.molcata.2014.04.013]
[52]
Sahu, P.K.; Sahu, P.K.; Agarwal, D.D. Role of basicity, calcinations, catalytic activity and recyclability of hydrotalcite in eco-friendly synthesis of coumarin derivatives. J. Mol. Catal. Chem., 2014, 395, 251-260.
[http://dx.doi.org/10.1016/j.molcata.2014.07.024]
[53]
Prousis, K.C.; Avlonitis, N.; Heropoulos, G.A.; Calogeropoulou, T. FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason. Sonochem., 2014, 21(3), 937-942.
[http://dx.doi.org/10.1016/j.ultsonch.2013.10.018] [PMID: 24262761]
[54]
Key, J.A.; Koh, S.; Timerghazin, Q.K.; Brown, A.; Cairo, C.W. Photophysical characterization of triazole-substituted coumarin fluorophores. Dyes Pigments, 2009, 82, 196-203.
[http://dx.doi.org/10.1016/j.dyepig.2009.01.001]
[55]
Naik, M.A.; Mishra, B.G.; Dubey, A. Combustion synthesized WO3-ZrO2 nanocomposites as catalyst for the solvent-free synthesis of coumarins. Colloids Surf. A Physicochem. Eng. Asp., 2008, 317, 234-238.
[http://dx.doi.org/10.1016/j.colsurfa.2007.10.019]
[56]
Kalita, P.; Kumar, R. Solvent-free coumarin synthesis via Pechmann reaction using solid catalysts. Microporous Mesoporous Mater., 2012, 149, 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2011.08.004]
[57]
Karimi, B.; Behzadnia, H. Periodic mesoporous silica chloride (PMSCl) as an efficient and recyclable catalyst for the Pechmann reaction. Catal. Commun., 2011, 12, 1432-1436.
[http://dx.doi.org/10.1016/j.catcom.2011.05.019]
[58]
Sinhamahapatra, A.; Sutradhar, N.; Pahari, S.; Bajaj, H.C.; Panda, A.B. Mesoporous zirconium phosphate: an efficient catalyst for the synthesis of coumarin derivatives through Pechmann condensation reaction. Appl. Catal. A Gen., 2011, 394, 93-100.
[http://dx.doi.org/10.1016/j.apcata.2010.12.027]
[59]
Nazeruddin, G.M.; Pandharpatte, M.S.; Mulani, K.B. PEG-SO3H: A mild and efficient recyclable catalyst for the synthesis of coumarin derivatives. C. R. Chim., 2012, 15, 91-95.
[http://dx.doi.org/10.1016/j.crci.2011.10.005]
[60]
Vargas-Soto, F.A.; Céspedes-Acuña, C.L.; Aqueveque-Muñoz, P.M.; Alarcón-Enos, J.E. Toxicity of coumarins synthesized by Pechmann-Duisberg condensation against Drosophila melanogaster larvae and antibacterial effects. Food Chem. Toxicol., 2017, 109(Pt 2), 1118-1124.
[http://dx.doi.org/10.1016/j.fct.2017.05.051] [PMID: 28576470]
[61]
Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.017] [PMID: 29366931]
[62]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[63]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[64]
Morsy, S.A.; Farahat, A.A.; Nasr, M.N.A.; Tantawy, A.S. Synthesis, molecular modeling and anticancer activity of new coumarin containing compounds. Saudi Pharm. J., 2017, 25(6), 873-883.
[http://dx.doi.org/10.1016/j.jsps.2017.02.003] [PMID: 28951673]
[65]
Reddy, D.S.; Kongot, M.; Netalkar, S.P.; Kurjogi, M.M.; Kumar, R.; Avecilla, F.; Kumar, A.; Kongot, M.; Netalkar, S.P.; Kurjogi, M.M.S.C. Synthesis and evaluation of novel coumarin-oxime ethers as potential anti-tubercular agents: their DNA cleavage ability and BSA interaction study. Eur. J. Med. Chem., 2018, 150, 864-875.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.042] [PMID: 29597169]
[66]
Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.A.; Olea-Azar, C. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab. J. Chem., 2018, 11, 525-537.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.007]
[67]
Koparde, S.; Hosamani, K.M.; Barretto, D.A.; Joshi, S.D. Microwave synthesis of coumarin-maltol hybrids as potent antitumor and anti-microbial drugs: an approach to molecular docking and DNA cleavage studies. Chemical Data Collections, 2018, 15, 41-53.
[68]
Pang, G.X.; Niu, C.; Mamat, N.; Aisa, H.A. Synthesis and in vitro biological evaluation of novel coumarin derivatives containing isoxazole moieties on melanin synthesis in B16 cells and inhibition on bacteria. Bioorg. Med. Chem. Lett., 2017, 27(12), 2674-2677.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.039] [PMID: 28476568]
[69]
Xie, S.S.; Wang, X.B.; Li, J.Y.; Yang, L.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur. J. Med. Chem., 2013, 64, 540-553.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.051] [PMID: 23685572]
[70]
Hu, Y.; Shen, Y.; Wu, X.; Tu, X.; Wang, G.X. Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. Eur. J. Med. Chem., 2018, 143, 958-969.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.100] [PMID: 29232586]
[71]
Tasior, M.; Deperasińska, I.; Morawska, K.; Banasiewicz, M.; Vakuliuk, O.; Kozankiewicz, B.; Gryko, D.T. Vertically π-expanded coumarin--synthesis via the Scholl reaction and photophysical properties. Phys. Chem. Chem. Phys., 2014, 16(34), 18268-18275.
[http://dx.doi.org/10.1039/C4CP02003K] [PMID: 25058341]
[72]
Ćavar, S.; Kovač, F.; Maksimović, M. Synthesis and antioxidant activity of selected 4-methylcoumarins. Food Chem., 2009, 117, 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.087]
[73]
Yadav, G.D.; Ajgaonkar, N.P.; Varma, A. Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. J. Catal., 2012, 292, 99-110.
[http://dx.doi.org/10.1016/j.jcat.2012.05.004]
[74]
Schill, H.; Nizamov, S.; Bottanelli, F.; Bierwagen, J.; Belov, V.N.; Hell, S.W. 4-Trifluoromethyl-substituted coumarins with large Stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chemistry, 2013, 19(49), 16556-16565.
[http://dx.doi.org/10.1002/chem.201302037] [PMID: 24281806]
[75]
Rezaei, R.; Dorosty, L.; Rajabzadeh, M.; Khalifeh, R. Melamine-formaldehyde resin supported H+ a mild and inexpensive reagent for synthesis of coumarins under mild conditions. Chin. Chem. Lett., 2011, 22, 1313-1316.
[http://dx.doi.org/10.1016/j.cclet.2011.06.009]
[76]
Albadi, J.; Shirini, F.; Abasi, J.; Armand, N.; Motaharizadeh, T. A green, efficient and recyclable poly(4-vinylpyridine)-supported copper iodide catalyst for the synthesis of coumarin derivatives under solvent-free conditions. C. R. Chim., 2013, 16, 407-411.
[http://dx.doi.org/10.1016/j.crci.2012.10.002]
[77]
Mertens, M.D.; Hinz, S.; Müller, C.E.; Gütschow, M. Alkynyl-coumarinyl ethers as MAO-B inhibitors. Bioorg. Med. Chem., 2014, 22(6), 1916-1928.
[http://dx.doi.org/10.1016/j.bmc.2014.01.046] [PMID: 24560738]
[78]
Symeonidis, T.; Chamilos, M.; Hadjipavlou-Litina, D.J.; Kallitsakis, M.; Litinas, K.E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(4), 1139-1142.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.098] [PMID: 19150597]
[79]
Elsinghorst, P.W.; Härtig, W.; Goldhammer, S.; Grosche, J.; Gütschow, M. A gorge-spanning, high-affinity cholinesterase inhibitor to explore β-amyloid plaques. Org. Biomol. Chem., 2009, 7(19), 3940-3946.
[http://dx.doi.org/10.1039/b909612d] [PMID: 19763296]
[80]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.F.S.A.; Oliveira-Campos, A.M.F.; Rodrigues, L.M.; Esteves, A.P. Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg. Med. Chem., 2013, 21(17), 5047-5053.
[http://dx.doi.org/10.1016/j.bmc.2013.06.049] [PMID: 23886808]
[81]
Kaya, E.N.; Yuksel, F.; Özpinar, G.A.; Bulut, M.; Durmuş, M. 7-Oxy-3-(3,4,5-trimethoxyphenyl)coumarin substituted phthalonitrile derivatives as fluorescent sensors for detection of Fe3+ ions: experimental and theoretical study. Sens. Actuators B Chem., 2014, 194, 377-388.
[http://dx.doi.org/10.1016/j.snb.2013.12.044]
[82]
Pu, W.; Lin, Y.; Zhang, J.; Wang, F.; Wang, C.; Zhang, G. 3-Arylcoumarins: synthesis and potent anti-inflammatory activity. Bioorg. Med. Chem. Lett., 2014, 24(23), 5432-5434.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.033] [PMID: 25453803]
[83]
Wang, Z.M.; Li, X.M.; Xue, G.M.; Xu, W.; Wang, X.B.; Kong, L.Y. Synthesis and evaluation of 6-substituted 3-arylcoumarin derivatives as multifunctional acetylcholinesterase/monoamine oxidase B dual inhibitors for the treatment of Alzheimer’s disease. RSC Advances, 2015, 5, 104122-104137.
[http://dx.doi.org/10.1039/C5RA22296F]
[84]
Tan, G.; Yao, Y.; Gu, Y.; Li, S.; Lv, M.; Wang, K.; Chen, H.; Li, X. Cytotoxicity and DNA binding property of the dimers of triphenylethylene-coumarin hybrid with one amino side chain. Bioorg. Med. Chem. Lett., 2014, 24(13), 2825-2830.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.106] [PMID: 24825300]
[85]
Choi, H.; Kim, J.; Lee, K. Metal-free, Brønsted acid-mediated synthesis of coumarin derivatives from phenols and propiolic acids. Tetrahedron Lett., 2016, 57(32), 3600-3603.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.039]
[86]
Gadakh, S.K.; Dey, S.; Sudalai, A. Rh-Catalyzed synthesis of coumarin derivatives from phenolic acetates and acrylates via C-H bond activation. J. Org. Chem., 2015, 80(22), 11544-11550.
[http://dx.doi.org/10.1021/acs.joc.5b01713] [PMID: 26509478]
[87]
de la Fuente Revenga, M.; Herrera-Arozamena, C.; Fernández-Sáez, N.; Barco, G.; García-Orue, I.; Sugden, D.; Rivara, S.; Rodríguez-Franco, M.I.; Rodríguez-franco, M.I. New coumarin-based fluorescent melatonin ligands. Design, synthesis and pharmacological characterization. Eur. J. Med. Chem., 2015, 103, 370-373.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.003] [PMID: 26367450]
[88]
Sharma, H.; Mourya, M.; Soni, L.K.; Guin, D.; Joshi, Y.C.; Dobhal, M.P.; Basak, A.K. Iodine mediated synthesis of coumarins from chromenes. Tetrahedron Lett., 2015, 56, 7100-7104.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.019]
[89]
Zhang, H.; Luo, Q.; Mao, Y.; Zhao, Y.; Yu, T. Synthesis and characterization of coumarin-biphenyl derivatives as organic luminescent materials. J. Photochem. Photobiol. Chem., 2017, 346, 10-16.
[http://dx.doi.org/10.1016/j.jphotochem.2017.05.039]
[90]
Lv, N.; Sun, M.; Liu, C.; Li, J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2017, 27(19), 4578-4581.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.044] [PMID: 28888820]
[91]
Li, J.; Zhang, C.; Wu, S.; Wen, X.; Xi, Z.; Yi, L. Facile synthesis of green-light and large Stokes-shift emitting coumarins for bioconjugation. Dyes Pigments, 2018, 151, 303-309.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.016]
[92]
Bardasov, I.N.; Malyshkina, N.L.; Alekseeva, A.Y.; Ershov, O.V.; Timrukova, D.V.; Grigor’eva, A.O. Synthesis and optical properties of new coumarin derivatives based on 2-(2-chlorobenzylidene) malononitrile. Russ. J. Org. Chem., 2017, 53, 47-50.
[http://dx.doi.org/10.1134/S1070428017010080]
[93]
Khanapurmath, N.; Kulkarni, M.V.; Pallavi, L.; Yenagi, J.; Tonannavar, J. Solvatochromic studies on 4-Bromomethyl-7-methyl coumarins. J. Mol. Struct., 2018, 1160, 50-56.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.070]
[94]
Yu, T.; Zhu, Z.; Bao, Y.; Zhao, Y.; Liu, X.; Zhang, H. Investigation of novel carbazole-functionalized coumarin derivatives as organic luminescent materials. Dyes Pigments, 2017, 147, 260-269.
[http://dx.doi.org/10.1016/j.dyepig.2017.08.017]
[95]
Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S. Ytterbium triflate promoted coupling of phenols and propiolic acids: synthesis of coumarins. Tetrahedron Lett., 2016, 57, 2939-2942.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.087]
[96]
Hintz, H.A.; Sortedahl, N.J.; Meyer, S.M.; Decato, D.A.; Dahl, B.J. The synthesis of lactone-bridged 1,3,5-triphenylbenzene derivatives as pi-expanded coumarin triskelions. Tetrahedron Lett., 2017, 58(50), 4703-4708.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.010] [PMID: 29430066]
[97]
Kim, D.; Na, S.Y.; Kim, H.J. A fluorescence turn-on probe for a catalytic amount of cyanides through the cyanide-mediated cinnamate-to-coumarin transformation. Sens. Actuators B Chem., 2016, 226, 227-231.
[http://dx.doi.org/10.1016/j.snb.2015.11.122]
[98]
Daśko, M.; Przybyłowska, M.; Rachon, J.; Masłyk, M.; Kubiński, K.; Misiak, M.; Składanowski, A.; Demkowicz, S. Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors. Eur. J. Med. Chem., 2017, 128, 79-87.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.028] [PMID: 28152429]
[99]
Kayal, U.; Karmakar, R.; Banerjee, D.; Maiti, G. Copper oxide catalyzed domino process for the synthesis of substituted 2H-pyran-2-ones and polyhydroxy coumarin derivatives. Tetrahedron, 2014, 70, 7016-7021.
[http://dx.doi.org/10.1016/j.tet.2014.07.032]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy