Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Corrosion Protection of Nano-biphasic Calcium Phosphate Coating on Titanium Substrate

Author(s): Ahlam M. Fathi, Howida S. Mandour* and Hanaa K. Abd El-Hamid

Volume 16, Issue 5, 2020

Page: [779 - 792] Pages: 14

DOI: 10.2174/1573413715666191113145322

Price: $65

Abstract

Background: Increasing the bioactivity of metallic implants is necessary for biomaterial applications where hydroxyapatite (HA) is used as a surface coating. In industry, HA is currently coated by plasma spraying, but this technique has a high cost and produces coating with short-term stability.

Objectives: In the present study, electrophoretic deposition (EPD) was used to deposit nano-biphasic calcium phosphate compound (β-tri-calcium phosphate (β-TCP) /hydroxyapatite (HA)) bio-ceramics on the titanium surface. The microstructural, chemical compositions and bioactivity of the β- TCP/HA coatings were studied in a simulated body fluid solution (SBF).

Methods: Scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) were used. Additionally, the antibacterial effect was studied by the agar diffusion method. The corrosion behavior of the β-TCP/HA coating on titanium surface (Ti) in the SBF solution at 37oC was investigated by means of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests.

Results: The Ti surface modification increased its biocompatibility and corrosion resistance in the simulated body fluid. The antibacterial inhibition activity of the β-TCP/HA bio-ceramic was enhanced by electroless silver deposition. The enhanced properties could be attributed to the use of nano-sized biphasic calcium phosphates in a low-temperature EPD process.

Conclusion: The β-TCP/HA and β-TCP/HA/Ag coatings well protect Ti from the corrosion in SBF and endow Ti with biocompatibility. The β-4-TCP/HA/Ag/Ti substrate shows good antibacterial activity.

Keywords: Corrosion, Electrophoretic coating, Tricalcium-phosphate, Hydroxyapatite, Implant, SBF solution, antibacterial activity.

Graphical Abstract

[1]
Geetha, R.; Durgalakshmi, D.; Asokamani, R. Biomedical implants: Corrosion and its prevention-A review. Recent Pat. Corros. Sci., 2010, 2, 40-54.
[http://dx.doi.org/10.2174/1877610801002010040]
[2]
Nasab, M.B.; Hassan, M.R. Metallic biomaterials of knee and hip-A review. Trends Biomater. Artif. Organs, 2010, 24(1), 69-82.
[3]
Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog. Mater. Sci., 2009, 54, 397-425.
[http://dx.doi.org/10.1016/j.pmatsci.2008.06.004]
[4]
Breme, H.J.; Helsen, J.A. Selection of Materials. In: Helsen, J.A.; Breme, H.J. (Eds.).Metals as Biomaterials; Wiley, 1998, pp. 1-35.
[5]
Knob, L.J.; Olson, D.L. Metals Handbook Corrosion, 9th ed; ASM International, 1987, Vol. 13, p. 669.
[6]
Ratner, B.D. New ideas in biomaterials science--a path to engineered biomaterials. J. Biomed. Mater. Res., 1993, 27(7), 837-850.
[http://dx.doi.org/10.1002/jbm.820270702] [PMID: 8360211]
[7]
Takadama, H.; Kim, H.M.; Kokubo, T.; Nakamura, T. XPS study of the process of apatite formation on bioactive Ti—6Al—4V alloy in simulated body fluid. Sci. Technol. Adv. Mater., 2001, 2(2), 389-396.
[http://dx.doi.org/10.1016/S1468-6996(01)00007-9]
[8]
Kokubo, T.; Kim, H.M.; Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13), 2161-2175.
[http://dx.doi.org/10.1016/S0142-9612(03)00044-9] [PMID: 12699652]
[9]
Takemoto, M.; Fujibayashi, S.; Neo, M.; Suzuki, J.; Matsushita, T.; Kokubo, T.; Nakamura, T. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment. Biomaterials, 2006, 27(13), 2682-2691.
[http://dx.doi.org/10.1016/j.biomaterials.2005.12.014] [PMID: 16413052]
[10]
Habibovic, P.; Li, J.; van der Valk, C.M.; Meijer, G.; Layrolle, P.; van Blitterswijk, C.A.; de Groot, K. Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials, 2005, 26(1), 23-36.
[http://dx.doi.org/10.1016/j.biomaterials.2004.02.026] [PMID: 15193878]
[11]
Goyenvalle, E.; Aguado, E.; Nguyen, J.M.; Passuti, N.; Le Guehennec, L.; Layrolle, P.; Daculsi, G. Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials, 2006, 27(7), 1119-1128.
[http://dx.doi.org/10.1016/j.biomaterials.2005.07.039] [PMID: 16139882]
[12]
He, F.; Tian, Y.; Fang, X.; Xu, Y.; Ye, J. Porous calcium phosphate composite bioceramic beads. Ceram. Int., 2018, 44(11), 13430-13433.
[13]
Barrère, F.; van Blitterswijk, C.A.; de Groot, K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int. J. Nanomedicine, 2006, 1(3), 317-332.
[PMID: 17717972]
[14]
Zhang, L.; Zhang, C.; Zhang, R.; Jiang, D.; Zhu, Q.; Wang, S. Extraction and characterization of HA/β-TCP biphasic calcium phosphate from marine fish. Mater. Lett., 2019, 236, 680-682.
[http://dx.doi.org/10.1016/j.matlet.2018.11.014]
[15]
Behera, R.R.; Das, A.; Pamu, D.; Pandey, L.M.; Sankar, M.R. Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V. J. Mech. Behav. Biomed. Mater., 2018, 86, 143-157.
[http://dx.doi.org/10.1016/j.jmbbm.2018.06.020] [PMID: 29986289]
[16]
Carrodeguas, R.G.; De Aza, A.H.; Garcia-Paez, I.; De Aza, S.; Pena, P. Revisiting the phase‐equilibrium diagram of the Ca3(PO4)2–CaMg(SiO3)2 system. J. Am. Ceram. Soc., 2010, 93, 561-569.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03425.x]
[17]
Kamrun Nahar, U.; Shovon, B.; Chandra, R.; Shujit Chandra, P.; Shukanta, B.; Muhammed, Y.M.; Sydul Islam, M.D. Characterization of beta-tricalcium phosphate (β- TCP) produced at different process conditions. J. Bioeng. Biomed. Sci., 2017, 7(2), 221.
[18]
Baudín, C.; Benet, T.; Pena, P. Effect of graphene on setting and mechanical behaviour of tricalcium phosphate bioactive cements. J. Mech. Behav. Biomed. Mater., 2019, 89, 33-47.
[http://dx.doi.org/10.1016/j.jmbbm.2018.09.002] [PMID: 30245268]
[19]
Gallo, M.; Tadier, S.; Meille, S.; Chevalier, J. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation. J. Eur. Ceram. Soc., 2018, 38(3), 899-914.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2017.07.004]
[20]
Stähli, C.; Thüring, J.; Galea, L.; Tadier, S.; Bohner, M.; Döbelin, N. Hydrogen-substituted β-tricalcium phosphate synthesized in organic media. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2016, 72(Pt 6), 875-884.
[http://dx.doi.org/10.1107/S2052520616015675] [PMID: 27910838]
[21]
Roozbahani, M.; Alehosseini, M.; Kharaziha, M.; Emadi, R. Nano-calcium phosphate bone cement based on Si-stabilized α-tricalcium phosphate with improved mechanical properties. Mater. Sci. Eng. C, 2017, 81, 532-541.
[http://dx.doi.org/10.1016/j.msec.2017.08.016] [PMID: 28888007]
[22]
de Groot, K. Clinical applications of calcium phosphate biomaterials: A review. Ceram. Int., 1993, 19(5), 363-366.
[http://dx.doi.org/10.1016/0272-8842(93)90050-2]
[23]
Shim, K.; Kim, H.; Kim, S.E.; Park, K. Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration. J. Ind. Eng. Chem., 2018, 68, 220-228.
[http://dx.doi.org/10.1016/j.jiec.2018.07.048]
[24]
Bouler, J.M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater., 2017, 53, 1-12.
[http://dx.doi.org/10.1016/j.actbio.2017.01.076] [PMID: 28159720]
[25]
Sun, L.; Berndt, C.C.; Khor, K.A.; Cheang, H.N.; Gross, K.A. Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. J. Biomed. Mater. Res., 2002, 62(2), 228-236.
[http://dx.doi.org/10.1002/jbm.10315] [PMID: 12209943]
[26]
Formin, A.A.; Steinhauer, A.B.; Lyasnikov, V.N.; Wenig, S.B.; Zakharevich, A.M. Nanocrystalline structure of the surface layer of plasma-sprayed hydroxyapatite coatings obtained upon preliminary induction heat treatment of metal base. Tech. Phys. Lett., 2012, 38, 481-483.
[http://dx.doi.org/10.1134/S1063785012050227]
[27]
Fathi, A.M.; Abd El-Hamid, H.K.; Radwan, M.M. Preparation and characterization of nano-tetracalcium phosphate coating on titanium substrate. Int. J. Electrochem. Sci., 2016, 11, 3164-3178.
[http://dx.doi.org/10.20964/110403164]
[28]
Adamopoulos, O.; Papadopoulos, T. Nanostructured bioceramics for maxillofacial applications. J. Mater. Sci. Mater. Med., 2007, 18(8), 1587-1597.
[http://dx.doi.org/10.1007/s10856-007-3041-6] [PMID: 17483893]
[29]
Chen, Y.; Zheng, X.; Xie, Y.; Ding, C.; Ruan, H.; Fan, C. Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J. Mater. Sci. Mater. Med., 2008, 19(12), 3603-3609.
[http://dx.doi.org/10.1007/s10856-008-3529-8] [PMID: 18642059]
[30]
Ruan, H.J.; Fan, C.Y.; Zheng, X.B.; Zhang, Y.; Chen, Y. In vitro antibacterial and osteogenic properties of plasma sprayed silvercontaining hydroxyapatite coating. Chin. Sci. Bull., 2009, 54, 4438-4445.
[31]
Zhao, Q.; Liu, Y.; Wang, C. Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties. Appl. Surf. Sci., 2005, 252, 1620-1627.
[http://dx.doi.org/10.1016/j.apsusc.2005.02.098]
[32]
Lu, X.; Zhang, B.; Wang, Y.; Zhou, X.; Weng, J.; Qu, S.; Feng, B.; Watari, F.; Ding, Y.; Leng, Y. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J. R. Soc. Interface, 2011, 8(57), 529-539.
[http://dx.doi.org/10.1098/rsif.2010.0366] [PMID: 20880853]
[33]
Canillas, M.; Pena, P.; De Aza, A.; Rodríguez, M. Calcium phosphates for biomedical applications. Buletin De La Sociedad Espanola De Ceramica Y Vidrio, 2017, 56, 91-112.
[http://dx.doi.org/10.1016/j.bsecv.2017.05.001]
[34]
Kolmas, J.; Groszyk, E.; Kwiatkowska-Różycka, D. Substituted hydroxyapatites with antibacterial properties. BioMed Res. Int., 2014, 2014, 178123.
[http://dx.doi.org/10.1155/2014/178123] [PMID: 24949423]
[35]
Havenaar, R.; Brink, B.T.; Veld, J.H. Selection of strains for probiotic use. In: Fuller R. (ed.).,Probiotics: the scientific basis; Chapman & Hall: London, 1992, pp. 209-224.
[http://dx.doi.org/10.1007/978-94-011-2364-8_9]
[36]
Agarwal, S.; Wendorff, J.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer (Guildf.), 2008, 49, 5603-5621.
[http://dx.doi.org/10.1016/j.polymer.2008.09.014]
[37]
Müller, L.; Müller, F.A. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites. Acta Biomater., 2006, 2(2), 181-189.
[http://dx.doi.org/10.1016/j.actbio.2005.11.001] [PMID: 16701876]
[38]
Ebrahimi, M.; Botelho, M.G.; Dorozhkin, S.V. Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Mater. Sci. Eng. C, 2017, 71, 1293-1312.
[http://dx.doi.org/10.1016/j.msec.2016.11.039] [PMID: 27987685]
[39]
Luiz de Assis, S.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta, 2006, 51, 1815-1819.
[http://dx.doi.org/10.1016/j.electacta.2005.02.121]
[40]
Valero Vidal, C.; Igual Muñoz, A. Electrochemical characteristics of biomedical alloys for surgical implants in simulated body fluids. Corros. Sci., 2008, 50, 1954-1961.
[http://dx.doi.org/10.1016/j.corsci.2008.04.002]
[41]
Bommersbach, P.; Alemany-Dumont, C.; Millet, J.P.; Normand, B. Formation and behaviour study of an environment-friendly corrosion inhibitor by electrochemical methods. Electrochim. Acta, 2005, 5, 1076-1084.
[http://dx.doi.org/10.1016/j.electacta.2005.06.001]
[42]
Badawy, W.A.; Ismail, K.M.; Fathi, A.M. Effect of Ni content on the corrosion behavior of Cu–Ni alloys in neutral chloride solutions. Electrochim. Acta, 2005, 50, 3603-3608.
[http://dx.doi.org/10.1016/j.electacta.2004.12.030]
[43]
El-Taib Heakal, F.; Ghoneim, A.A.; Mogoda, A.S.; Awad, Kh. A. Electrochemical behaviour of Ti–6Al–4V alloy and Ti in azide and halide solutions. Corros. Sci., 2011, 53, 2728-2737.
[http://dx.doi.org/10.1016/j.corsci.2011.05.003]
[44]
Daoud, D.; Douadi, T.; Hamani, H.; Chafaa, S.; Al-Noaimi, M. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corros. Sci., 2015, 94, 21-37.
[http://dx.doi.org/10.1016/j.corsci.2015.01.025]
[45]
Fiori-Bimbi, M.V.; Alvarez, P.E.; Vaca, H.; Gervasi, C.A. Corrosion inhibition of mild steel in HCL solution by pectin. Corros. Sci., 2015, 92, 192-199.
[http://dx.doi.org/10.1016/j.corsci.2014.12.002]
[46]
Mao, Y.; Park, T.J.; Zhang, F.; Zhou, H.; Wong, S.S. Environmentally friendly methodologies of nanostructure synthesis. Small, 2007, 3(7), 1122-1139.
[http://dx.doi.org/10.1002/smll.200700048] [PMID: 17554768]
[47]
Zhu, Z.; Garcia-Gancedo, L.; Liu, Q.; Flewitt, A.; Milne, W.I.; Moussy, F. Size-tunable porous anodic alumina nano-structure for biosensing. Soft Nanosci. Lett., 2011, 1, 55-60.
[http://dx.doi.org/10.4236/snl.2011.13010]
[48]
El-Taib Heakal, F.; Shehata, O.S.; Tantawy, N.S. integrity of metallic medical implants in physiological solutions. Int. J. Electrochem. Sci., 2014, 9, 1986-2004.
[49]
Zin, I.M. lyon, S.B.; Pokhmurshii, V.I. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture. Corros. Sci., 2003, 45, 777-788.
[http://dx.doi.org/10.1016/S0010-938X(02)00130-0]
[50]
Radi, H.; Rasmussen, J.O. Principles of Physics; Springer: Berlin, Heidelberg, 2013.
[51]
Zheng, X.; Huang, M.; Ding, C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials, 2000, 21(8), 841-849.
[http://dx.doi.org/10.1016/S0142-9612(99)00255-0] [PMID: 10721753]
[52]
Ghosh, S.; Mitra, P.K. Effectiveness of dicalcium phosphate dihydrate as biocompatible coatings on 316L and 316LN stainless steel. J. Mar. Sci. Eng., 2013, 2, 1-6.
[53]
Xu, J.; Liu, L.; Munroe, P.; Xie, Z. Promoting bone-like apatite formation on titanium alloys through nanocrystalline tantalum nitride coatings. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 4082-4094.
[http://dx.doi.org/10.1039/C5TB00236B]
[54]
Panjian, Li.; Kangasniemi, I.; De Groot, K. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J. Am. Ceram. Soc., 1994, 77, 1307-1312.
[http://dx.doi.org/10.1111/j.1151-2916.1994.tb05407.x]
[55]
Klasen, H.J. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000, 26(2), 117-130.
[http://dx.doi.org/10.1016/S0305-4179(99)00108-4] [PMID: 10716354]
[56]
Lara, H.H.; Garza-Treviño, E.N.; Ixtepan-Turrent, L.; Singh, D.K. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology, 2011, 9, 30-38.
[http://dx.doi.org/10.1186/1477-3155-9-30] [PMID: 21812950]
[57]
Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res., 2000, 52(4), 662-668.
[http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AIDJBM10>3.0.CO;2-3] [PMID: 11033548]
[58]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[59]
Wright, J.B.; Lam, K.; Hansen, D.; Burrell, R.E. Efficacy of topical silver against fungal burn wound pathogens. Am. J. Infect. Control, 1999, 27(4), 344-350.
[http://dx.doi.org/10.1016/S0196-6553(99)70055-6] [PMID: 10433674]
[60]
LeGeros, R.Z.; LeGeros, J.P. Dense hydroxyapatite. In: Hench, L.L.; Wilson, J. (eds.). An introduction to bioceramics.World Scientific: USA, 1993, pp. 162-165.
[http://dx.doi.org/10.1142/9789814317351_0009]
[61]
Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10), 2346-2353.
[http://dx.doi.org/10.1088/0957-4484/16/10/059] [PMID: 20818017]
[62]
Costescu, A.; Ciobanu, C.; Iconaru, S.; Ghita, R.V.; Chifiriuc, C.M.; Marutescu, L.G.; Predoi, D. Fabrication, characterization and antimicrobial activity, evaluation of low silver concentrations in silver-doped hydroxyapatite nanoparticles. J. Nanomater., 2013, 2013, 194854.
[http://dx.doi.org/10.1155/2013/194854]
[63]
Kwok, C.; Wong, P.; Cheng, F.; Man, H. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl. Surf. Sci., 2009, 255, 6736-6744.
[http://dx.doi.org/10.1016/j.apsusc.2009.02.086]
[64]
Costa, Cde. A.; Sena, L.A.; Pinto, M.; Muller, C.A.; Cavalcanti, J.H.; Soares, Gde.A. In vivo characterization of titanium implants coated with synthetic hydroxyapatite by electrophoresis. Braz. Dent. J., 2005, 16(1), 75-81.
[http://dx.doi.org/10.1590/S0103-64402005000100013] [PMID: 16113938]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy