Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Thermal Imaging Techniques for Breast Screening - A Survey

Author(s): Prabha S.*

Volume 16, Issue 7, 2020

Page: [855 - 862] Pages: 8

DOI: 10.2174/1573405615666191115145038

Price: $65

Abstract

Breast cancer is the second leading cause of cancer death among women preceded by cervix cancer. It has been reported that at the early stage of detection there is 85% chance of getting cured, whereas only 10% chance at later stage diagnosis. The current screening modalities are expensive, they have intricate imaging measures and they are unhealthy due to radiation exposure. Therefore, a screening tool that is non-invasive, has no connection with the body, free from radiation, such as Medical Thermography is necessary. It is reported that the sensitivity and specificity of medical thermography are high largely in dense breast tissues. The clinical interpretation primarily depends on the asymmetrical analysis of these thermograms subjectively. The appearance of an asymmetric thermal image may indicate the pathological conditions. For earlier detection of breast cancer, it is essential to identify the advanced methods in image processing techniques which enhance the significance of diagnostics. In that analysis, the required breast region is unglued from the background image. The segmented image is separated into symmetrical left and right breast tissues. The statistical and histogram features extracted from both regions are used to identify the abnormal thermograms using machine learning algorithms. From literature, it is reported that the thermal images are inherently low contrast images and have low single to noise ratio. Moreover, they are amorphous in nature and no clear edges are seen. The difficulty lies in the detection of lower breast boundaries and inframammary folds. So, in general, the first attempt is made in improving the signal to noise ratio and contrast of the image which helps to extract the true regions of breast tissues. Then, asymmetry analysis of the normal and abnormal breast tissues is performed using different techniques. This work demonstrates the review of a few image processing methods or the development which are elaborated in the detection of breast cancer from thermal images.

Keywords: Breast thermography, segmentation, feature extraction, medical images, breast cancer, thermal images.

Graphical Abstract

[1]
Cooper AP. On the anatomy of the breast. longman 1840. available from: https://jdc.jefferson.edu/cooper/
[2]
Rajagopal V. Modelling breast tissue mechanics under gravity loading. phd dissertation. the university of auckland 2007.
[3]
Bhowmik MK, Gogoi UR, Majumdar G, et al. Designing of ground-truth-annotated DBT-TU-JU breast thermogram database toward early abnormality prediction. IEEE J Biomed Health Inform 2018; 22(4): 1238-49.
[http://dx.doi.org/10.1109/JBHI.2017.2740500] [PMID: 28829321]
[4]
Ng EYK. A review of thermography as promising non-invasive detection modality for breast tumor. Int J Therm Sci 2009; 48(5): 849-59.
[http://dx.doi.org/10.1016/j.ijthermalsci.2008.06.015]
[5]
Kennedy DA, Lee T, Seely D. A comparative review of thermography as a breast cancer screening technique. Integr Cancer Ther 2009; 8(1): 9-16.
[http://dx.doi.org/10.1177/1534735408326171] [PMID: 19223370]
[6]
Sree SV, Ng EYK, Rajendra Acharya U, Tan W. Breast imaging systems: A review and comparative study. J Mech Med Biol 2010; 10(1): 5-34.
[http://dx.doi.org/10.1142/S0219519410003277]
[7]
Lozano A III, Hassanipour F. Infrared imaging for breast cancer detection: An objective review of foundational studies and its proper role in breast cancer screening. Infrared Phys Technol 2018; 97: 244-57.
[http://dx.doi.org/10.1016/j.infrared.2018.12.017]
[8]
Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol 2012; 55(4): 221-35.
[http://dx.doi.org/10.1016/j.infrared.2012.03.007]
[9]
Minikina W, Dudzik S. Infrared thermography. Error and uncertainties. 1st ed. John Wiley and Sons Limited Publication 2009; pp. 15-60.
[http://dx.doi.org/10.1002/9780470682234]
[10]
Keyserlingk JR, Ahlgren PD, Yu E, Belliveau N, Yassa M. Functional infrared imaging of the breast. IEEE Eng Med Biol Mag 2000; 19(3): 30-41.
[http://dx.doi.org/10.1109/51.844378] [PMID: 10834114]
[11]
Qi H, Diakides NA. Detecting breast cancer from thermal infrared images by asymmetry analysis. Medical infrared imaging. Boca Raton, FL: CRC Press 2007 pp. 11.1-.14
[http://dx.doi.org/10.1201/9781420008340.ch11]
[12]
Kafieh R, Rabbani H. Wavelet-based medical infrared image noise reduction using local model for signal and noise. Statistical Signal Processing Workshop (SSP) 2011 June 28-30 Nice, France New Jersey: IEEE 2011.
[http://dx.doi.org/10.1109/ssp.2011.5967756]
[13]
Borchartt TB, Resmini R, Motta LS, et al. Combining approaches for early diagnosis of breast diseases using thermal imaging. Int J Innov Comput Appl 2012; 4(3): 163-83.
[http://dx.doi.org/10.1504/IJICA.2012.050054]
[14]
Prabha S, Sujatha CM, Ramakrishnan S. Asymmetry analysis of breast thermograms using BM3D technique and statistical texture features. International Conference on Informatics, Electronics & Vision (ICIEV) 2014 May 23-24 Dhaka, Bangladesh New Jersey: IEEE 2014.
[http://dx.doi.org/10.1109/iciev.2014.6850730]
[15]
Smith SM, Brady JM. Susan-a new approach to low level image processing. Int J Comput Vis 1997; 23(1): 45-78.
[http://dx.doi.org/10.1023/A:1007963824710]
[16]
Kervrann C, Boulanger J. Optimal spatial adaptation for patch-based image denoising. IEEE Trans Image Process 2006; 15(10): 2866-78.
[http://dx.doi.org/10.1109/TIP.2006.877529] [PMID: 17022255]
[17]
Shreyamsha BK. Image denoising based on non-local means filter and its method noise thresholding. Sign Image Video Process 2012; 2012: 1-17.
[18]
Darbon J, Cunha A, Chan TF, Osher S, Jensen GJ. Fast nonlocal filtering applied to electron cryomicroscopy. International Symposium on Biomedical Imaging: From Nano to Macro 2008 May 14-17 Paris, France New Jersey: IEEE 2008.
[http://dx.doi.org/10.1109/isbi.2008.4541250]
[19]
Rabbani H. Image denoising in steerable pyramid domain based on a local Laplace prior. Pattern Recognit 2009; 42(9): 2181-93.
[http://dx.doi.org/10.1016/j.patcog.2009.01.005]
[20]
Candes EJ, Donoho LD. Curvelets: A surprisingly effective non-adaptive representation for objects with edges. Stanford University, Department of Statistics 2000.
[21]
Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 2005; 14(12): 2091-106.
[http://dx.doi.org/10.1109/TIP.2005.859376] [PMID: 16370462]
[22]
Donoho DL, Johnstone JM. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994; 81(3): 425-55.
[http://dx.doi.org/10.1093/biomet/81.3.425]
[23]
Donoho DL. De-noising by soft-thresholding. IEEE Trans Inf Theory 1995; 41(3): 613-27.
[http://dx.doi.org/10.1109/18.382009]
[24]
Portilla J, Strela V, Wainwright MJ, Simoncelli EP. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 2003; 12(11): 1338-51.
[http://dx.doi.org/10.1109/TIP.2003.818640] [PMID: 18244692]
[25]
Jin F, Fieguth P, Winger L, Jernigan E. Adaptive Wiener filtering of noisy images and image sequences. International Conference on Image Processing (Cat. No.03CH37429); 2003 Sept 14-17; Barcelona, Spain. New Jersey: IEEE 2003.
[http://dx.doi.org/10.1109/icip.2003.1247253]
[26]
Buades A, Coll B, Morel JM. A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 2005 June 20-25 San Diego, CA, USA New Jersey: IEEE 2005.
[27]
Hua Z, Yang C, Zhang X. A new weight for nonlocal means denoising using method noise. IEEE Signal Process Lett 2012; 19(8): 535-8.
[http://dx.doi.org/10.1109/LSP.2012.2205566]
[28]
Darbon J, Cunha A, Chan TF, Osher S, Jensen GJ. Fast nonlocal filtering applied to electron cryomicroscopy. IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2008 May 14-17 Paris, France New Jersey: IEEE 2008.
[http://dx.doi.org/10.1109/isbi.2008.4541250]
[29]
Weickert J. Anisotropic diffusion in image processing. Stuttgart BGT 1998; pp. 1-184.
[30]
Tebini, S, Seddik H &, Braiek E B. 2017. Medical image enhancement based on New anisotropic diffusion function. 14th International Multi-Conference on Systems, Signals & Devices (SSD); 2017 Mar 28-31; Marrakech, Morocco. New Jersey: IEEE pp.456-60.
[31]
Kafieh R, Rabbani H. Wavelet- based medical infrared image noise reduction using local model for signal and noise. IEEE Statistical Signal Processing Workshop (SSP) 2011 June 28-30 Nice, France New Jersey: IEEE. 2011.
[http://dx.doi.org/10.1109/ssp.2011.5967756]
[32]
Qin X, Liu S, Wu Z &, Jun H. 2008 Medical image enhancement method based on 2D empirical mode decomposition. 2nd International Conference on Bioinformatics and Biomedical Engineering 2008 May 16-18 Shanghai, China new jersey: ieee 2008; pp. 2533-6.
[33]
Ooi EH, Ang WT, Ng EYK. A boundary element model for investigating the effects of eye tumor on the temperature distribution inside the human eye. Comput Biol Med 2009; 39(8): 667-77.
[http://dx.doi.org/10.1016/j.compbiomed.2009.04.010] [PMID: 19505684]
[34]
Huang E, Shen Z, Long RS, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond 1998; 454A: 903-95.
[http://dx.doi.org/10.1098/rspa.1998.0193]
[35]
Nunes JC, Bouaoune Y, Delechelle E, Nianh O, Bunel Ph. Image analysis by bidimensional empirical mode decomposition. Image Vis Comput 2003; 21: 1019-26.
[http://dx.doi.org/10.1016/S0262-8856(03)00094-5]
[36]
Nunes J, Guyot S, Delechelle E. Texture analysis based on local analysis of the bidimensional empirical mode decomposition. J Mach Vis Appl 2005; 16: 177-88.
[http://dx.doi.org/10.1007/s00138-004-0170-5]
[37]
Linderhed A. 2D empirical mode decompositios in the spirit of image compression. Proc SPIE 2002; 4738: 1-8.
[http://dx.doi.org/10.1117/12.458772]
[38]
Yang Y, Jing L. Detection of atherosclerosis through mapping skin temperature variation caused by carotid atherosclerosis plaques. J Therm Sci Eng Appl 2011; 3: 1-9.
[http://dx.doi.org/10.1115/1.4004109]
[39]
Xu Y, Liu B, Riemenschneider S. Two dimensional empirical mode decomposition by finite elements. Proc R Soc Lond A 2006; 462: 3081-96.
[http://dx.doi.org/10.1098/rspa.2006.1700]
[40]
Qin X, Liu S, Zhengqiang Wu, Han J. Medical image enhancement method based on 2D empirical mode decomposition. Bioinform Biomed Engineer 2008; 2008: 2533-6.
[41]
Nunes JC, Niang O, Bouaoune Y, Delechelle E, Bunel Ph. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models. 7th International Symposium on Signal Processing and its Applications 2003 july 4-4; paris, france. new jersey: ieee 2003.
[http://dx.doi.org/10.1109/isspa.2003.1224962]
[42]
Nunes J, Delechelle E. Empirical mode decomposition: applications on signal and image processing. Adv Adapt Data Anal 2009; 1(1): 125-75.
[http://dx.doi.org/10.1142/S1793536909000059]
[43]
Machado DA, Giraldi G, Novotny AA, Marques RS, Conci A. Topological derivative applied to automatic segmentation of frontal breast thermograms. Rio de Janeiro Workshop de VisaoComputacional 2013.
[44]
Borchartt TB, Conci A, Lima R. Breast thermography from an image processing viewpoint: A survey. Sign Process 2013; 93(10): 2785-803.
[45]
Duarte A, Carrão L, Espanha M, et al. Segmentation algorithms for thermal images. Procedia Technology 2014; 16: 1560-9.
[http://dx.doi.org/10.1016/j.protcy.2014.10.178]
[46]
Jiang M. Edge enhancement and noise suppression for infrared image based on feature analysis. Infrared Phys Technol 2018; 91: 142-52.
[http://dx.doi.org/10.1016/j.infrared.2018.04.005]
[47]
Wang B, Chen LL, Zhang ZY. A novel method on the edge detection of infrared image. Optik (Stuttg) 2019; 180: 610-4.
[http://dx.doi.org/10.1016/j.ijleo.2018.11.113]
[48]
Motta L, Conci A, Diniz E, Luís R. Automatic segmentation on thermograms in order to aid diagnosis and 2D modeling. Proceedings of 10th Workshop on Informatica Medica 2010; pp. 1610-9.
[49]
Kapoor P, Prasad SVAV. Image processing for early diagnosis of breast cancer using infrared images. The 2nd International Conference on Computer and Automation Engineering (ICCAE); 2010 Feb 26-28; Singapore. New Jersey: IEEE 2010.
[http://dx.doi.org/10.1109/iccae.2010.5451827]
[50]
Scales N, Kerry C. Automated image segmentation for breast analysis using infrared images. Conf Proc IEEE Eng Med Biol Soc 2004; 2004: 1737-40.
[http://dx.doi.org/10.1109/IEMBS.2004.1403521]
[51]
Herry CL, Frize M. Digital processing techniques for the assessment of pain with infrared thermal imaging. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society 2002 oct 23-26; Houston, TX, USA new jersey: ieee 200; pp. 1157-8.
[http://dx.doi.org/10.1109/iembs.2002.1106324]
[52]
Schaefer G, Zavisek M, Nakashima T. Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognit 2009; 42(6): 1133-7.
[http://dx.doi.org/10.1016/j.patcog.2008.08.007]
[53]
Laura F, Rubio JL, Ledesma-Carbayo MJ, et al. 3D liver segmentation in preoperative CT images using a level sets active surface method. Conf Proc IEEE Eng Med Biol Soc 2009; 2009:3 625-8.
[54]
Zhuang AH, Valentino DJ, Toga AW. Skull-stripping magnetic resonance brain images using a model-based level set. Neuroimage 2006; 32(1): 79-92.
[http://dx.doi.org/10.1016/j.neuroimage.2006.03.019] [PMID: 16697666]
[55]
Jayadevappa D, Srinivas Kumar S, Murty DS. Medical image segmentation algorithms using deformable models: a review. IETE Tech Rev 2011; 28(3): 248-51.
[http://dx.doi.org/10.4103/0256-4602.81244]
[56]
Ng EYK, Chen Y. Segmentation of breast thermogram: Improved boundary detection with modified snake algorithm. J Mech Med Biol 2006; 6(2): 123-36.
[http://dx.doi.org/10.1142/S021951940600190X]
[57]
Li C, Xu C, Gui C, Fox MD. Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 2010; 19(12): 3243-54.
[http://dx.doi.org/10.1109/TIP.2010.2069690] [PMID: 20801742]
[58]
Prabha S. Dental image segmentation using clustering techniques and level set method. Computational techniques for dental image analysis.Pennsylvania: IGI Global Publishing 2018.
[59]
Prabha S, Sujatha CM, Ramakrishnan S. Robust anisotropic diffusion based edge enhancement for level set segmentation and asymmetry analysis of breast thermograms using zernike moments. Biomed Sci Instrum 2015; 51: 341-8.
[PMID: 25996737]
[60]
Ravikanth M, Sethian AJ, Vemuri BC. Shape modeling with front propagation: A level set approach. IEEE Trans Pattern Anal Mach Intell 1995; 17: 158-75.
[http://dx.doi.org/10.1109/34.368173]
[61]
Zhou Q, Liand Z, Aggarwal JK. Boundary extraction in thermal images by edge map. Proceedings of the ACM symposium on Applied computing 2004 mar 15; cyprus. new york: acm digital library 2004; pp. 254-8.
[http://dx.doi.org/10.1145/967900.967956]
[62]
Suganthi SS, Ramakrishnan S. Anisotropic diffusion filter based edge enhancement for segmentation of breast thermogram using level sets. Biomed Signal Process Control 2014; 10: 128-36.
[http://dx.doi.org/10.1016/j.bspc.2014.01.008]
[63]
Prabha S, Suganthi SS, Sujatha CM. Analysis of breast thermal images using anisotropic diffusion filter based modified level sets and efficient fractal algorithm. in: naghabhushan tn, aradhya vnm, jagadeesh p, shukla s, chaydevi ml, eds Cognitive Computing and Information Processing.Berlin: Springer 2018; pp. 10-7.
[64]
Prabha S, Suganthi SS, Sujatha CM. An approach to analyze the breast tissues in infrared images using nonlinear adaptive level sets and Riesz transform features. Technol Health Care 2015; 23(4): 429-42.
[http://dx.doi.org/10.3233/THC-150915] [PMID: 26409908]
[65]
Zhang K, Zhang L, Song H, Zhang D. Reinitialization-free level set evolution via reaction diffusion. IEEE Trans Image Process 2013; 22(1): 258-71.
[http://dx.doi.org/10.1109/TIP.2012.2214046] [PMID: 22910114]
[66]
Golestani N, Etehad Tavakol M, Ng E. Level set method for segmentation of infrared breast thermograms. EXCLI J 2014; 13: 241-51.
[PMID: 26417258]
[67]
Wang B, Gao X, Tao D, Li X. A nonlinear adaptive level set for image segmentation. IEEE Trans Cybern 2014; 44(3): 418-28.
[http://dx.doi.org/10.1109/TCYB.2013.2256891] [PMID: 23797311]
[68]
Prabha S, Anandh KR, Sujatha CM, Ramakrishnan S. Total variation based edge enhancement for level set segmentation and asymmetry analysis in breast thermograms. 36th IEEE International Conference on Engineering in Medicine and Biology Society (EMBS)2014 Chicago USA New Jersey IEEE ; pp. 6438-41.
[http://dx.doi.org/10.1109/embc.2014.6945102]
[69]
Weickert J. Coherence-enhancing diffusion of colour images. Image Vis Comput 1999; 17(3): 201-12.
[http://dx.doi.org/10.1016/S0262-8856(98)00102-4]
[70]
Abd-Elmoniem KZ, Youssef ABM, Kadah YM. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans Biomed Eng 2002; 49(9): 997-1014.
[http://dx.doi.org/10.1109/TBME.2002.1028423] [PMID: 12214889]
[71]
Chao SM, Tsai DM. An improved anisotropic diffusion model for detail-and edge-preserving smoothing. Pattern Recognit Lett 2010; 31(13): 2012-23.
[http://dx.doi.org/10.1016/j.patrec.2010.06.004]
[72]
Leonid IR, Stanley O, Emad F. Nonlinear total variation based noise removal algorithms. Physica D 1992; 60(1): 259-68.
[73]
Gilboa G, Nir S, Yehoshua YZ. Texture preserving variational denoising using an adaptive fidelity term. Proc VLSM 2003; 3: 1869949.
[74]
Chan T, Esedoglu S, Park F, Yip A. Recent developments in total variation image restoration. Handbook of mathematical models in computer vision.Newyork: Springer Verlag 2005.
[75]
Selle J, Shenbagavalli A, Sriraam N, Venkatraman B, Jayashree M, Menaka M. Automated recognition of ROIs for breast thermograms of lateral view-a pilot study. Quant Infrared Thermogr J 2018; 15(2): 194-213.
[http://dx.doi.org/10.1080/17686733.2018.1426137]
[76]
Diakides N A, Bronizino J D. Detecting breast cancer from thermal infrared images by asymmetry analysis. taylor and francis group: medical infrared imaging; 2007; pp. 11-4.
[77]
Qi H, Head JF. Asymmetry analysis using automatic segmentation and classification for breast cancer detection in thermograms. Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2001 Oct 25-28; Istanbul, Turkey.New Jersey: IEEE pp.2866-9.
[78]
Suganthi SS, Ramakrishnan S. Analysis of breast thermograms using Gabor wavelet anisotropy index. J Med Syst 2014; 38(9): 101-8.
[http://dx.doi.org/10.1007/s10916-014-0101-6] [PMID: 25064085]
[79]
Prabha S, Suganthi SS, Sujatha CM. Differentiation of breast abnormalities in infrared images using reisz and quaternion hilbert transform based features. IJBET 2015; 19(3): 255-65.
[80]
Lipari C, Head J. Advanced infrared image processing for breast cancer risk assessment. Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136); 1997 Oct 30-Nov 2; Chicago, IL, USA. .New Jersey: IEEE 2002; p. 673-6.
[http://dx.doi.org/10.1109/IEMBS.1997.757713]
[81]
Kuruganti PT, Qi H. Asymmetry analysis in breast cancer detection using thermal infrared images. Proceedings of the 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference 2002 Oct 23-26 Houston, TX, USA New Jersey: IEEE 2003; pp. 1155-6.
[http://dx.doi.org/10.1109/iembs.2002.1106323]
[82]
Koay J, Herry C, Frize M. Analysis of breast thermography with an artificial neural network. Conf Proc IEEE Eng Med Biol Soc 2004; 2(1): 1159-62.
[http://dx.doi.org/10.1109/IEMBS.2004.1403371] [PMID: 17271890]
[83]
Ng EYK, Kee EC. Integrative computer-aided diagnostic with breast thermogram. J Mech Med Biol 2007; 7(1): 1-10.
[http://dx.doi.org/10.1142/S0219519407002091]
[84]
Qi H, Kuruganti PT, Snyder WE. Detecting breast cancer from thermal infrared images by asymmetry analysis. in: diakides na, bronizino jd, eds. medical infrared imaging. united kingdom: taylor and francis group 2008; pp. 1-14.
[85]
Nurhayati OD, Widodo TS, Susanto A, Tjokronagoro M. First order statistical feature for breast cancer detection using thermal images. Proceed World Acad SciEngineer Technol 2010; 70: 1040-3.
[86]
Nurhayati OD, Susanto A, Widodo TS, Tjokronagoro M. Principal component analysis combined with first order statistical method for breast thermal images classification. Int J Comp Sci Technol 2011; 2(2): 12-8.
[87]
Prabha S, Sujatha CM. Proposal of index to estimate breast similarities in thermograms using fuzzy c means and anisotropic diffusion filter based fuzzy c means clustering. Infrared Phys Technol 2018; 93: 316-25.
[http://dx.doi.org/10.1016/j.infrared.2018.08.018]
[88]
Serrano RC, Motta L, Batista M, Conci A. Using a new method in thermal images to diagnose early breast diseases. XXII Brazilian Symposium on Computer Graphics and Image Processing-SIBGRAPI. Available from: http://visual.ic.uff.br/proeng/artigos/59859.pdf
[89]
Tang X, Ding H, Yuan Y, Wang Q. Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomed Signal Process Control 2008; 3(1): 312-8.
[http://dx.doi.org/10.1016/j.bspc.2008.04.001]
[90]
Da Silveira F, Serrano OTRC, Conci A, de Melo RHC, Lima RCF. On using lacunarity for diagnosis of breast diseases considering thermal images. 16th IEEE International Conference on Systems, Signals and Image Processing. 2009 June 18-20; Chalkida, Greece. New Jersey: IEEE 2009.
[91]
Serrano RC, Ulysses J, Ribeiro S, Lima RCF. Using Hurst coefficient and Lacunarity for diagnosis of breast diseases considering thermal images. Proceedings of 17th International Conference on Systems, Signals and Image Processing. Rio de Janeiro, RJ, Brazil. New Jersey: IEEE 2010; pp. 550-3.
[92]
Conci A, Lima RCF, Fontes CAP, Borchartt TB, Resmini R. A new method to aid to the breast diagnosis using fractal geometry. Thermology Int 2010; 20(4): 135-6.
[93]
Conci A, Lima RCF, Serrano RC, Motta LS, Mello RHC. Using fractal geometry to extract features of thermal images for early breast diseases. 14th International Conference on Geometry and Graphics. Kyoto: Japan. New Jersey: IEEE 2010; pp. 208-17.
[94]
Tavakol ME, Lucas C, Sadri S, Ng EYK. Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. J Healthc Eng 2010; 1(1): 27-43.
[http://dx.doi.org/10.1260/2040-2295.1.1.27]
[95]
Etehadtavakol M. Ng EYK, Lucas C, Sadri S, Gheissari N. Estimating the mutual information between bilateral breast in thermograms using nonparametric windows. J Med Syst 2011; 35(5): 959-67.
[http://dx.doi.org/10.1007/s10916-010-9516-x] [PMID: 20703681]
[96]
Tavakol ME, Ng EYK, Lucas C, Sadri S. Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Phys Technol 2012; 55(4): 345-52.
[http://dx.doi.org/10.1016/j.infrared.2012.02.007]
[97]
Tavakol ME, Ng EYK, Chandran V, Rabbani H. Separable and non-separable discrete wavelet transform based texture features and image classification of breast thermograms. Infrared Phys Technol 2013; 61: 274-86.
[http://dx.doi.org/10.1016/j.infrared.2013.08.009]
[98]
Tavakol ME, Chandran V, Ng EYK, Kafieh Z. Breast cancer detection from thermal images using bispectral invariant features. Int J Therm Sci 2013; 69: 21-36.
[http://dx.doi.org/10.1016/j.ijthermalsci.2013.03.001]
[99]
Resmini R. Analysis of thermal images of the breast using texture descriptors masters dissertation federal fluminense university 2011.
[100]
Borchartt TB, Resmini R, Conci A, et al. thermal feature analysis to aid on breast disease diagnosis. 21st brazilian congress of mechanical engineering; natal, rn-brazil. new jersey: ieee 2011.
[101]
Abdel-Nasser M, Moreno A, Puig D. Breast cancer detection in thermal infrared images using representation learning and texture analysis methods. Electronics (Basel) 2019; 8(1): 100.
[http://dx.doi.org/10.3390/electronics8010100]
[102]
Donoser M, Kluckner S, Bischof H. Object tracking by structure tensor analysis. 20th International Conference on Pattern Recognition 2010 Aug 23-26 Istanbul: Turkey New Jersey: IEEE 2010; pp. 2600-03.
[103]
Kratz L, Nishino K. Tracking with local spatio-temporal motion patterns in extremely crowded scenes. IEEE Conference on Computer Vision and Pattern Recognition 2010 June 13-18 San Francisco, CA, USA new jersey: ieee 2010; pp. 693-700.
[http://dx.doi.org/10.1109/cvpr.2010.5540149]
[104]
Suganthi SS, Ramakrishnan S. Analysis of breast thermograms using structure tensors. J Med Imaging Health Inform 2015; 5(2): 235-40.
[http://dx.doi.org/10.1166/jmihi.2015.1378]
[105]
Budde MD, Frank JA. Examining brain microstructure using structure tensor analysis of histological sections. Neuroimage 2012; 63(1): 1-10.
[http://dx.doi.org/10.1016/j.neuroimage.2012.06.042] [PMID: 22759994]
[106]
Gonzalez-Hernandez JL, Recinella AN, Kandlikar SG, Dabydeen D, Medeiros L, Phatak P. Technology, application and potential of dynamic breast thermography for the detection of breast cancer. Int J Heat Mass Transf 2019; 131: 558-73.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.11.089]
[107]
Hosni M, Abnane I, Idri A, Carrillo de Gea JM, Fernández Alemán JL. Reviewing ensemble classification methods in breast cancer. Comput Methods Programs Biomed 2019; 177: 89-112.
[http://dx.doi.org/10.1016/j.cmpb.2019.05.019] [PMID: 31319964]
[108]
Díaz-Cortés MA, Ortega-Sánchez N, Hinojosa S, et al. A multi-level thresholding method for breast thermograms analysis using Dragonfly algorithm. Infrared Phys Technol 2018; 93: 346-61.
[http://dx.doi.org/10.1016/j.infrared.2018.08.007]
[109]
Gogoi UR, Majumdar G, Bhowmik MK, Ghosh AK. Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infrared Phys Technol 2019; 99: 201-11.
[http://dx.doi.org/10.1016/j.infrared.2019.01.004]
[110]
Kirubha SA, Anburajan M, Venkataraman B, Menaka M. A case study on asymmetrical texture features comparison of breast thermogram and mammogram in normal and breast cancer subject. Biocatal Agric Biotechnol 2018; 15: 390-401.
[http://dx.doi.org/10.1016/j.bcab.2018.07.001]
[111]
Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors (Basel) 2018; 18(9): 2799.
[http://dx.doi.org/10.3390/s18092799] [PMID: 30149621]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy