Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Enhancement Effect of Zn-Arsenazo III Complex for G-quadruplex DNA Stability of Proto-oncogene Promoter Telomeres

Author(s): Liyuan Zou, Hongbo Li*, Mingbin Liu, Weihua Zhao and Suqin Wang*

Volume 17, Issue 7, 2020

Page: [858 - 866] Pages: 9

DOI: 10.2174/1570180816666191112154141

Price: $65

Abstract

Background: Controlling the structure of proto-oncogene telomeres is very important in antitumor therapy. There are relationships between G-quadruplex DNA and the growth of tumor cell.

Methods: In this study, spectroscopic, cyclic voltammetry and viscosity methods were employed to investigate the interaction between Zn-Arsenazo Ⅲ complex and G-quadruplex DNA by using 4S Green Plus Nucleic Acid Stain as a spectral probe in PBS buffer. The binding ratios were n Arsenazo Ⅲ : n Zn(Ⅱ) = 5:1 for Zn-Arsenazo Ⅲ complex and n Zn- Arsenazo Ⅲ : n G-quadruplex DNA = 8:1 for Zn-Arsenazo Ⅲ-G-quadruplex DNA. The bonding constants (Kθ 298.15K=4.44x105 L·mol-1, Kθ 308.15K= 1.00x105 L·mol-1, Kθ 318.15K= 1.04x106 L·mol-1) were obtained by double reciprocal method at different temperatures, Which was found that the interaction between Zn-Arsenazo Ⅲ complex and Gquadruplex DNA was driven by enthalpy. Furthermore, the research further confirmed that the interaction mode between Zn-Arsenazo Ⅲ complex and G-quadruplex DNA was a mixed binding which involved intercalation and non-intercalation interaction.

Results and Conclusion: Together these findings also have corroborated the application of stabilizing ligands and intervening with their function for target G-quadruplexes in a cellular context.

Keywords: Zn(ΙΙ)-arsenzeo ΙΙΙ complex, G-quadruplex DNA, 4S green plus nucleic acid stain, telomeres, interaction mode, proto-oncogene.

Graphical Abstract

[1]
Parkinson, G.N.; Lee, M.P.H.; Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature, 2002, 417(6891), 876-880.
[http://dx.doi.org/10.1038/nature755] [PMID: 12050675]
[2]
Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11593-11598.
[http://dx.doi.org/10.1073/pnas.182256799] [PMID: 12195017]
[3]
Lipps, H.J.; Rhodes, D. G-quadruplex structures: in vivo evidence and function. Trends Cell Biol., 2009, 19(8), 414-422.
[http://dx.doi.org/10.1016/j.tcb.2009.05.002] [PMID: 19589679]
[4]
Biffi, G.; Tannahill, D.; McCafferty, J.; Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem., 2013, 5(3), 182-186.
[http://dx.doi.org/10.1038/nchem.1548] [PMID: 23422559]
[5]
Mathad, R.I.; Hatzakis, E.; Dai, J.; Yang, D. c-MYC promoter G-quadruplex formed at the 5′-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res., 2011, 39(20), 9023-9033.
[http://dx.doi.org/10.1093/nar/gkr612] [PMID: 21795379]
[6]
Dai, J.; Carver, M.; Hurley, L.H.; Yang, D. Solution structure of a 2:1 quindoline-c-MYC G-quadruplex: insights into G-quadruplex-interactive small molecule drug design. J. Am. Chem. Soc., 2011, 133(44), 17673-17680.
[http://dx.doi.org/10.1021/ja205646q] [PMID: 21967482]
[7]
Simonsson, T.; Pecinka, P.; Kubista, M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res., 1998, 26(5), 1167-1172.
[http://dx.doi.org/10.1093/nar/26.5.1167] [PMID: 9469822]
[8]
Rankin, S.; Reszka, A.P.; Huppert, J.; Zloh, M.; Parkinson, G.N.; Todd, A.K.; Ladame, S.; Balasubramanian, S.; Neidle, S. Putative DNA quadruplex formation within the human c-kit oncogene. J. Am. Chem. Soc., 2005, 127(30), 10584-10589.
[http://dx.doi.org/10.1021/ja050823u] [PMID: 16045346]
[9]
Fernando, H.; Reszka, A.P.; Huppert, J.; Ladame, S.; Rankin, S.; Venkitaraman, A.R.; Neidle, S.; Balasubramanian, S. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry, 2006, 45(25), 7854-7860.
[http://dx.doi.org/10.1021/bi0601510] [PMID: 16784237]
[10]
Hurley, L.H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer, 2002, 2(3), 188-200.
[http://dx.doi.org/10.1038/nrc749] [PMID: 11990855]
[11]
Huppert, J.L.; Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res., 2007, 35(2), 406-413.
[http://dx.doi.org/10.1093/nar/gkl1057] [PMID: 17169996]
[12]
Shay, J.W.; Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer, 1997, 33(5), 787-791.
[http://dx.doi.org/10.1016/S0959-8049(97)00062-2] [PMID: 9282118]
[13]
Głuszyńska, A.; Juskowiak, B.; Kuta-Siejkowska, M.; Hoffmann, M.; Haider, S. Carbazole ligands as c-myc G-quadruplex binders. Int. J. Biol. Macromol., 2018, 114, 479-490.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.135] [PMID: 29581003]
[14]
Sun, D.; Liu, Y.; Yu, Q.; Liu, D.; Zhou, Y.; Liu, J. Selective nuclei accumulation of ruthenium(II) complex enantiomers that target G-quadruplex DNA. J. Inorg. Biochem., 2015, 150, 90-99.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.04.003] [PMID: 25911217]
[15]
Rajczak, E.; Gluszynska, A.; Juskowiak, B. Interaction of metallacrown complexes with G-quadruplex DNA. J. Inorg. Biochem., 2016, 155, 105-114.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.11.025] [PMID: 26687022]
[16]
Zhang, S.; Wu, Q.; Zhang, H.; Wang, Q.; Wang, X.; Mei, W.; Wu, X.; Zheng, W. Microwave-assisted synthesis of ruthenium(II) complexes with alkynes as potential inhibitor by selectively recognizing c-myc G-quadruplex DNA. J. Inorg. Biochem., 2017, 176, 113-122.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.005] [PMID: 28888786]
[17]
DuPont, J.I.; Henderson, K.L.; Metz, A.; Le, V.H.; Emerson, J.P.; Lewis, E.A. Calorimetric and spectroscopic investigations of the binding of metallated porphyrins to G-quadruplex DNA. Biochim. Biophys. Acta, 2016, 1860(5), 902-909.
[http://dx.doi.org/10.1016/j.bbagen.2015.09.004] [PMID: 26363462]
[18]
Emami, S.; Hosseinimehr, S.J.; Taghdisi, S.M.; Akhlaghpoor, S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg. Med. Chem. Lett., 2007, 17(1), 45-48.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.097] [PMID: 17049858]
[19]
Huang, Q.; Pan, Z.; Wang, P.; Chen, Z.; Zhang, X.; Xu, H. Zinc(II) and copper(II) complexes of β-substituted hydroxylporphyrins as tumor photosensitizers. Bioorg. Med. Chem. Lett., 2006, 16(11), 3030-3033.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.094] [PMID: 16540316]
[20]
Nakayama, A.; Hiromura, M.; Adachi, Y.; Sakurai, H. Molecular mechanism of antidiabetic zinc-allixin complexes: regulations of glucose utilization and lipid metabolism. J. Biol. Inorg. Chem., 2008, 13(5), 675-684.
[http://dx.doi.org/10.1007/s00775-008-0352-0] [PMID: 18288506]
[21]
Chohan, Z.H.; Arif, M.; Sarfraz, M. Metal-based antibacterial and antifungal amino acid derived Schiff bases: their synthesis, characterization and in vitro biological activity. Appl. Organomet. Chem., 2007, 21, 294-302.
[http://dx.doi.org/10.1002/aoc.1200]
[22]
Katiyar, A.; Singh, V.P. Synthesis, structural studies and bio-activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with p -amino acetophenone salicyloyl hydrazone. J. Coord. Chem., 2008, 61, 3200-3212.
[http://dx.doi.org/10.1080/00958970802017646]
[23]
Kaczmarek, M.T.; Jastrząb, R.; Hołderna-Kędzia, E.; Radecka-Paryzek, W. Self-assembled synthesis, characterization and antimicrobial activity of zinc(II) salicylaldimine complexes. Inorg. Chim. Acta, 2009, 362, 3127-3133.
[http://dx.doi.org/10.1016/j.ica.2009.02.012]
[24]
Savvin, S.B. Analytical use of arsenazo III: Determination of thorium, zirconium, uranium and rare earth elements. Talanta, 1961, 8, 673-685.
[http://dx.doi.org/10.1016/0039-9140(61)80164-1]
[25]
Kakhki, J.F.; Abedi, M.R. Application of soft and hard modeling methods to resolve the three competitive complex formation of 13 lanthanide-Arsenazo III complexes. Int. J. Indus. Chem, 2012, 3, 9.
[http://dx.doi.org/10.1186/2228-5547-3-9]
[26]
Rohwer, H.; Hosten, E. pH dependence of the reactions of arsenazo III with the lanthanides. Anal. Chim. Acta, 1997, 339, 271-277.
[http://dx.doi.org/10.1016/S0003-2670(96)00471-0]
[27]
Lu, Y-W.; Keita, B.; Nadjo, L. Rational approach of the stoichiometries of lanthanide complexes with α2-[P2W17O61]10− heteropolytungstate in aqueous solution. Polyhedron, 2004, 23, 1579-1586.
[http://dx.doi.org/10.1016/j.poly.2004.03.014]
[28]
Lu, Y.W.; Laurent, G.; Pereira, H. A novel methodology for evaluation of formation constants of complexes: example of lanthanide-Arsenazo III complexes. Talanta, 2004, 62(5), 959-970.
[http://dx.doi.org/10.1016/j.talanta.2003.10.030] [PMID: 18969386]
[29]
Rohwer, H.; Collier, N.; Hosten, E. Spectrophotometric study of arsenazo III and its interactions with lanthanides. Anal. Chim. Acta, 1995, 314, 219-223.
[http://dx.doi.org/10.1016/0003-2670(95)00279-9]
[30]
Hosten, E.; Rohwer, H. Interaction of anions with arsenazo III-lanthanide (III) complexes. Anal. Chim. Acta, 1997, 345, 227-233.
[http://dx.doi.org/10.1016/S0003-2670(97)00100-1]
[31]
Budesínský, B. Structure of metal chelates of arsenazo III, phosphonazo III and sulphonazo III. Talanta, 1968, 15(10), 1063-1064.
[http://dx.doi.org/10.1016/0039-9140(68)80117-1] [PMID: 18960408]
[32]
Matharu, K.; Mittal, S.K.; Ashok Kumar, S.K.; Sahoo, S.K. Selectivity enhancement of Arsenazo(III) reagent towards heavier lanthanides using polyaminocarboxylic acids: a spectrophotometric study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 145, 165-175.
[http://dx.doi.org/10.1016/j.saa.2015.02.054] [PMID: 25770966]
[33]
Basargin, N.N.; Ivanov, V.M.; Kuznetsov, V.V.; Mikhailova, A.V. 40 years since the discovery of the arsenazo III reagent. J. Anal. Chem., 2000, 55, 204-210.
[http://dx.doi.org/10.1007/BF02757200]
[34]
Li, H.Y.T.; Lei, S.; You, Z.; Yang, T.; Wang, S. A spectroscopic study of the interaction between the bismarck brown R-Eu (iii) complex and DNA. J. Appl. Spectrosc., 2018, 85, 9.
[http://dx.doi.org/10.1007/s10812-018-0720-7]
[35]
Berman, H.M.; Young, P.R. The interaction of intercalating drugs with nucleic acids. Annu. Rev. Biophys. Bioeng., 1981, 10, 87-114.
[http://dx.doi.org/10.1146/annurev.bb.10.060181.000511] [PMID: 7020585]
[36]
Zhang, G.; Hu, X.; Pan, J. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(2), 687-694.
[http://dx.doi.org/10.1016/j.saa.2010.11.050] [PMID: 21176886]
[37]
Cai, C.; Chen, X.; Ge, F. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2010, 76(2), 202-206.
[http://dx.doi.org/10.1016/j.saa.2010.03.017] [PMID: 20392665]
[38]
Yan, H.; Zhao, S.; Yang, J.; Zhu, X.; Dai, G.; Liang, H.; Pan, F.; Weng, L. Interaction between levamisole hydrochloride and bovine serum albumin and the influence of alcohol. Spectra J. Solution Chem., 2009, 38, 1183-1192.
[http://dx.doi.org/10.1007/s10953-009-9438-8]
[39]
Zhou, Y.; Li, Y. Studies of the interaction between poly(diallyldimethyl ammonium chloride) and DNA by spectroscopic methods. Colloids Surf. A Physicochem. Eng. Asp., 2004, 233, 129-135.
[http://dx.doi.org/10.1016/j.colsurfa.2003.11.030]
[40]
Li, H.; Lei, S.; Tang, Y.; Zou, L.; Hu, H.; Wang, S. Drug effect of thulium (iii)-arsenazo iii complex on herring sperm DNA. J. Chem., 2018.Article ID 7232793. 2018.
[41]
Liao, L.B.; Zhou, H.Y.; Xiao, X.M. Spectroscopic and viscosity study of doxorubicin interaction with DNA. J. Mol. Struct., 2005, 749, 108-113.
[http://dx.doi.org/10.1016/j.molstruc.2005.04.007]

© 2024 Bentham Science Publishers | Privacy Policy