Review Article

姜黄素与石墨烯和碳纳米管的结合物:生物医学应用综述

卷 27, 期 40, 2020

页: [6849 - 6863] 页: 15

弟呕挨: 10.2174/0929867326666191113145745

价格: $65

摘要

在过去的十年中,对于各种纳米生物技术应用,碳纳米管和石墨烯的使用一直在增长。由于它们的特殊特性,对碳同素异形体的这两种纳米结构进行了研究,以检测和治疗许多疾病。另一方面,姜黄素,一种著名的抗氧化剂和抗癌天然产物,正被广泛研究用于许多医学应用。有趣的是,许多报道显示姜黄素与碳纳米管或石墨烯的共轭物的巨大潜力。这些缀合物在经过适当设计并用生物分子功能化后,可以代表每种组分的宝贵特性,同时它们可以有效克服姜黄素和碳纳米材料(CNM)的不良溶解性问题。在这种情况下,姜黄素与CNM的结合物在生物传感应用中似乎非常有前途,并且据报道许多姜黄素对这些结合物的检测非常有效,尤其是许多生物分子的检测。同样,评估了使用功能化SWCNT递送姜黄素的负载和释放姜黄素,保护姜黄素免于降解和增强其溶解度的能力。提出了这些缀合物的其他性质仍待发现,生物学,医学,化学和材料工程学之间的跨学科方法将加速这些新型材料的应用。这篇综述旨在总结姜黄素CNM缀合物的应用发现。

关键词: 姜黄素,石墨烯,碳纳米材料,结合物,医学应用,纳米生物技术。

[1]
Manolova, Y.; Deneva, V.; Antonov, L.; Drakalska, E.; Momekova, D.; Lambov, N. The effect of the water on the curcumin tautomerism: a quantitative approach. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 815-820.
[http://dx.doi.org/10.1016/j.saa.2014.05.096] [PMID: 24973669]
[2]
Soleimani, V.; Sahebkar, A.; Hosseinzadeh, H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances. review Phytother. Res., 2018, 32(6), 985-995.
[http://dx.doi.org/10.1002/ptr.6054] [PMID: 29480523]
[3]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[4]
Akram, M.; Shahab-Uddin, A.A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: a review article. Rom. J Biol. Plant Biol., 2010, 55(2), 65-70.
[5]
Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr. Med. Chem., 2010, 17(3), 190-197.
[http://dx.doi.org/10.2174/092986710790149738] [PMID: 20214562]
[6]
Aggarwal, B.B.; Surh, Y.J.; Shishodia, S. The molecular targets and therapeutic uses of curcumin in health and disease, 2007.
[http://dx.doi.org/10.1007/978-0-387-46401-5]
[7]
Kawamori, T.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Kaskey, R.B.; Rao, C.V.; Reddy, B.S. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 1999, 59(3), 597-601.
[PMID: 9973206]
[8]
Mukhopadhyay, A.; Basu, N.; Ghatak, N.; Gujral, P.K. Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions, 1982, 12(4), 508-515.
[http://dx.doi.org/10.1007/BF01965935] [PMID: 7180736]
[9]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology, 2017, 25(1), 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[10]
Panahi, Y.; Alishiri, G.H.; Parvin, S.; Sahebkar, A. Mitigation of systemic oxidative stress by curcuminoids in osteoarthritis: results of a randomized controlled trial. J. Diet. Suppl., 2016, 13(2), 209-220.
[http://dx.doi.org/10.3109/19390211.2015.1008611] [PMID: 25688638]
[11]
Panahi, Y.; Ghanei, M.; Hajhashemi, A.; Sahebkar, A. Effects of curcuminoids-piperine combination on systemic oxidative stress, clinical symptoms and quality of life in subjects with chronic pulmonary complications due to sulfur mustard: a randomized controlled trial. J. Diet. Suppl., 2016, 13(1), 93-105.
[http://dx.doi.org/10.3109/19390211.2014.952865] [PMID: 25171552]
[12]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: a randomized controlled trial. J. Cardiovasc. Pharmacol., 2016, 68(3), 223-229.
[http://dx.doi.org/10.1097/FJC.0000000000000406] [PMID: 27124606]
[13]
Panahi, Y.; Kianpour, P.; Mohtashami, R.; Jafari, R.; Simental-Mendía, L.E.; Sahebkar, A. Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res. (Stuttg.), 2017, 67(4), 244-251.
[http://dx.doi.org/10.1055/s-0043-100019] [PMID: 28158893]
[14]
Sahebkar, A.; Serban, M.C.; Ursoniu, S.; Banach, M. Effect of curcuminoids on oxidative stress: a systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods, 2015, 18, 898-909.
[http://dx.doi.org/10.1016/j.jff.2015.01.005]
[15]
Mohajeri, M.; Behnam, B.; Cicero, A.F.G.; Sahebkar, A. Protective effects of curcumin against aflatoxicosis: a comprehensive review. J. Cell. Physiol., 2018, 233(4), 3552-3577.
[http://dx.doi.org/10.1002/jcp.26212] [PMID: 29034472]
[16]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: a nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[17]
Karimian, M.S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev., 2017, 33, 55-63.
[http://dx.doi.org/10.1016/j.cytogfr.2016.10.001] [PMID: 27743775]
[18]
Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242.
[http://dx.doi.org/10.1016/j.phrs.2016.03.026] [PMID: 27025786]
[19]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: a review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[20]
Rezaee, R.; Momtazi, A.A.; Monemi, A.; Sahebkar, A. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res., 2017, 117, 218-227.
[http://dx.doi.org/10.1016/j.phrs.2016.12.037] [PMID: 28042086]
[21]
Hatamipour, M.; Ramezani, M.; Tabassi, S.A.S.; Johnston, T.P.; Ramezani, M.; Sahebkar, A. Demethoxycurcumin: a naturally occurring curcumin analogue with antitumor properties. J. Cell. Physiol., 2018, 233(12), 9247-9260.
[http://dx.doi.org/10.1002/jcp.27029] [PMID: 30076727]
[22]
Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti‐inflammatory agent: implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740.
[http://dx.doi.org/10.1002/jcp.27442]] [PMID: 30317564]
[23]
Momtazi-Borojeni, A.A.; Ghasemi, F.; Hesari, A.; Majeed, M.; Caraglia, M.; Sahebkar, A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr. Pharm. Des., 2018, 24(19), 2121-2128.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[24]
Ali, B.H.; Marrif, H.; Noureldayem, S.A.; Bakheit, A.O.; Blundene, G. Some biological properties of curcumin: a review. Nat. Prod. Commun., 2006, 1, 509-521.
[http://dx.doi.org/10.1177/1934578X0600100613]
[25]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[26]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[27]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[28]
Randviir, E.P.; Brownson, D.A.; Banks, C.E. A decade of graphene research: production, applications and outlook. Mater. Today, 2014, 17(9), 426-432.
[http://dx.doi.org/10.1016/j.mattod.2014.06.001]
[29]
Jain, K.K. Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin. Drug Discov., 2012, 7(11), 1029-1037.
[http://dx.doi.org/10.1517/17460441.2012.722078] [PMID: 22946637]
[30]
Rezaee, M.; Behnam, B.; Banach, M.; Sahebkar, A. The Yin and Yang of carbon nanomaterials in atherosclerosis. Biotechnol. Adv., 2018, 36(8), 2232-2247.
[http://dx.doi.org/10.1016/j.biotechadv.2018.10.010] [PMID: 30342084]
[31]
Mohajeri, M.; Behnam, B.; Sahebkar, A. Biomedical applications of carbon nanomaterials: drug and gene delivery potentials. J. Cell. Physiol., 2018, 234(1), 298-319.
[http://dx.doi.org/10.1002/jcp.26899] [PMID: 30078182]
[32]
Mohajeri, M.; Behnam, B.; Barreto, G.E.; Sahebkar, A. Carbon nanomaterials and amyloid-beta interactions: potentials for the detection and treatment of Alzheimer’s disease? Pharmacol. Res., 2019, 143, 186-203.
[http://dx.doi.org/10.1016/j.phrs.2019.03.023] [PMID: 30943430]
[33]
Ahmadi, H.; Ramezani, M.; Yazdian-Robati, R.; Behnam, B.; Razavi Azarkhiavi, K.; Hashem Nia, A.; Mokhtarzadeh, A.; Matbou Riahi, M.; Razavi, B.M.; Abnous, K. Acute toxicity of functionalized single wall carbon nanotubes: a biochemical, histopathologic and proteomics approach. Chem. Biol. Interact., 2017, 275, 196-209.
[http://dx.doi.org/10.1016/j.cbi.2017.08.004] [PMID: 28807745]
[34]
Behnam, B.; Shier, W.T.; Nia, A.H.; Abnous, K.; Ramezani, M. Non-covalent functionalization of single-walled carbon nanotubes with modified polyethyleneimines for efficient gene delivery. Int. J. Pharm., 2013, 454(1), 204-215.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.057] [PMID: 23856161]
[35]
Hashem Nia, A.; Behnam, B.; Taghavi, S.; Oroojalian, F.; Eshghi, H.; Shier, W.T.; Abnous, K.; Ramezani, M. Evaluation of chemical modification effects on DNA plasmid transfection efficiency of single-walled carbon nanotube-succinate- polyethylenimine conjugates as non-viral gene carriers. MedChemComm, 2016, 8(2), 364-375.
[http://dx.doi.org/10.1039/C6MD00481D] [PMID: 30108752]
[36]
Meng, L.; Zhang, X.; Lu, Q.; Fei, Z.; Dyson, P.J. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 2012, 33(6), 1689-1698.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.004] [PMID: 22137127]
[37]
Moon, H.K.; Lee, S.H.; Choi, H.C. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano, 2009, 3(11), 3707-3713.
[http://dx.doi.org/10.1021/nn900904h] [PMID: 19877694]
[38]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[39]
Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small, 2010, 6(4), 537-544.
[http://dx.doi.org/10.1002/smll.200901680] [PMID: 20033930]
[40]
Wu, J.; Wang, Y.S.; Yang, X.Y.; Liu, Y.Y.; Yang, J.R.; Yang, R.; Zhang, N. Graphene oxide used as a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotechnology, 2012, 23(35)355101
[http://dx.doi.org/10.1088/0957-4484/23/35/355101] [PMID: 22875697]
[41]
Yang, X.X.; Li, C.M.; Li, Y.F.; Wang, J.; Huang, C.Z. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale, 2017, 9(41), 16086-16092.
[http://dx.doi.org/10.1039/C7NR06520E] [PMID: 29034936]
[42]
Yousefi, M.; Dadashpour, M.; Hejazi, M.; Hasanzadeh, M.; Behnam, B.; de la Guardia, M.; Shadjou, N.; Mokhtarzadeh, A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. Mater. Sci. Eng. C, 2017, 74, 568-581.
[http://dx.doi.org/10.1016/j.msec.2016.12.125] [PMID: 28254332]
[43]
Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H.; Zhang, Y.; Zhang, Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug Deliv., 2014, 21(5), 379-387.
[http://dx.doi.org/10.3109/10717544.2013.848246] [PMID: 24160816]
[44]
World Health Organization Global Status Report on Alcohol and Health, 2014, 390
[45]
Haumann, J.; Joosten, E.B.A.; Everdingen, M.H.J.V.D.B. Pain prevalence in cancer patients: status quo or opportunities for improvement? Curr. Opin. Support. Palliat. Care, 2017, 11(2), 99-104.
[http://dx.doi.org/10.1097/SPC.0000000000000261] [PMID: 28306569]
[46]
Aggarwal, B.B.; Shishodia, S.; Sandur, S.K.; Pandey, M.K.; Sethi, G. Inflammation and cancer: how hot is the link? Biochem. Pharmacol., 2006, 72(11), 1605-1621.
[http://dx.doi.org/10.1016/j.bcp.2006.06.029] [PMID: 16889756]
[47]
Sinha, R.; Anderson, D.E.; McDonald, S.S.; Greenwald, P. Cancer risk and diet in India. J. Postgrad. Med., 2003, 49(3), 222-228.
[PMID: 14597785]
[48]
Sa, G.; Das, T. Anti cancer effects of curcumin: cycle of life and death. Cell Div., 2008, 3, 14.
[http://dx.doi.org/10.1186/1747-1028-3-14] [PMID: 18834508]
[49]
Some, S.; Gwon, A.R.; Hwang, E.; Bahn, G.H.; Yoon, Y.; Kim, Y.; Kim, S.H.; Bak, S.; Yang, J.; Jo, D.G.; Lee, H. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Sci. Rep., 2014, 4, 6314.
[http://dx.doi.org/10.1038/srep06314] [PMID: 25204358]
[50]
Hatamie, S.; Akhavan, O.; Sadrnezhaad, S.K.; Ahadian, M.M.; Shirolkar, M.M.; Wang, H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C, 2015, 55, 482-489.
[http://dx.doi.org/10.1016/j.msec.2015.05.077] [PMID: 26117780]
[51]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[52]
Muthoosamy, K.; Abubakar, I.B.; Bai, R.G.; Loh, H-S.; Manickam, S. Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Sci. Rep., 2016, 6, 32808.
[http://dx.doi.org/10.1038/srep32808] [PMID: 27597657]
[53]
Barua, S.; Chattopadhyay, P.; Phukan, M.M.; Konwar, B.K.; Islam, J.; Karak, N. Biocompatible hyperbranched epoxy/silver-reduced graphene oxide-curcumin nanocomposite as an advanced antimicrobial material. RSC Advances, 2014, 4, 47797-47805.
[http://dx.doi.org/10.1039/C4RA07802K]
[54]
Ray, P.; Gautam, V.; Singh, R. Methicillin-resistant Staphylococcus aureus (MRSA) in developing and developed countries: implications and solutions. Reg. Health Forum, 2011, 15(1), 74-82.
[55]
Bugli, F.; Cacaci, M.; Palmieri, V.; Di Santo, R.; Torelli, R.; Ciasca, G.; Di Vito, M.; Vitali, A.; Conti, C.; Sanguinetti, M.; De Spirito, M.; Papi, M. Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus, 2018, 8(3)20170059
[http://dx.doi.org/10.1098/rsfs.2017.0059] [PMID: 29696091]
[56]
Yuan, S.; Zeng, L.; Zhuang, Y.; Hou, Q.; Song, M. Functionalized single-walled carbon nanotubes for the improved solubilization and delivery of curcumin. Fuller. Nanotub. Carbon Nanostruct., 2016, 24, 13-19.
[http://dx.doi.org/10.1080/1536383X.2015.1088007]
[57]
Chen, G.Y.; Pang, D.W.; Hwang, S.M.; Tuan, H.Y.; Hu, Y.C. A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials, 2012, 33(2), 418-427.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.071] [PMID: 22014460]
[58]
Shin, S.R.; Li, Y.C.; Jang, H.L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev.,, 2016, 105(Pt B), 225-274.
[http://dx.doi.org/10.1016/j.addr.2016.03.007]
[59]
Mitra, T.; Manna, P.J.; Raja, S.; Gnanamani, A.; Kundu, P. Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications. RSC Advances, 2015, 5, 98653-98665.
[http://dx.doi.org/10.1039/C5RA15726A]
[60]
Singh, N.; Sachdev, A.; Gopinath, P. Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J. Nanosci. Nanotechnol., 2018, 18(3), 1534-1541.
[http://dx.doi.org/10.1166/jnn.2018.14222] [PMID: 29448627]
[61]
Koupaei Malek, S.; Gabris, M.A.; Jume, Hadi . B.; Baradaran, R.; Aziz, M.; Karim, K.J.B.A.; Rashidi Nodeh, H. Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study. Daru, 2019, 27(1), 9-20.
[http://dx.doi.org/10.1007/s40199-018-0232-2] [PMID: 30554368]
[62]
Vernot, E.; MacEwen, J.; Bruner, R.; Haun, C.; Kinkead, E.; Prentice, D. Hall, III A.; Schmidt, R.; Eason, R.; Hubbard, G.; Young, J. Long-term inhalation toxicity of hydrazine. Toxicol. Sci., 1985, 5(6 Pt. 1), 1050-1064.
[http://dx.doi.org/10.1093/toxsci/5.6part1.1050]
[63]
Zheng, L.; Song, J.F. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine. Sens. Actuators B Chem., 2009, 135, 650-655.
[http://dx.doi.org/10.1016/j.snb.2008.09.035]
[64]
Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Appl. Surf. Sci., 2015, 333, 220-228.
[http://dx.doi.org/10.1016/j.apsusc.2015.02.025]
[65]
Saravanakumar, A.; Ganesh, M.; Jayaprakash, J.; Jang, H.T. Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. J. Ind. Eng. Chem., 2015, 28, 277-281.
[http://dx.doi.org/10.1016/j.jiec.2015.03.003]
[66]
Li, S.; Du, D.; Huang, J.; Tu, H.; Yang, Y.; Zhang, A. One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol. Analyst (Lond.), 2013, 138(9), 2761-2768.
[http://dx.doi.org/10.1039/c3an36497f] [PMID: 23482907]
[67]
Ragu, S.; Chen, S.M.; Ranganathan, P.; Rwei, S.P. Fabrication of a novel nickel-curcumin/graphene oxide nanocomposites for superior electrocatalytic activity toward the detection of toxic p-nitrophenol. Int. J. Electrochem. Sci., 2016, 11, 9133-9144.
[http://dx.doi.org/10.20964/2016.11.09]
[68]
Laakso, M.; Kesäniemi, A.; Kervinen, K.; Jauhiainen, M.; Pyörälä, K. Relation of coronary heart disease and apolipoprotein E phenotype in patients with non-insulin dependent diabetes. BMJ, 1991, 303(6811), 1159-1162.
[http://dx.doi.org/10.1136/bmj.303.6811.1159] [PMID: 1747611]
[69]
Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: a review. Biochimie, 2018, 147, 13-24.
[http://dx.doi.org/10.1016/j.biochi.2017.12.015] [PMID: 29307704]
[70]
Takeda, M.; Martínez, R.; Kudo, T.; Tanaka, T.; Okochi, M.; Tagami, S.; Morihara, T.; Hashimoto, R.; Cacabelos, R. Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin. Neurosci., 2010, 64(6), 592-607.
[http://dx.doi.org/10.1111/j.1440-1819.2010.02148.x] [PMID: 21105952]
[71]
Clark, L.F.; Kodadek, T. The immune system and neuroinflammation as potential sources of blood-based biomarkers for Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. ACS Chem. Neurosci., 2016, 7(5), 520-527.
[http://dx.doi.org/10.1021/acschemneuro.6b00042] [PMID: 27046268]
[72]
Mars, A.; Hamami, M.; Bechnak, L.; Patra, D.; Raouafi, N. Curcumin-graphene quantum dots for dual mode sensing platform: electrochemical and fluorescence detection of APOe4, responsible of Alzheimer’s disease. Anal. Chim. Acta, 2018, 1036, 141-146.
[http://dx.doi.org/10.1016/j.aca.2018.06.075] [PMID: 30253824]
[73]
Safdarian, M.; Hashemi, P.; Naderlou, M. In-line cold column trapping of organic phase in dispersive liquid-liquid microextraction: enrichment and determination of curcumin in human serum. J. Chromatogr. A, 2012, 1244, 14-19.
[http://dx.doi.org/10.1016/j.chroma.2012.04.059] [PMID: 22609163]
[74]
Gupta, N.K.; Nahata, A.; Dixit, V.K. Development of a spectrofluorimetric method for the determination of curcumin. Asian J. Tradit. Med., 2010, 5(1), 12-18.
[75]
Shrivastava, A.N.; Rodriguez, P.C.; Triller, A.; Renner, M. Dynamic micro-organization of P2X7 receptors revealed by PALM based single particle tracking. Front. Cell. Neurosci., 2013, 7, 232.
[http://dx.doi.org/10.3389/fncel.2013.00232] [PMID: 24324402]
[76]
Maleki, A.; Nematollahi, D.; Clausmeyer, J.; Henig, J.; Plumeré, N.; Schuhmann, W. Electrodeposition of catechol on glassy carbon electrode and its electrocatalytic activity toward NADH oxidation. Electroanalysis, 2012, 24, 1932-1936.
[http://dx.doi.org/10.1002/elan.201200251]
[77]
Wudarska, E.; Chrzescijanska, E.; Kusmierek, E.; Rynkowski, J. Voltammetric studies of acetylsalicylic acid electrooxidation at platinum electrode. Electrochim. Acta, 2013, 93, 189-194.
[http://dx.doi.org/10.1016/j.electacta.2013.01.107]
[78]
Rezayi, M.; Karazhian, R.; Abdollahi, Y.; Narimani, L.; Sany, S.B.T.; Ahmadzadeh, S.; Alias, Y. Titanium (III) cation selective electrode based on synthesized tris(2pyridyl) methylamine ionophore and its application in water samples. Sci. Rep., 2014, 4, 4664.
[http://dx.doi.org/10.1038/srep04664] [PMID: 24722576]
[79]
Rezayi, M.; Heng, L.Y.; Kassim, A.; Ahmadzadeh, S.; Abdollahi, Y.; Jahangirian, H. Immobilization of tris(2 pyridyl) methylamine in a PVC-membrane sensor and characterization of the membrane properties. Chem. Cent. J., 2012, 6(1), 40.
[http://dx.doi.org/10.1186/1752-153X-6-40] [PMID: 22564322]
[80]
Rezayi, M.; Heng, L.Y.; Kassim, A.; Ahmadzadeh, S.; Abdollahi, Y.; Jahangirian, H. Immobilization of ionophore and surface characterization studies of the titanium(III) ion in a PVC-membrane sensor. Sensors (Basel), 2012, 12(7), 8806-8814.
[http://dx.doi.org/10.3390/s120708806] [PMID: 23012518]
[81]
Abraham, A.A.; Rezayi, M.; Manan, N.S.; Narimani, L.; Rosli, A.N.B.; Alias, Y. A novel potentiometric sensor based on 1, 2-Bis (N′-benzoylthioureido) benzene and reduced graphene oxide for determination of lead (II) cation in raw milk. Electrochim. Acta, 2015, 165, 221-231.
[http://dx.doi.org/10.1016/j.electacta.2015.03.003]
[82]
Said, N.R.; Rezayi, M.; Narimani, L.; Al-Mohammed, N.N.; Manan, N.S.A.; Alias, Y. A new N-heterocyclic carbene ionophore in plasticizer-free polypyrrole membrane for determining Ag+ in tap water. Electrochim. Acta, 2016, 197, 10-22.
[http://dx.doi.org/10.1016/j.electacta.2016.02.173]
[83]
Daneshgar, P.; Norouzi, P.; Moosavi-Movahedi, A.A.; Ganjali, M.R.; Haghshenas, E.; Dousty, F.; Farhadi, M. Fabrication of carbon nanotube and dysprosium nanowire modified electrodes as a sensor for determination of curcumin. J. Appl. Electrochem., 2009, 39, 1983.
[http://dx.doi.org/10.1007/s10800-009-9908-0]
[84]
Stanić, Z.; Voulgaropoulos, A.; Girousi, S. Electroanalytical study of the antioxidant and antitumor agent curcumin. Electroanalysis, 2008, 20, 1263-1266.
[http://dx.doi.org/10.1002/elan.200804177]]
[85]
Ziyatdinova, G.; Nizamova, A.; Budnikov, H. Voltammetric determination of curcumin in spices. J. Anal. Chem., 2012, 67, 591-594.
[http://dx.doi.org/10.1134/S1061934812040132]
[86]
Kotan, G.; Kardaş, F.; Yokuş, Ö.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@ Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods, 2016, 8, 401-408.
[http://dx.doi.org/10.1039/C5AY02950C]
[87]
Zhang, D.; Ouyang, X.; Ma, J.; Li, L.; Zhang, Y. Electrochemical behavior and voltammetric determination of curcumin at electrochemically reduced graphene oxide modified glassy carbon electrode. Electroanalysis, 2016, 28, 749-756.
[http://dx.doi.org/10.1002/elan.201500494]
[88]
Jain, R.; Haque, A.; Verma, A. Voltammetric quantification of surfactant stabilized curcumin at MWCNT/GCE sensor. J. Mol. Liq., 2017, 230, 600-607.
[http://dx.doi.org/10.1016/j.molliq.2017.01.051]
[89]
Reeves, A.E.; Wickstrom, E.; Vinogradov, S.V. Curcumin-combretastatin nanocells as breast cancer cytotoxic and antiangiogenic agent, 2008.
[http://dx.doi.org/10.21236/ADA494015]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy