Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

General Review Article

NMR: From Molecular Mechanism to its Application in Medical Care

Author(s): Zhenhong Zhang, Xiaohong Meng, Wei Cui, Syed S. Ahmad, Mohammad A. Kamal and Jinguo Zhang*

Volume 16, Issue 8, 2020

Page: [1089 - 1098] Pages: 10

DOI: 10.2174/1573406415666191111141630

Price: $65

Abstract

Background: Nuclear Magnetic Resonance (NMR) spectroscopy is a systematic science strategy utilized in pharmaceutical research, development, quality control, and research to decide the content and purity of a sample as well as its sub-atomic structure. There are several parameters working for better execution of NMR which can include chemical shifts, spin multiplicity, pH dependence, heteronuclear and homonuclear covalent network, and the atomic overhauser impact. NMR imaging offers an extensive scope of potential outcomes for the portrayal of skeletal muscle structure, function and metabolism. 1H additionally has the most noteworthy NMR affectability of any nucleus. The principle of NMR depends on the spins of atomic nuclei. The magnetic estimations rely on an unpaired electron, while NMR estimates attractive impact brought about by the turn of protons and neutrons. The nucleons have intrinsic angular momenta or spins, which is considered as basic magnet.

Conclusion: The presence of atomic attraction was uncovered in the hyperfine structure of spectral lines. If the nucleus magnetic moment is put in the magnetic field, the phenomenon of space quantization can be observed and each allowed direction will have a marginally unique energy level. Invitro, high-resolution NMR spectroscopy helps to assess tumor metabolism by the investigation of body liquids like urine, blood and removed tissue specimens. In-cell NMR is a powerful technique to assess strong compounds in medication improvement to spare exploratory expenses.

Keywords: NMR, chemical-shift, MRI, MRS, magnetic field, electrons.

Graphical Abstract

[1]
Kraff, O.; Quick, H.H. 7T: Physics, safety, and potential clinical applications. J. Magn. Reson. Imaging, 2017, 46(6), 1573-1589.
[http://dx.doi.org/10.1002/jmri.25723] [PMID: 28370675]
[2]
Ishima, R. Protein-inhibitor interaction studies using NMR. Appl. NMR Spectrosc., 2015, 1, 143-181.
[http://dx.doi.org/10.2174/9781608059621115010007] [PMID: 26361636]
[3]
Proietti, N.; Capitani, D.; Di Tullio, V. Applications of nuclear magnetic resonance sensors to cultural heritage. Sensors (Basel), 2014, 14(4), 6977-6997.
[http://dx.doi.org/10.3390/s140406977] [PMID: 24755519]
[4]
Griffin, J.M.; Forse, A.C.; Grey, C.P. Solid-state NMR studies of supercapacitors. Solid State Nucl. Magn. Reson., 2016, 74-75, 16-35.
[http://dx.doi.org/10.1016/j.ssnmr.2016.03.003] [PMID: 26974032]
[5]
Sanders, J.K.M.; Hunter, B.K. A Guide for Chemists.Oxford University Press: Modern NMR Spectroscopy. Oxford; UK; , 1987.
[6]
Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, 1986.
[http://dx.doi.org/10.1051/epn/19861701011]
[7]
Fan, T.W.; Lane, A.N. Structure-based profiling of metabolites and isotopomer by NMR. Prog. Nucl. Magn. Reson. Spectrosc., 2008, 52, 69-117.
[http://dx.doi.org/10.1016/j.pnmrs.2007.03.002]
[8]
Fan, T.W. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Magn. Reson. Spectrosc., 1996, 28, 161-219.
[http://dx.doi.org/10.1016/0079-6565(95)01017-3]
[9]
Barco, B. Methodologies for Metabolomics: Experimental Strategies and Techniques. Yale J. Biol. Med., 2015, 88(1), 101.
[10]
Weljie, A.M.; Newton, J.; Mercier, P.; Carlson, E.; Slupsky, C.M. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal. Chem., 2006, 78(13), 4430-4442.
[http://dx.doi.org/10.1021/ac060209g] [PMID: 16808451]
[11]
Henkelman, R.M.; Stanisz, G.J.; Graham, S.J. Magnetization transfer in MRI: a review. NMR Biomed., 2001, 14(2), 57-64.
[http://dx.doi.org/10.1002/nbm.683] [PMID: 11320533]
[12]
Foster, M.A.; Hutchison, J.M.S. NMR imaging--method and applications. J. Biomed. Eng., 1985, 7(3), 171-182.
[http://dx.doi.org/10.1016/0141-5425(85)90018-4] [PMID: 4033095]
[13]
Fanea, L.; Fagan, A.J. Review: magnetic resonance imaging techniques in ophthalmology. Mol. Vis., 2012, 18, 2538-2560.
[PMID: 23112569]
[14]
Haacke, E.M.; Brown, R.W.; Thompson, M.R.; Venkatesan, R. Magnetic resonance imaging: physical principles and sequence design; John Wiley & Sons: New York, New York, 1999.
[15]
Carlier, P.G.; Marty, B.; Scheidegger, O.; Loureiro de Sousa, P.; Baudin, P.Y.; Snezhko, E.; Vlodavets, D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J. Neuromuscul. Dis., 2016, 3(1), 1-28.
[http://dx.doi.org/10.3233/JND-160145] [PMID: 27854210]
[16]
Detre, J.A.; Wang, J. Technical aspects and utility of fMRI using BOLD and ASL. Clin. Neurophysiol., 2002, 113(5), 621-634.
[http://dx.doi.org/10.1016/S1388-2457(02)00038-X] [PMID: 11976042]
[17]
Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA, 1990, 87(24), 9868-9872.
[http://dx.doi.org/10.1073/pnas.87.24.9868] [PMID: 2124706]
[18]
Carlier, P.G.; Bertoldi, D.; Baligand, C.; Wary, C.; Fromes, Y. Muscle blood flow and oxygenation measured by NMR imaging and spectroscopy. NMR Biomed., 2006, 19(7), 954-967.
[http://dx.doi.org/10.1002/nbm.1081] [PMID: 17075963]
[19]
Partovi, S.; von Tengg-Kobligk, H.; Bhojwani, N.; Karmonik, C.; Maurer, M.; Robbin, M.R. von, Tengg-Kobligk, H.; Bhojwani, N.; Karmonik, C.; Maurer, M.; Robbin, M.R. Advanced noncontrast MR imaging in musculoskeletal radiology. Radiol. Clin. North Am., 2015, 53(3), 549-567.
[http://dx.doi.org/10.1016/j.rcl.2015.01.005] [PMID: 25953289]
[20]
Lauterbur, P.C. Image formation by induced local interaction: examples employing nuclear magnetic resonance. Nature, 1973, 241, 190-191.
[http://dx.doi.org/10.1038/242190a0]
[21]
Lauterbur, P.C. Magnetic resonance zeugmatography. Pure Appl. Chem., 1974, 40, 149-157.
[http://dx.doi.org/10.1351/pac197440010149]
[22]
Smith, F.W.; Mallard, J.R.; Reid, A.; Hutchison, J.M. Nuclear magnetic resonance tomographic imaging in liver disease. Lancet, 1981, 1(8227), 963-966.
[http://dx.doi.org/10.1016/S0140-6736(81)91731-1] [PMID: 6112385]
[23]
Crooks, L.; Arakawa, M.; Hoenninger, J.; Watts, J.; McRee, R.; Kaufman, L.; Davis, P.L.; Margulis, A.R.; DeGroot, J. Nuclear magnetic resonance whole-body imager operating at 3.5 KGauss. Radiology, 1982, 143(1), 169-174.
[http://dx.doi.org/10.1148/radiology.143.1.7063722] [PMID: 7063722]
[24]
Uğurbil, K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage, 2018, 168, 7-32.
[http://dx.doi.org/10.1016/j.neuroimage.2017.07.007] [PMID: 28698108]
[25]
Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev., 1946, 69, 37.
[http://dx.doi.org/10.1103/PhysRev.69.37]
[26]
Gruetter, R.; Weisdorf, S.A.; Rajanayagan, V.; Terpstra, M.; Merkle, H.; Truwit, C.L.; Garwood, M.; Nyberg, S.L.; Uğurbil, K. Resolution improvements in in vivo 1H NMR spectra with increased magnetic field strength. J. Magn. Reson., 1998, 135(1), 260-264.
[http://dx.doi.org/10.1006/jmre.1998.1542] [PMID: 9799704]
[27]
Keun, H.C.; Beckonert, O.; Griffin, J.L.; Richter, C.; Moskau, D.; Lindon, J.C.; Nicholson, J.K. Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies. Anal. Chem., 2002, 74(17), 4588-4593.
[http://dx.doi.org/10.1021/ac025691r] [PMID: 12236374]
[28]
Grimes, J.H.; O’Connell, T.M. The application of micro-coil NMR probe technology to metabolomics of urine and serum. J. Biomol. NMR, 2011, 49(3-4), 297-305.
[http://dx.doi.org/10.1007/s10858-011-9488-2] [PMID: 21380855]
[29]
Ardenkjaer-Larsen, J.H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M.H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10158-10163.
[http://dx.doi.org/10.1073/pnas.1733835100] [PMID: 12930897]
[30]
Kaplan, O.; van Zijl, P.C.; Cohen, J.S. Information from combined 1H and 31P NMR studies of cell extracts: differences in metabolism between drug-sensitive and drug-resistant MCF-7 human breast cancer cells. Biochem. Biophys. Res. Commun., 1990, 169(2), 383-390.
[http://dx.doi.org/10.1016/0006-291X(90)90343-L] [PMID: 2357212]
[31]
Ruiz-Cabello, J.; Cohen, J.S. Phospholipid metabolites as indicators of cancer cell function. NMR Biomed., 1992, 5(5), 226-233.
[http://dx.doi.org/10.1002/nbm.1940050506] [PMID: 1449961]
[32]
Holmes, E.; Tsang, T.M.; Tabrizi, S.J. The application of NMR-based metabonomics in neurological disorders. NeuroRx, 2006, 3(3), 358-372.
[http://dx.doi.org/10.1016/j.nurx.2006.05.004] [PMID: 16815219]
[33]
Ratai, E.M.; Pilkenton, S.; Lentz, M.R.; Greco, J.B.; Fuller, R.A.; Kim, J.P.; He, J.; Cheng, L.L.; González, R.G. Comparisons of brain metabolites observed by HRMAS 1H NMR of intact tissue and solution 1H NMR of tissue extracts in SIV-infected macaques. NMR Biomed., 2005, 18(4), 242-251.
[http://dx.doi.org/10.1002/nbm.953] [PMID: 15759297]
[34]
Griffin, J.L.; Walker, L.A.; Garrod, S.; Holmes, E.; Shore, R.F.; Nicholson, J.K. NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2000, 127(3), 357-367.
[http://dx.doi.org/10.1016/S0305-0491(00)00276-5] [PMID: 11126766]
[35]
Yang, J.; Xu, G.; Zheng, Y.; Kong, H.; Pang, T.; Lv, S.; Yang, Q. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 813(1-2), 59-65.
[http://dx.doi.org/10.1016/j.jchromb.2004.09.032] [PMID: 15556516]
[36]
Morvan, D.; Demidem, A.; Papon, J.; De Latour, M.; Madelmont, J.C. Melanoma tumors acquire a new Phospholipid metabolism phenotype under cystemustine as revealed by highresolution magic angle spinning proton nuclear magnetic resonance spectroscopy of intact tumor samples. Cancer Res., 2002, 62(6), 1890-1897.
[PMID: 11912170]
[37]
Garrod, S.; Humpfer, E.; Spraul, M.; Connor, S.C.; Polley, S.; Connelly, J.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn. Reson. Med., 1999, 41(6), 1108-1118.
[http://dx.doi.org/10.1002/(SICI)1522-2594(199906)41:6<1108:AID-MRM6>3.0.CO;2-M] [PMID: 10371442]
[38]
Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc., 2007, 2(11), 2692-2703.
[http://dx.doi.org/10.1038/nprot.2007.376] [PMID: 18007604]
[39]
Nicholson, J.K.; Foxall, P.J.D.; Spraul, M.; Farrant, R.D.; Lindon, J.C. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal. Chem., 1995, 67(5), 793-811.
[http://dx.doi.org/10.1021/ac00101a004] [PMID: 7762816]
[40]
Yuk, J.; McKelvie, J.R.; Simpson, M.J.; Spraul, M.; Simpson, A.J. Comparison of 1-D and 2-D NMR techniques for screening earthworm responses to sub-lethal endosulfan exposure. Environ. Chem., 2010, 7(6), 524-536.
[http://dx.doi.org/10.1071/EN10084]
[41]
Ludwig, C.; Ward, D.G.; Martin, A.; Viant, M.R.; Ismail, T.; Johnson, P.J.; Wakelam, M.J.; Günther, U.L. Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magn. Reson. Chem., 2009, 47(Suppl. 1), S68-S73.
[http://dx.doi.org/10.1002/mrc.2519] [PMID: 19790200]
[42]
Xia, J.; Bjorndahl, T.C.; Tang, P.; Wishart, D.S. MetaboMiner--semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics, 2008, 9, 507.
[http://dx.doi.org/10.1186/1471-2105-9-507] [PMID: 19040747]
[43]
Nerli, S.; McShan, A.C.; Sgourakis, N.G. Chemical shift-based methods in NMR structure determination. Prog. Nucl. Magn. Reson. Spectrosc., 2018, 106-107, 1-25.
[http://dx.doi.org/10.1016/j.pnmrs.2018.03.002] [PMID: 31047599]
[44]
Carlson, M.L.; Neff, B.A.; Link, M.J.; Lane, J.I.; Watson, R.E.; McGee, K.P.; Bernstein, M.A.; Driscoll, C.L. Magnetic Resonance Imaging With Cochlear Implant Magnet in Place: Safety and Imaging Quality. Otol. Neurotol., 2015, 36(6), 965-971.
[http://dx.doi.org/10.1097/MAO.0000000000000666] [PMID: 25931165]
[45]
Morrison, C.; Henkelman, R.M. A model for magnetization transfer in tissues. Magn. Reson. Med., 1995, 33(4), 475-482.
[http://dx.doi.org/10.1002/mrm.1910330404] [PMID: 7776877]
[46]
Carlier, P.G.; Marty, B.; Scheidegger, O.; Loureiro de Sousa, P.; Baudin, P.Y.; Snezhko, E.; Vlodavets, D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J. Neuromuscul. Dis., 2016, 3(1), 1-28.
[http://dx.doi.org/10.3233/JND-160145] [PMID: 27854210]
[47]
Horak, R.M.; Steyn, P.S.; Vleggaar, R. Carbon-carbon coupling-constants derived from biosynthetic-studies. Magn. Reson. Chem., 1985, 23, 995-1039.
[http://dx.doi.org/10.1002/mrc.1260231204]
[48]
Fan, T.W.; Lane, A.N. Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reson. Spectrosc., 2016, 92-93, 18-53.
[http://dx.doi.org/10.1016/j.pnmrs.2016.01.005] [PMID: 26952191]
[49]
Nakada, T. Clinical application of high and ultra high-field MRI. Brain Dev., 2007, 29(6), 325-335.
[http://dx.doi.org/10.1016/j.braindev.2006.10.005] [PMID: 17113259]
[50]
Stephen, Z.R.; Kievit, F.M.; Zhang, M. Magnetite nanoparticles for medical MR imaging. Mater Today (Kidlington), 2011, 14(7-8), 330-338.
[http://dx.doi.org/10.1016/S1369-7021(11)70163-8] [PMID: 22389583]
[51]
Bui, T.; Stevenson, J.; Hoekman, J.; Zhang, S.; Maravilla, K.; Ho, R.J.Y. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging. PLoS One, 2010, 5(9), 1-7.
[http://dx.doi.org/10.1371/journal.pone.0013082] [PMID: 20927340]
[52]
Liu, J.; Bu, J.; Bu, W.; Zhang, S.; Pan, L.; Fan, W.; Chen, F.; Zhou, L.; Peng, W.; Zhao, K.; Du, J.; Shi, J. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. Engl., 2014, 53(18), 4551-4555.
[http://dx.doi.org/10.1002/anie.201400900] [PMID: 24668766]
[53]
Wagner, G.; Pardi, A.; Wuethrich, K. Hydrogen bond length and proton NMR chemical shifts in proteins. J. Am. Chem. Soc., 1983, 105(18), 5948-5949.
[http://dx.doi.org/10.1021/ja00356a056]
[54]
Mielke, S.P.; Krishnan, V.V. Characterization of protein secondary structure from NMR chemical shifts. Prog. Nucl. Magn. Reson. Spectrosc., 2009, 54(3-4), 141-165.
[http://dx.doi.org/10.1016/j.pnmrs.2008.06.002] [PMID: 20160946]
[55]
Saitô, H.; Ando, I.; Ramamoorthy, A. Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. Prog. Nucl. Magn. Reson. Spectrosc., 2010, 57(2), 181-228.
[http://dx.doi.org/10.1016/j.pnmrs.2010.04.005] [PMID: 20633363]
[56]
Wishart, D.S. Interpreting protein chemical shift data. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 58(1-2), 62-87.
[http://dx.doi.org/10.1016/j.pnmrs.2010.07.004] [PMID: 21241884]
[57]
Zhang, W.; Liu, L.; Chen, H.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics, 2018, 8(9), 2521-2548.
[http://dx.doi.org/10.7150/thno.23789] [PMID: 29721097]
[58]
Na, H.B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem., 2009, 19, 6267.
[http://dx.doi.org/10.1039/b902685a]
[59]
Boros, E.; Gale, E.M.; Caravan, P. MR imaging probes: design and applications. Dalton Trans., 2015, 44(11), 4804-4818.
[http://dx.doi.org/10.1039/C4DT02958E] [PMID: 25376893]
[60]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[61]
Partlow, K.C.; Chen, J.; Brant, J.A.; Neubauer, A.M.; Meyerrose, T.E.; Creer, M.H.; Nolta, J.A.; Caruthers, S.D.; Lanza, G.M.; Wickline, S.A. 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J., 2007, 21(8), 1647-1654.
[http://dx.doi.org/10.1096/fj.06-6505com] [PMID: 17284484]
[62]
Soares, J.C.; Boada, F.; Keshavan, M.S. Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): a literature review. Eur. Neuropsychopharmacol., 2000, 10(3), 151-158.
[http://dx.doi.org/10.1016/S0924-977X(00)00057-2] [PMID: 10793316]
[63]
Ohliger, M.A.; von Morze, C.; Marco-Rius, I.; Gordon, J.; Larson, P.E.Z.; Bok, R.; Chen, H.Y.; Kurhanewicz, J.; Vigneron, D. Combining hyperpolarized 13 C MRI with a liver-specific gadolinium contrast agent for selective assessment of hepatocyte metabolism. Magn. Reson. Med., 2017, 77(6), 2356-2363.
[http://dx.doi.org/10.1002/mrm.26296] [PMID: 27298073]
[64]
Rogers, N.J.; Hill-Casey, F.; Stupic, K.F.; Six, J.S.; Lesbats, C.; Rigby, S.P.; Fraissard, J.; Pavlovskaya, G.E.; Meersmann, T. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc. Natl. Acad. Sci. USA, 2016, 113(12), 3164-3168.
[http://dx.doi.org/10.1073/pnas.1600379113] [PMID: 26961001]
[65]
Ruiz-Cabello, J.; Barnett, B.P.; Bottomley, P.A.; Bulte, J.W.M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed., 2011, 24(2), 114-129.
[http://dx.doi.org/10.1002/nbm.1570] [PMID: 20842758]
[66]
Davies, G.L.; Kramberger, I.; Davis, J.J. Environmentally responsive MRI contrast agents. Chem. Commun. (Camb.), 2013, 49(84), 9704-9721.
[http://dx.doi.org/10.1039/c3cc44268c] [PMID: 24040650]
[67]
Chen, K.T.; Lin, M.H.; Tsai, Y.H.; Lee, M.H.; Yang, J.T. Application of MRI and intraoperative CT fusion images with integrated neuronavigation in percutaneous radiofrequency trigeminal rhizotomy. Acta Neurochir. (Wien), 2015, 157(8), 1443-1448.
[http://dx.doi.org/10.1007/s00701-015-2459-8] [PMID: 26066533]
[68]
Acri, G.; Tripepi, M.G.; Causa, F.; Testagrossa, B.; Novario, R.; Vermiglio, G. Slice-thickness evaluation in CT and MRI: an alternative computerised procedure. Radiol. Med. (Torino), 2012, 117(3), 507-518.
[http://dx.doi.org/10.1007/s11547-011-0775-5] [PMID: 22228130]
[69]
White, S.C.; Pharoah, M.J. Oral Radiology: principles of Interpretation. 7th ed. St. Louis (MO): Chapter 14, Elsevier;; , 2014.
[70]
Tutton, L.M.; Goddard, P.R. MRI of the teeth. Br. J. Radiol., 2002, 75(894), 552-562.
[http://dx.doi.org/10.1259/bjr.75.894.750552] [PMID: 12124246]
[71]
Yilmaz, S.; Misirlioglu, M. The effect of 3 T MRI on microleakage of amalgam restorations. Dentomaxillofac. Radiol., 2013, 42(8)20130072
[http://dx.doi.org/10.1259/dmfr.20130072] [PMID: 23674614]
[72]
Gray, C.F.; Redpath, T.W.; Smith, F.W.; Staff, R.T. Advanced imaging: Magnetic resonance imaging in implant dentistry. Clin. Oral Implants Res., 2003, 14(1), 18-27.
[http://dx.doi.org/10.1034/j.1600-0501.2003.140103.x] [PMID: 12562361]
[73]
Görgülü, S.; Ayyildiz, S.; Kamburoglu, K.; Gökçe, S.; Ozen, T. Effect of orthodontic brackets and different wires on radiofrequency heating and magnetic field interactions during 3-T MRI. Dentomaxillofac. Radiol., 2014, 43(2)20130356
[http://dx.doi.org/10.1259/dmfr.20130356] [PMID: 24257741]
[74]
Chockattu, S.J.; Suryakant, D.B.; Thakur, S. Unwanted effects due to interactions between dental materials and magnetic resonance imaging: a review of the literature. Restor. Dent. Endod, 2018, 43(4)e39
[http://dx.doi.org/10.5395/rde.2018.43.e39] [PMID: 30483463]
[75]
Diaconis, J.N.; Rao, K.C. CT in head trauma: a review. J. Comput. Tomogr., 1980, 4(4), 261-270.
[http://dx.doi.org/10.1016/0149-936X(80)90018-1] [PMID: 7009059]
[76]
Jagannathan, N.R.; Sharma, U. Breast Tissue Metabolism by Magnetic Resonance Spectroscopy. Metabolites, 2017, 7(2)E25
[http://dx.doi.org/10.3390/metabo7020025] [PMID: 28590405]
[77]
Galati, F.; Luciani, M.L.; Caramanico, C.; Moffa, G.; Catalano, C.; Pediconi, F. Breast Magnetic Resonance Spectroscopy at 3 T in Biopsy-Proven Breast Cancers: Does Choline Peak Correlate With Prognostic Factors? Invest. Radiol., 2019, 54(12), 767-773.
[http://dx.doi.org/10.1097/RLI.0000000000000597] [PMID: 31356383]
[78]
Glunde, K.; Jiang, L.; Moestue, S.A.; Gribbestad, I.S. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed., 2011, 24(6), 673-690.
[http://dx.doi.org/10.1002/nbm.1751] [PMID: 21793073]
[79]
Haris, M.; Yadav, S.K.; Rizwan, A.; Singh, A.; Wang, E.; Hariharan, H.; Reddy, R.; Marincola, F.M. Molecular magnetic resonance imaging in cancer. J. Transl. Med., 2015, 13, 313.
[http://dx.doi.org/10.1186/s12967-015-0659-x] [PMID: 26394751]
[80]
Shimizu, H.; Kumabe, T.; Shirane, R.; Yoshimoto, T. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am. J. Neuroradiol., 2000, 21(4), 659-665.
[PMID: 10782774]
[81]
Kwock, L.; Smith, J.K.; Castillo, M.; Ewend, M.G.; Collichio, F.; Morris, D.E.; Bouldin, T.W.; Cush, S. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol., 2006, 7(10), 859-868.
[http://dx.doi.org/10.1016/S1470-2045(06)70905-6] [PMID: 17012048]
[82]
Bartella, L.; Morris, E.A.; Dershaw, D.D.; Liberman, L.; Thakur, S.B.; Moskowitz, C.; Guido, J.; Huang, W. Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology, 2006, 239(3), 686-692.
[http://dx.doi.org/10.1148/radiol.2393051046] [PMID: 16603660]
[83]
Bolan, P.J.; Meisamy, S.; Baker, E.H.; Lin, J.; Emory, T.; Nelson, M.; Everson, L.I.; Yee, D.; Garwood, M. In vivo quantification of choline compounds in the breast with 1H MR spectroscopy. Magn. Reson. Med., 2003, 50(6), 1134-1143.
[http://dx.doi.org/10.1002/mrm.10654] [PMID: 14648561]
[84]
Porto, L.; Kieslich, M.; Franz, K.; Lehrnbecher, T.; Zanella, F.; Pilatus, U.; Hattingen, E. MR spectroscopy differentiation between high and low grade astrocytomas: a comparison between paediatric and adult tumours. Eur. J. Paediatr. Neurol., 2011, 15(3), 214-221.
[http://dx.doi.org/10.1016/j.ejpn.2010.11.003] [PMID: 21145271]
[85]
Maheshwari, S.R.; Mukherji, S.K.; Neelon, B.; Schiro, S.; Fatterpekar, G.M.; Stone, J.A.; Castillo, M. The choline/creatine ratio in five benign neoplasms: comparison with squamous cell carcinoma by use of in vitro MR spectroscopy. AJNR Am. J. Neuroradiol., 2000, 21(10), 1930-1935.
[PMID: 11110549]
[86]
Moestue, S.A.; Borgan, E.; Huuse, E.M.; Lindholm, E.M.; Sitter, B.; Børresen-Dale, A.L.; Engebraaten, O.; Maelandsmo, G.M.; Gribbestad, I.S. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer, 2010, 10, 433.
[http://dx.doi.org/10.1186/1471-2407-10-433] [PMID: 20716336]
[87]
Meisamy, S.; Bolan, P.J.; Baker, E.H.; Bliss, R.L.; Gulbahce, E.; Everson, L.I.; Nelson, M.T.; Emory, T.H.; Tuttle, T.M.; Yee, D.; Garwood, M. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy--a pilot study at 4 T. Radiology, 2004, 233(2), 424-431.
[http://dx.doi.org/10.1148/radiol.2332031285] [PMID: 15516615]
[88]
Albers, M.J.; Bok, R.; Chen, A.P.; Cunningham, C.H.; Zierhut, M.L.; Zhang, V.Y.; Kohler, S.J.; Tropp, J.; Hurd, R.E.; Yen, Y.F.; Nelson, S.J.; Vigneron, D.B.; Kurhanewicz, J. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res., 2008, 68(20), 8607-8615.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0749] [PMID: 18922937]
[89]
Park, I.; Larson, P.E.; Zierhut, M.L.; Hu, S.; Bok, R.; Ozawa, T.; Kurhanewicz, J.; Vigneron, D.B.; Vandenberg, S.R.; James, C.D.; Nelson, S.J. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-oncol., 2010, 12(2), 133-144.
[http://dx.doi.org/10.1093/neuonc/nop043] [PMID: 20150380]
[90]
Yang, C.; Richardson, A.D.; Osterman, A.; Smith, J.W. Profiling of central metabolism in human cancer cells by two-dimensional NMR, GC-MS analysis, and isotopomer modeling. Metabolomics, 2008, 4(1)13e29
[91]
de Graaf, R.A.; Behar, K.L. Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal. Chem., 2003, 75(9), 2100-2104.
[http://dx.doi.org/10.1021/ac020782+] [PMID: 12720347]
[92]
Wilson, M.; Davies, N.P.; Brundler, M.A.; McConville, C.; Grundy, R.G.; Peet, A.C. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol. Cancer, 2009, 8, 6.
[http://dx.doi.org/10.1186/1476-4598-8-6] [PMID: 19208232]
[93]
DeFeo, E.M.; Wu, C.L.; McDougal, W.S.; Cheng, L.L. A decade in prostate cancer: from NMR to metabolomics. Nat. Rev. Urol., 2011, 8(6), 301-311.
[http://dx.doi.org/10.1038/nrurol.2011.53] [PMID: 21587223]
[94]
Denkert, C.; Bucher, E.; Hilvo, M.; Salek, R.; Orešič, M.; Griffin, J.; Brockmöller, S.; Klauschen, F.; Loibl, S.; Barupal, D.K.; Budczies, J.; Iljin, K.; Nekljudova, V.; Fiehn, O. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med., 2012, 4(4), 37.
[PMID: 22546809]
[95]
Li, C.W.; Kuo, Y.C.; Chen, C.Y.; Kuo, Y.T.; Chiu, Y.Y.; She, F.O.; Liu, G.C. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3 T. Magn. Reson. Med., 2005, 53(4), 770-776.
[http://dx.doi.org/10.1002/mrm.20412] [PMID: 15799049]
[96]
Tosi, M.R.; Tugnoli, V.; Bottura, G.; Lucchi, P.; Battaglia, A.; Giorgianni, P. Biochemical characterization of human renal tumors by in vitro nuclear magnetic resonance. J. Mol. Struct., 2001, 565-566, 323-327.
[http://dx.doi.org/10.1016/S0022-2860(00)00818-8]
[97]
Zhang, X.; Xu, L.; Shen, J.; Cao, B.; Cheng, T.; Zhao, T.; Liu, X.; Zhang, H. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim. Biophys. Acta, 2013, 1832(8), 1207-1216.
[http://dx.doi.org/10.1016/j.bbadis.2013.03.009] [PMID: 23524237]
[98]
Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
[99]
DeBerardinis, R.J. Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet. Med., 2008, 10(11), 767-777.
[http://dx.doi.org/10.1097/GIM.0b013e31818b0d9b] [PMID: 18941420]
[100]
Ganapathy-Kanniappan, S.; Geschwind, J.F. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol. Cancer, 2013, 12, 152.
[http://dx.doi.org/10.1186/1476-4598-12-152] [PMID: 24298908]
[101]
Warmoes, M.O.; Locasale, J.W. Heterogeneity of glycolysis in cancers and therapeutic opportunities. Biochem. Pharmacol., 2014, 92(1), 12-21.
[http://dx.doi.org/10.1016/j.bcp.2014.07.019] [PMID: 25093285]
[102]
Jiang, P.; Du, W.; Wu, M. Regulation of the pentose phosphate pathway in cancer. Protein Cell, 2014, 5(8), 592-602.
[http://dx.doi.org/10.1007/s13238-014-0082-8] [PMID: 25015087]
[103]
Chen, J.Q.; Russo, J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim. Biophys. Acta, 2012, 1826(2), 370-384.
[PMID: 22750268]
[104]
Haris, M.; Yadav, S.K.; Rizwan, A.; Singh, A.; Wang, E.; Hariharan, H.; Reddy, R.; Marincola, F.M. Molecular magnetic resonance imaging in cancer. J. Transl. Med., 2015, 13, 313.
[http://dx.doi.org/10.1186/s12967-015-0659-x] [PMID: 26394751]
[105]
Pielak, G.J.; Li, C.; Miklos, A.C.; Schlesinger, A.P.; Slade, K.M.; Wang, G.F.; Zigoneanu, I.G. Protein nuclear magnetic resonance under physiological conditions. Biochemistry, 2009, 48(2), 226-234.
[http://dx.doi.org/10.1021/bi8018948] [PMID: 19113834]
[106]
Kang, C. Applications of In-Cell NMR in Structural Biology and Drug Discovery. Int. J. Mol. Sci., 2019, 20(1)E139
[http://dx.doi.org/10.3390/ijms20010139] [PMID: 30609728]
[107]
Ma, J.; McLeod, S.; MacCormack, K.; Sriram, S.; Gao, N.; Breeze, A.L.; Hu, J. Real-time monitoring of New Delhi metallo-β-lactamase activity in living bacterial cells by 1H NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2014, 53(8), 2130-2133.
[http://dx.doi.org/10.1002/anie.201308636] [PMID: 24458501]
[108]
Huth, J.R.; Sun, C. Utility of NMR in lead optimization: fragment-based approaches. Comb. Chem. High Throughput Screen., 2002, 5(8), 631-643.
[http://dx.doi.org/10.2174/1386207023329941] [PMID: 12470260]
[109]
Luchinat, E.; Banci, L. In-cell NMR: a topical review. IUCrJ, 2017, 4(Pt 2), 108-118.
[http://dx.doi.org/10.1107/S2052252516020625] [PMID: 28250949]
[110]
Pastore, A.; Temussi, P.A. The Emperor’s new clothes: Myths and truths of in-cell NMR. Arch. Biochem. Biophys., 2017, 628, 114-122.
[http://dx.doi.org/10.1016/j.abb.2017.02.008] [PMID: 28259514]
[111]
Hiroaki, H. Recent applications of isotopic labeling for protein NMR in drug discovery. Expert Opin. Drug Discov., 2013, 8(5), 523-536.
[http://dx.doi.org/10.1517/17460441.2013.779665] [PMID: 23480844]
[112]
Barile, E.; Pellecchia, M. NMR-based approaches for the identification and optimization of inhibitors of protein-protein interactions. Chem. Rev., 2014, 114(9), 4749-4763.
[http://dx.doi.org/10.1021/cr500043b] [PMID: 24712885]
[113]
Jordan, J.B.; Whittington, D.A.; Bartberger, M.D.; Sickmier, E.A.; Chen, K.; Cheng, Y.; Judd, T. Fragment linking approach using 19F-NMR spectroscopy to obtain highly potent and selective inhibitors of β-secretase. J. Med. Chem., 2016, 59(8), 3732-3749.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01917] [PMID: 26978477]
[114]
Ahmad, S.S.; Kamal, M.A. Current updates on the regulation of beta-secretase movement as a potential restorative focus for management of Alzheimer’s disease. Protein Pept. Lett., 2019, 26(8), 579-587.
[http://dx.doi.org/10.2174/0929866526666190405125334] [PMID: 30950339]
[115]
Ahmad, S.S.; Akhtar, S. Danish Rizvi, S.M.; Kamal, M.A.; Sayeed, U.; Khan, M.K.A.; Siddiqui, M.H.; Arif, J.M. Screening and Elucidation of Selected Natural Compounds for Anti- Alzheimer’s Potential Targeting BACE-1 Enzyme: A Case Computational Study. Curr. Comput. Aided Drug Des., 2017, 13(4), 311-318.
[http://dx.doi.org/10.2174/1573409913666170414123825] [PMID: 28413992]
[116]
Ahmad, S.S.; Akhtar, S.; Jamal, Q.M.; Rizvi, S.M.; Kamal, M.A.; Khan, M.K.; Siddiqui, M.H. Multiple targets for the management of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1279-1289.
[http://dx.doi.org/10.2174/1871527315666161003165855] [PMID: 27712576]
[117]
Serkova, N.J.; Davis, D.M.; Steiner, J.; Agarwal, R. Quantitative NMR-based metabolomics on tissue biomarkers and its translation into in vivo magnetic resonance spectroscopy. Methods Mol. Biol., 2019, 1978, 369-387.
[http://dx.doi.org/10.1007/978-1-4939-9236-2_23] [PMID: 31119675]
[118]
Fuss, T.L.; Cheng, L.L. Evaluation of Cancer Metabolomics using ex vivo high resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Metabolites, 2016, 6(1), 11.
[http://dx.doi.org/10.3390/metabo6010011] [PMID: 27011205]
[119]
Crowley, K.J.; Forbes, R.T.; York, P.; Apperley, D.C.; Nyqvist, H.; Camber, O. Characterization of oleic acid and propranolol oleate mesomorphism using (13)C solid-state nuclear magnetic resonance spectroscopy (SSNMR). J. Pharm. Sci., 2000, 89(10), 1286-1295.
[http://dx.doi.org/10.1002/1520-6017(200010)89:10<1286:AID-JPS6>3.0.CO;2-O] [PMID: 10980503]
[120]
Ngen, E.J.; Artemov, D. Advances in monitoring cell-based therapies with magnetic resonance imaging: future perspectives. Int. J. Mol. Sci., 2017, 18(1)E198
[http://dx.doi.org/10.3390/ijms18010198] [PMID: 28106829]
[121]
Singer, S.; Okunieff, P.; Gostin, C.; Thilly, W.G.; Chen, L.B.; Neuringer, L.J. 13C- and 31P-NMR studies of human colon cancer in vitro and in vivo. Surg. Oncol., 1993, 2(1), 7-18.
[http://dx.doi.org/10.1016/0960-7404(93)90039-2] [PMID: 8252195]
[122]
Arias-Mendoza, F.; Zakian, K.; Schwartz, A.; Howe, F.A.; Koutcher, J.A.; Leach, M.O.; Griffiths, J.R.; Heerschap, A.; Glickson, J.D.; Nelson, S.J.; Evelhoch, J.L.; Charles, H.C.; Brown, T.R. Cooperative Group on MRS Applications in Cancer. Methodological standardization for a multi-institutional in vivo trial of localized 31P MR spectroscopy in human cancer research. In vitro and normal volunteer studies. NMR Biomed., 2004, 17(6), 382-391.
[http://dx.doi.org/10.1002/nbm.915] [PMID: 15386624]
[123]
Dreher, C.; Kuder, T.A.; König, F.; Paech, D.; Tavakoli, A.; Laun, F.B.; Flothow, F.; Gnirs, R.; Benkert, T.; Nickel, D.; Strecker, R.; Schlemmer, H.P.; Bickelhaupt, S. Modulating diffusion-weighted magnetic resonance imaging for screening in oncologic tertiary prevention: A prospective ex vivo and in vivo study. Invest. Radiol., 2019, 54, 704-711.
[http://dx.doi.org/10.1097/RLI.0000000000000596] [PMID: 31356384]
[124]
Li, T.; Deng, P. Nuclear Magnetic Resonance technique in tumor metabolism. Genes Dis., 2016, 4(1), 28-36.
[http://dx.doi.org/10.1016/j.gendis.2016.12.001] [PMID: 30258906]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy