Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Comparative Analysis on the Elastic Behavior of Composite Materials Based on Plant Fibers: Bamboo / Epoxy and Coconut / Epoxy

Author(s): Allel Mokaddem*, Bendouma Doumi*, Mohammed Belkheir and Amina Touimi

Volume 12, Issue 2, 2019

Page: [127 - 135] Pages: 9

DOI: 10.2174/2666145412666191106111630

Abstract

Background: The exploitation by the industries of vegetable fibers in the field of composite materials has made it possible to reduce the dependency of oil which is the result of their mechanical properties, their thermal resistance and biodegradability.

Methods: In this work, we carried out a comparative study by a genetic simulation on two materials based on different natural reinforcements (Bamboo and Coconut) to see the influence of its fibers on the elastic behavior of bio-composite materials.

Results: The results of our genetic simulation showed that Bamboo / Epoxy is more resistant than Coconut / Epoxy and that shear damage of Bamboo / Epoxy is lower than that of Coconut / Epoxy by 11 to 12.5%.

Conclusion: The results are similar to the results given by Rao KMM where he showed by experimental tests that Bamboo fiber is the most resistant when compared with other fibers especially coconut fiber.

Keywords: Elastic behavior, bamboo, coconut, plant fibers, composite materials, epoxy.

[1]
Philp JC, Bartsev A, Ritchie RJ, Baucher MA, Guy K. Bioplastics science from a policy vantage point. N Biotechnol 2013; 30(6): 635-46.
[http://dx.doi.org/10.1016/j.nbt.2012.11.021]
[2]
Biron M. Material Selection for Thermoplastic Parts: Practical and Advanced Information. Elsevier Science: Amsterdam 2015.
[3]
Raquez JM, Deléglise M, Lacrampe MF, Krawczak P. Thermosetting (bio) materials derived from renewable resources. Crit Rev 2010; 35: 487-9.
[4]
Marrot L, Bourmaud A, Bono P, Baley C. Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Mater Des 2014; 62: 47-56.
[http://dx.doi.org/10.1016/j.matdes.2014.04.087]
[5]
Marrot L. Contribution au développement de matériaux composites à matrices thermodurcissables biosourcées et renforcées par des fibres végétales PhD dissertation. University of South Brittany: Lorient, Farance . 2014.
[6]
Helanto K, Matikainen L, Talja R, Rojas OJ. Bio-based polymers for sustainable packaging and biobarriers: A critical review. BioRes 2019; 14: 4902-51.
[7]
Vroman I, Tighzert L. Biodegradable polymers. Materials (Basel) 2009; 2: 307-44.
[http://dx.doi.org/10.3390/ma2020307]
[8]
Gourrier C. Contribution à l’étude de matériaux biocomposites à matrice thermoplastique polyamide -11 et renforcée par des fibres de Lin. Thèse de doctorat. Lorient: Université de Bretagne Sud 2016.
[9]
Weibull W. Theory of the strength of materials. Royal Swedish Academy of Eng. Sci Proc 1939; 151: 1-45.
[10]
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952; 12: 72-9.
[http://dx.doi.org/10.1088/0508-3443/3/3/302]
[11]
La Biolignine; Structure et application de résines époxy Thèse de doctorat. Toulouse: Université de Toulouse . 2011.
[12]
Färber C, Wisshak M, Pyko I, Bellou N, Freiwald A. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean). PLoS One 2015; 10(4)e0126495
[http://dx.doi.org/10.1371/journal.pone.0126495] [PMID: 25893244]
[13]
Bardonnet P. Résines époxy- Composants et propriétés. Traité Plastiques et Composites. Saint-Denis: Techniques de l’Ingénieur 1992.
[14]
Vi Vi Do Thi. Matériaux composites à fibres naturelles /polymère biodégradables ou non Alimentation et Nutrition. Grenoble: Université de Grenoble 2011.
[15]
Nabi Saheb D, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol 1999; 18: 351-63.
[http://dx.doi.org/10.1002/(SICI)1098-2329(199924)18:4<351:AID-ADV6>3.0.CO;2-X]
[16]
Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J Polym Environ 2007; 15: 25-33.
[http://dx.doi.org/10.1007/s10924-006-0042-3]
[17]
Lumingkewas RH. Development of materials for construction with low environmental Impact made with low content of cement and with natural fibers Matériau xcomposite se tconstruction. Lorient: Université de Bretagne Sud 2015.
[18]
John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 2008; 187-207.
[19]
Raphaël KUENY. Biocomposites: Composites de hautes technologies en renfort de fibres naturelles et matrice de résines naturelles. Metz: Université de Lorraine 2013.
[20]
Alami A, Mokaddem A, Doumi B, Beldjoudi N, Boutaous A. Investigation by a genetic algorithm of the effect of moisture diffusion on the fiber matrix interface damage of graphite/epoxy nanocomposite. Recent Pat Mater Sci 2015; 9: 253-9.
[http://dx.doi.org/10.2174/1874464808666150911184646]
[21]
Atig K, Mokaddem A, Meskine M, Doumi B, Belkheir M, Elkeurti M. Using genetic algorithms to study the effect of cellulose fibers ratio on the fiber-matrix interface damage of biocomposite materials. Curr Mater Sci 2019; 12(1): 83-90.
[http://dx.doi.org/10.2174/1874464812666190408144801]
[22]
Rao KMM. Extraction and tensile properties of natural fibres: Vakka, date, and bamboo. Compos Struct 2007; 77: 288-5.
[http://dx.doi.org/10.1016/j.compstruct.2005.07.023]

© 2024 Bentham Science Publishers | Privacy Policy