Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Prediction of Epitope-Based Peptide Vaccine Against the Chikungunya Virus by Immuno-informatics Approach

Author(s): Saeed Anwar , Jarin T. Mourosi , Md. Fahim Khan and Mohammad J. Hosen*

Volume 21, Issue 4, 2020

Page: [325 - 340] Pages: 16

DOI: 10.2174/1389201020666191112161743

Price: $65

Abstract

Background: Chikungunya is an arthropod-borne viral disease characterized by abrupt onset of fever frequently accompanied by joint pain, which has been identified in over 60 countries in Africa, the Americas, Asia, and Europe.

Methods: Regardless of the availability of molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet. In the present study, a combination of B-cell and T-cell epitope predictions, followed by molecular docking simulation approach has been carried out to design a potential epitope-based peptide vaccine, which can trigger a critical immune response against the viral infections.

Results: A total of 52 sequences of E1 glycoprotein from the previously reported isolates of Chikungunya outbreaks were retrieved and examined through in silico methods to identify a potential B-cell and T-cell epitope. From the two separate epitope prediction servers, five potential B-cell epitopes were selected, among them “NTQLSEAHVEKS” was found highly conserved across strains and manifests high antigenicity with surface accessibility, flexibility, and hydrophilicity. Similarly, two highly conserved, non-allergenic, non-cytotoxic putative T-cell epitopes having maximum population coverage were screened to bind with the HLA-C 12*03 molecule. Molecular docking simulation revealed potential T-cell based epitope “KTEFASAYR” as a vaccine candidate for this virus.

Conclusion: A combination of these B-cell and T-cell epitope-based vaccine can open up a new skyline with broader therapeutic application against Chikungunya virus with further experimental and clinical investigation.

Keywords: Chikungunya virus, immunoinformatics, T cell epitopes, B-cell epitopes glycoprotein, vaccine, Zika viruses.

Graphical Abstract

[1]
Soumahoro, M.K.; Gérardin, P.; Boëlle, P.Y.; Perrau, J.; Fianu, A.; Pouchot, J.; Malvy, D.; Flahault, A.; Favier, F.; Hanslik, T. Impact of Chikungunya virus infection on health status and quality of life: a retrospective cohort study. PLoS One, 2009, 4(11), e7800
[http://dx.doi.org/10.1371/journal.pone.0007800] [PMID: 19911058]
[2]
Burt, F.J.; Chen, W.; Miner, J.J.; Lenschow, D.J.; Merits, A.; Schnettler, E.; Kohl, A.; Rudd, P.A.; Taylor, A.; Herrero, L.J.; Zaid, A.; Ng, L.F.P.; Mahalingam, S. Chikungunya virus: An update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis., 2017, 17(4), e107-e117.
[http://dx.doi.org/10.1016/S1473-3099(16)30385-1] [PMID: 28159534]
[3]
Runowska, M.; Majewski, D.; Niklas, K.; Puszczewicz, M. Chikungunya virus: A rheumatologist’s perspective. Clin. Exp. Rheumatol., 2018, 36(3), 494-501.
[PMID: 29533749]
[4]
Mehta, R.; Soares, C.N.; Medialdea-Carrera, R.; Ellul, M.; da Silva, M.T.T.; Rosala-Hallas, A.; Jardim, M.R.; Burnside, G.; Pamplona, L.; Bhojak, M.; Manohar, R.; da Silva, G.A.M.; Adriano, M.V.; Brasil, P.; Nogueira, R.M.R.; Dos Santos, C.C.; Turtle, L.; de Sequeira, P.C.; Brown, D.W.; Griffiths, M.J.; de Filippis, A.M.B.; Solomon, T. The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: A case series. PLoS Negl. Trop. Dis., 2018, 12(2), e0006212
[http://dx.doi.org/10.1371/journal.pntd.0006212] [PMID: 29432457]
[5]
Mahendradas, P.; Avadhani, K.; Shetty, R. Chikungunya and the eye: A review. J. Ophthalmic Inflamm. Infect., 2013, 3(1), 35.
[http://dx.doi.org/10.1186/1869-5760-3-35] [PMID: 23514031]
[6]
Jain, M.; Rai, S.; Chakravarti, A. Chikungunya: A review. Trop. Doct., 2008, 38(2), 70-72.
[http://dx.doi.org/10.1258/td.2007.070019] [PMID: 18453487]
[7]
Li, X.; Jiang, T.; Deng, Y.; Zhao, H.; Yu, X.; Ye, Q.; Wang, H.; Zhu, S.; Zhang, F.; Qin, E. No title. In: Complete genome sequence of a chikungunya virus isolated in Guangdong; China, 2012.
[8]
Thiberville, S.D.; Moyen, N.; Dupuis-Maguiraga, L.; Nougairede, A.; Gould, E.A.; Roques, P.; de Lamballerie, X. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res., 2013, 99(3), 345-370.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.009] [PMID: 23811281]
[9]
Vogels, C.B.F.; Rückert, C.; Cavany, S.M.; Perkins, T.A.; Ebel, G.D.; Grubaugh, N.D. Arbovirus coinfection and co-transmission: A neglected public health concern? PLoS Biol., 2019, 17(1), e3000130
[http://dx.doi.org/10.1371/journal.pbio.3000130] [PMID: 30668574]
[10]
Zeller, H.; Van Bortel, W.; Sudre, B. Chikungunya: Its history in Africa and Asia and its spread to new regions in 2013-2014. J. Infect. Dis., 2016, 214(Suppl. 5), S436-S440.
[http://dx.doi.org/10.1093/infdis/jiw391] [PMID: 27920169]
[11]
Robinson, M.C. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans. R. Soc. Trop. Med. Hyg., 1955, 49, 28-32.
[http://dx.doi.org/10.1016/0035-9203(55)90080-8] [PMID: 14373834]
[12]
Centers for Disease Control and Prevention; National Center for Emerging and Zoonotic Infectious Diseases. https://www.cdc.gov/chikungunya/geo/index.htmlaccessed Oct 09, 2019
[13]
Staples, J.E.; Fischer, M. Chikungunya virus in the Americas--what a vectorborne pathogen can do. N. Engl. J. Med., 2014, 371(10), 887-889.
[http://dx.doi.org/10.1056/NEJMp1407698] [PMID: 25184860]
[14]
Mourya, D.T.; Mishra, A.C. Chikungunya fever. Lancet, 2006, 368(9531), 186-187.
[http://dx.doi.org/10.1016/S0140-6736(06)69017-X] [PMID: 16844472]
[15]
Coffey, L.L.; Failloux, A.B.; Weaver, S.C. Chikungunya virus-vector interactions. Viruses, 2014, 6(11), 4628-4663.
[http://dx.doi.org/10.3390/v6114628] [PMID: 25421891]
[16]
ul Qamar, M. T.; Bari, A.; Adeel, M. M.; Maryam, A.; Ashfaq, U. A.; Du, X.; Muneer, I.; Ahmad, H. I.; Wang, J. Peptide vaccine against chikungunya virus: Immuno-informatics combined with molecular docking approach. J. Transl. Med., 2018, 16, 298.
[http://dx.doi.org/10.1186/s12967-018-1672-7]
[17]
Khan, A.H.; Morita, K. Parquet Md, Mdel.C.; Hasebe, F.; Mathenge, E.G.; Igarashi, A. Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. J. Gen. Virol., 2002, 83(Pt 12), 3075-3084.
[http://dx.doi.org/10.1099/0022-1317-83-12-3075] [PMID: 12466484]
[18]
Sahadeo, N.S.D.; Allicock, O.M.; De Salazar, P.M.; Auguste, A.J.; Widen, S.; Olowokure, B.; Gutierrez, C.; Valadere, A.M.; Polson-Edwards, K.; Weaver, S.C.; Carrington, C.V.F. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol., 2017, 3(1), vex010
[http://dx.doi.org/10.1093/ve/vex010] [PMID: 28480053]
[19]
Fenwick, A. The global burden of neglected tropical diseases. Public Health, 2012, 126(3), 233-236.
[http://dx.doi.org/10.1016/j.puhe.2011.11.015] [PMID: 22325616]
[20]
Subudhi, B.B.; Chattopadhyay, S.; Mishra, P.; Kumar, A. Current strategies for inhibition of chikungunya infection. Viruses, 2018, 10(5), 235.
[http://dx.doi.org/10.3390/v10050235] [PMID: 29751486]
[21]
Rezza, G.; Weaver, S.C. Chikungunya as a paradigm for emerging viral diseases: Evaluating disease impact and hurdles to vaccine development. PLoS Negl. Trop. Dis., 2019, 13(1), e0006919
[http://dx.doi.org/10.1371/journal.pntd.0006919] [PMID: 30653504]
[22]
Ben-Yedidia, T.; Arnon, R. Epitope-based vaccine against influenza. Expert Rev. Vaccines, 2007, 6(6), 939-948.
[http://dx.doi.org/10.1586/14760584.6.6.939] [PMID: 18034655]
[23]
Basu, A. Immunoinformatics based study of T cell epitopes in Zea m 1 pollen allergen. Medicina (Kaunas), 2019, 55(6), 236.
[http://dx.doi.org/10.3390/medicina55060236] [PMID: 31159395]
[24]
Ravichandran, L.; Venkatesan, A.; Febin Prabhu Dass, J. Epitope-based immunoinformatics approach on RNA-dependent RNA Polymerase (RdRp) protein complex of Nipah Virus (NiV). J. Cell. Biochem., 2018, 120, 7082-7095.
[http://dx.doi.org/10.1002/jcb.27979] [PMID: 30417438]
[25]
Shah, P.; Mistry, J.; Reche, P.A.; Gatherer, D.; Flower, D.R. In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol. Immunol., 2018, 97, 56-62.
[http://dx.doi.org/10.1016/j.molimm.2018.03.007] [PMID: 29567319]
[26]
Sabetian, S.; Nezafat, N.; Dorosti, H.; Zarei, M.; Ghasemi, Y. Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. J. Biomol. Struct. Dyn., 2019, 37(10), 2546-2563.
[http://dx.doi.org/10.1080/07391102.2018.1491890] [PMID: 30035699]
[27]
Pandey, K.R.; Ojha, R.; Mishra, A.; Prajapati, K.V. Designing B- and T-cell multi-epitope based subunit vaccine using immunoinformatics approach to control Zika virus infection. J. Cell. Biochem., 2018, 119(9), 7631-7642.
[http://dx.doi.org/10.1002/jcb.27110] [PMID: 29900580]
[28]
Ingale, A.G. Epitopes identification for vaccine design and structural aspects of dengue virus 3 envelope protein Biochem. Physiol. Open Access., 2014, 3, 1-7.
[http://dx.doi.org/10.4172/2168-9652.1000134]
[29]
Hasan, A.; Hossain, M.; Alam, J. A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinformat. Biol. Insights, 2013, 7(BBI), S13402.
[http://dx.doi.org/10.4137/BBI.S13402]
[30]
Lapelosa, M.; Gallicchio, E.; Arnold, G.F.; Arnold, E.; Levy, R.M. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J. Mol. Biol., 2009, 385(2), 675-691.
[http://dx.doi.org/10.1016/j.jmb.2008.10.089] [PMID: 19026659]
[31]
Li, L.; Jose, J.; Xiang, Y.; Kuhn, R.J.; Rossmann, M.G. Structural changes of envelope proteins during alphavirus fusion. Nature, 2010, 468(7324), 705-708.
[http://dx.doi.org/10.1038/nature09546] [PMID: 21124457]
[32]
Voss, J.E.; Vaney, M.C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 2010, 468(7324), 709-712.
[http://dx.doi.org/10.1038/nature09555] [PMID: 21124458]
[33]
Gauci, P.J.; Wu, J.Q.; Rayner, G.A.; Barabé, N.D.; Nagata, L.P.; Proll, D.F. Identification of Western equine encephalitis virus structural proteins that confer protection after DNA vaccination. Clin. Vaccine Immunol., 2010, 17(1), 176-179.
[http://dx.doi.org/10.1128/CVI.00377-09] [PMID: 19923571]
[34]
Swayze, R.D.; Bhogal, H.S.; Barabé, N.D.; McLaws, L.J.; Wu, J.Q. Envelope protein E1 as vaccine target for western equine encephalitis virus. Vaccine, 2011, 29(4), 813-820.
[http://dx.doi.org/10.1016/j.vaccine.2010.11.009] [PMID: 21084062]
[35]
Weger-Lucarelli, J.; Aliota, M.T.; Kamlangdee, A.; Osorio, J.E. Identifying the role of E2 domains on alphavirus neutralization and protective immune responses. PLoS Negl. Trop. Dis., 2015, 9(10), e0004163
[http://dx.doi.org/10.1371/journal.pntd.0004163] [PMID: 26473963]
[36]
Weaver, S.C.; Smith, D.W. Alphavirus Infections. Tropical Infectious Diseases: Principles, Pathogens and Practice: Principles, Pathogens and Practice; Guerrant, R. L; Walker, D.H.; Weller, P.F., Eds.; Elsevier Health Sciences, 2011.
[37]
Kielian, M. Class II virus membrane fusion proteins. Virology, 2006, 344(1), 38-47.
[http://dx.doi.org/10.1016/j.virol.2005.09.036] [PMID: 16364734]
[38]
Islam, R.; Sakib, M.S.; Zaman, A. A computational assay to design an epitope-based peptide vaccine against chikungunya virus. Future Virol., 2012, 7, 1029-1042.
[http://dx.doi.org/10.2217/fvl.12.95]
[39]
Erasmus, J.H.; Rossi, S.L.; Weaver, S.C. Development of vaccines for chikungunya fever. J. Infect. Dis., 2016, 214(Suppl. 5), S488-S496.
[http://dx.doi.org/10.1093/infdis/jiw271] [PMID: 27920179]
[40]
Adhikari, U. K.; Tayebi, M.; Rahman, M. M. Immunoinformatics approach for epitope-based peptide vaccine design and active site prediction against polyprotein of emerging oropouche virus. J. Immunol. Res, 2018, 2018.
[http://dx.doi.org/10.1155/2018/6718083]
[41]
Khan, M.A.; Hossain, M.U.; Rakib-Uz-Zaman, S.M.; Morshed, M.N. Epitope-based peptide vaccine design and target site depiction against Ebola viruses: an immunoinformatics study. Scand. J. Immunol., 2015, 82(1), 25-34.
[http://dx.doi.org/10.1111/sji.12302] [PMID: 25857850]
[42]
Plemper, R.K.; Doyle, J.; Sun, A.; Prussia, A.; Cheng, L.T.; Rota, P.A.; Liotta, D.C.; Snyder, J.P.; Compans, R.W. Design of a small-molecule entry inhibitor with activity against primary measles virus strains. Antimicrob. Agents Chemother., 2005, 49(9), 3755-3761.
[http://dx.doi.org/10.1128/AAC.49.9.3755-3761.2005] [PMID: 16127050]
[43]
Starr-Spires, L.D.; Collman, R.G. HIV-1 entry and entry inhibitors as therapeutic agents. Clin. Lab. Med., 2002, 22(3), 681-701.
[http://dx.doi.org/10.1016/S0272-2712(02)00011-2] [PMID: 12244592]
[44]
Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res., 2013, 41(Database issue), D36-D42.
[PMID: 23193287]
[45]
Rahman, M.; Yamagishi, J.; Rahim, R.; Hasan, A.; Sobhan, A. East/central/south african genotype in a chikungunya outbreak, Dhaka, Bangladesh, 2017. Emerg. Infect. Dis., 2019, 25(2), 370-372.
[http://dx.doi.org/10.3201/eid2502.180188] [PMID: 30666947]
[46]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7, 539.
[http://dx.doi.org/10.1038/msb.2011.75] [PMID: 21988835]
[47]
Brown, N.P.; Leroy, C.; Sander, C. MView: A web-compatible database search or multiple alignment viewer. Bioinformatics, 1998, 14(4), 380-381.
[http://dx.doi.org/10.1093/bioinformatics/14.4.380] [PMID: 9632837]
[48]
Waterhouse, A.M.; Procter, J.B.; Martin, D.M.; Clamp, M.; Barton, G.J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics, 2009, 25(9), 1189-1191.
[http://dx.doi.org/10.1093/bioinformatics/btp033] [PMID: 19151095]
[49]
Garcia-Boronat, M.; Diez-Rivero, C.M.; Reinherz, E.L.; Reche, P.A. PVS: A web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res, 2008, 36(Web Server issue), W35-41.
[http://dx.doi.org/10.1093/nar/gkn211] [PMID: 18442995]
[50]
Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8, 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[51]
Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174.
[http://dx.doi.org/10.1016/0014-5793(90)80535-Q] [PMID: 1702393]
[52]
Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 2007, 8, 424.
[http://dx.doi.org/10.1186/1471-2105-8-424] [PMID: 17973982]
[53]
Trolle, T.; Metushi, I.G.; Greenbaum, J.A.; Kim, Y.; Sidney, J.; Lund, O.; Sette, A.; Peters, B.; Nielsen, M. Automated benchmarking of peptide-MHC class I binding predictions. Bioinformatics, 2015, 31(13), 2174-2181.
[http://dx.doi.org/10.1093/bioinformatics/btv123] [PMID: 25717196]
[54]
Peters, B.; Sette, A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics, 2005, 6, 132.
[http://dx.doi.org/10.1186/1471-2105-6-132] [PMID: 15927070]
[55]
Andreatta, M.; Trolle, T.; Yan, Z.; Greenbaum, J.A.; Peters, B.; Nielsen, M. An automated benchmarking platform for MHC class II binding prediction methods. Bioinformatics, 2018, 34(9), 1522-1528.
[http://dx.doi.org/10.1093/bioinformatics/btx820] [PMID: 29281002]
[56]
Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7, 153.
[http://dx.doi.org/10.1186/1471-2105-7-153] [PMID: 16545123]
[57]
Dimitrov, I.; Flower, D.R.; Doytchinova, I. In in AllerTOP-a server for in silico prediction of allergens; BMC bioinformatics. BioMed. Central, 2013, 14, S4.
[PMID: 23735058]
[58]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Open source drug discovery consortium. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[59]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1), W449-54
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[60]
Thévenet, P.; Shen, Y.; Maupetit, J.; Guyon, F.; Derreumaux, P.; Tufféry, P. PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res., 2012, 40(Web Server issue), W288-93.
[http://dx.doi.org/10.1093/nar/gks419] [PMID: 22581768]
[61]
Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C. The protein data bank. Acta Crystallogr. D Biol. Crystallogr.,, 2002, 58(Pt 6 No 1), 899-907.
[http://dx.doi.org/10.1107/S0907444902003451] [PMID: 12037327]
[62]
Mobbs, J.I.; Illing, P.T.; Dudek, N.L.; Brooks, A.G.; Baker, D.G.; Purcell, A.W.; Rossjohn, J.; Vivian, J.P. The molecular basis for peptide repertoire selection in the Human Leucocyte Antigen (HLA) C*06:02 molecule. J. Biol. Chem., 2017, 292(42), 17203-17215.
[http://dx.doi.org/10.1074/jbc.M117.806976] [PMID: 28855257]
[63]
Webb, B. Sali, A. Protein structure modeling with MODELLER; Protein Structure Prediction; Springer, 2014, pp. 1-15.
[64]
Salas-Burgos, A.; Iserovich, P.; Zuniga, F.; Vera, J.C.; Fischbarg, J. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: Insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys. J., 2004, 87(5), 2990-2999.
[http://dx.doi.org/10.1529/biophysj.104.047886] [PMID: 15326030]
[65]
Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins, 1993, 17(4), 355-362.
[http://dx.doi.org/10.1002/prot.340170404] [PMID: 8108378]
[66]
Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[67]
Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M. PROCHECK: Validation of protein-structure coordinates. 2006.
[http://dx.doi.org/10.1107/97809553602060000882]
[68]
Eisenberg, D.; Lüthy, R.; Bowie, J.U. In [20] VERIFY3D: assessment of protein models with three-dimensional profiles Methods in enzymology; Elsevier, 1997, 277, 396-404.
[69]
Gao, C. PhD. Thesis, University of Rochester, Rochester, 2010. Computational studies on membrane protein structures and protein-ligand binding affinities, 2009.
[70]
Dallakyan, S.; Olson, A.J. Olson, A.J. InSmall-molecule library screening by docking with PyRx In: Chemical biology; Springer, 2015, pp. 243-250.
[71]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: ϕ,ψ and Cbeta deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[72]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[73]
Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res., 2017, 45(W1), W24-W29.
[http://dx.doi.org/10.1093/nar/gkx346] [PMID: 28472356]
[74]
Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 2006, 65(1), 40-48.
[http://dx.doi.org/10.1002/prot.21078] [PMID: 16894596]
[75]
Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol., 1985, 55(3), 836-839.
[PMID: 2991600]
[76]
Bui, H.H.; Sidney, J.; Li, W.; Fusseder, N.; Sette, A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics, 2007, 8, 361.
[http://dx.doi.org/10.1186/1471-2105-8-361] [PMID: 17897458]
[77]
Karplus, P.A.; Schulz, G.E. Prediction of chain flexibility in proteins. Naturwissenschaften, 1985, 72, 212-213.
[http://dx.doi.org/10.1007/BF01195768]
[78]
Parker, J.M.; Guo, D.; Hodges, R.S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry, 1986, 25(19), 5425-5432.
[http://dx.doi.org/10.1021/bi00367a013] [PMID: 2430611]
[79]
Chen, J.S.; Hung, W.S.; Chan, H.H.; Tsai, S.J.; Sun, H.S. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics, 2013, 29(4), 420-427.
[http://dx.doi.org/10.1093/bioinformatics/bts715] [PMID: 23267173]
[80]
Forrest, L.R.; Tang, C.L.; Honig, B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J., 2006, 91(2), 508-517.
[http://dx.doi.org/10.1529/biophysj.106.082313] [PMID: 16648166]
[81]
Reddy, ChS.; Vijayasarathy, K.; Srinivas, E.; Sastry, G.M.; Sastry, G.N. Homology modeling of membrane proteins: A critical assessment. Comput. Biol. Chem., 2006, 30(2), 120-126.
[http://dx.doi.org/10.1016/j.compbiolchem.2005.12.002] [PMID: 16540373]
[82]
Spurgers, K.B.; Glass, P.J. Vaccine development for biothreat alpha viruses. J. Bioterror. Biodef., 2011.https://www.researchgate.net/publication/270014073_Vaccine_Development_for_Biothreat_Alpha_Viruses
[83]
Smith, J.L.; Pugh, C.L.; Cisney, E.D.; Keasey, S.L.; Guevara, C.; Ampuero, J.S.; Comach, G.; Gomez, D.; Ochoa-Diaz, M.; Hontz, R.D.; Ulrich, R.G. Human antibody responses to emerging mayaro virus and cocirculating alphavirus infections examined by using structural proteins from nine new and old world lineages. MSphere, 2018, 3(2), 3.
[http://dx.doi.org/10.1128/mSphere.00003-18] [PMID: 29577083]
[84]
Jadoon, M.H.; Rehman, Z.; Khan, A.; Rizwan, M.; Khan, S.; Mehmood, A.; Munir, A. In silico T-cell and B-cell epitope based vaccine design against alphavirus strain of chikungunya. Infect. Disord. Drug Targets, 2019.
[http://dx.doi.org/10.2174/1871526519666190521100521] [PMID: 31109281]
[85]
Narula, A.; Pandey, R.K.; Khatoon, N.; Mishra, A.; Prajapati, V.K. Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. Infect. Genet. Evol., 2018, 61, 4-15.
[http://dx.doi.org/10.1016/j.meegid.2018.03.007] [PMID: 29535024]
[86]
Kozlova, E.E.G.; Cerf, L.; Schneider, F.S.; Viart, B.T. NGuyen, C.; Steiner, B.T.; de Almeida Lima, S.; Molina, F.; Duarte, C.G.; Felicori, L.; Chávez-Olórtegui, C.; Machado-de-Ávila, R.A. Computational B-cell epitope identification and production of neutralizing murine antibodies against Atroxlysin-I. Sci. Rep., 2018, 8(1), 14904.
[http://dx.doi.org/10.1038/s41598-018-33298-x] [PMID: 30297733]
[87]
Schneider, F.S.; Nguyen, D.L.; Castro, K.L.; Cobo, S.; Machado de Avila, R.A. Ferreira, Nde.A.; Sanchez, E.F.; Nguyen, C.; Granier, C.; Galéa, P.; Chávez-Olortegui, C.; Molina, F. Use of a synthetic biosensor for neutralizing activity-biased selection of monoclonal antibodies against atroxlysin-I, a hemorrhagic metalloproteinase from Bothrops atrox snake venom. PLoS Negl. Trop. Dis., 2014, 8(4), e2826
[http://dx.doi.org/10.1371/journal.pntd.0002826] [PMID: 24762927]
[88]
Steinhauer, D.A.; Domingo, E.; Holland, J.J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase. Gene, 1992, 122(2), 281-288.
[http://dx.doi.org/10.1016/0378-1119(92)90216-C] [PMID: 1336756]
[89]
Sala, M.; Wain-Hobson, S. Are RNA viruses adapting or merely changing? J. Mol. Evol., 2000, 51(1), 12-20.
[http://dx.doi.org/10.1007/s002390010062] [PMID: 10903368]
[90]
Dash, R.; Das, R.; Junaid, M.; Akash, M.F.C.; Islam, A.; Hosen, S.Z. In silico-based vaccine design against Ebola virus glycoprotein. Adv. Appl. Bioinform. Chem., 2017, 10, 11-28.
[http://dx.doi.org/10.2147/AABC.S115859] [PMID: 28356762]
[91]
Vrtala, S.; Focke-Tejkl, M.; Swoboda, I.; Kraft, D.; Valenta, R. Strategies for converting allergens into hypoallergenic vaccine candidates. Methods, 2004, 32(3), 313-320.
[http://dx.doi.org/10.1016/j.ymeth.2003.08.016] [PMID: 14962766]
[92]
Vani, J.; Shaila, M.S.; Chandra, N.R.; Nayak, R. A combined immuno-informatics and structure-based modeling approach for prediction of T cell epitopes of secretory proteins of Mycobacterium tuberculosis. Microbes Infect., 2006, 8(3), 738-746.
[http://dx.doi.org/10.1016/j.micinf.2005.09.012] [PMID: 16476561]
[93]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[94]
Hopp, T.P.; Woods, K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA, 1981, 78(6), 3824-3828.
[http://dx.doi.org/10.1073/pnas.78.6.3824] [PMID: 6167991]
[95]
Lin, S.Y.; Cheng, C.W.; Su, E.C. Prediction of B-cell epitopes using evolutionary information and propensity scales. BMC Bioinformatics, 2013, 14(Suppl. 2), S10.
[http://dx.doi.org/10.1186/1471-2105-14-S2-S10] [PMID: 23484214]
[96]
Kringelum, J.V.; Lundegaard, C.; Lund, O.; Nielsen, M. Reliable B cell epitope predictions: Impacts of method development and improved benchmarking. PLOS Comput. Biol., 2012, 8(12), e1002829
[http://dx.doi.org/10.1371/journal.pcbi.1002829] [PMID: 23300419]
[97]
Moreau, V.; Fleury, C.; Piquer, D.; Nguyen, C.; Novali, N.; Villard, S.; Laune, D.; Granier, C.; Molina, F. PEPOP: Computational design of immunogenic peptides. BMC Bioinformatics, 2008, 9, 71.
[http://dx.doi.org/10.1186/1471-2105-9-71] [PMID: 18234071]
[98]
Caoili, S.E.C. Benchmarking B-cell epitope prediction for the design of peptide-based vaccines: Problems and prospects. BioMed. Res. Int., 2010, 2010
[99]
Novotný, J.; Handschumacher, M.; Haber, E.; Bruccoleri, R.E.; Carlson, W.B.; Fanning, D.W.; Smith, J.A.; Rose, G.D. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. USA, 1986, 83(2), 226-230.
[http://dx.doi.org/10.1073/pnas.83.2.226] [PMID: 2417241]
[100]
Bussiere, J.L.; McCormick, G.C.; Green, J.D. In: Preclinical safety assessment considerations in vaccine development; Vaccine Design; Springer, 1995, pp. 61-79.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy