Research Article

丁酸对IPEC-J2细胞分化,增殖,凋亡和自噬的影响

卷 20, 期 4, 2020

页: [307 - 317] 页: 11

弟呕挨: 10.2174/1566524019666191024110443

价格: $65

摘要

背景:短链脂肪酸丁酸(BT)是首选的结肠细胞能源。尚未完全阐明BT对仔猪小肠上皮细胞的分化,增殖和凋亡的影响及其潜在机制。 方法:在这项研究中,发现0.2-0.4 mM BT促进了前列腺空肠上皮(IPEC-J2)细胞的分化。 0.5 mM或更高浓度的BT以剂量和时间依赖性方式显着损害细胞活力。此外,高浓度的BT抑制IPEC-J2细胞增殖并诱导G2 / M期细胞周期停滞。 结果:我们的结果表明,BT通过caspase8-caspase3途径触发IPEC-J2细胞凋亡,并伴有过量的活性氧(ROS)和TNF-α的产生。高浓度的BT抑制了与溶酶体形成增加有关的细胞自噬。已发现,p38 MAPK抑制剂SB202190可减弱BT降低的IPEC-J2细胞活力。此外,SB202190减弱了负责正常酸性溶酶体的BT增加的p38 MAPK靶标DDIT3 mRNA水平和V-ATPase mRNA水平。 结论:总而言之,1)BT在0.2-0.4 mM时促进IPEC-J2细胞的分化; 2)0.5 mM或更高浓度的BT通过p38 MAPK途径诱导细胞凋亡; 3)BT抑制细胞自噬并在高浓度下促进溶酶体形成。

关键词: 丁酸,p38 MAPK,凋亡,自噬,V-ATPase,溶酶体。

[1]
Bach Knudsen KE, Serena A, Canibe N, Juntunen KS. New insight into butyrate metabolism. Proc Nutr Soc 2003; 62(1): 81-6.
[http://dx.doi.org/10.1079/PNS2002212] [PMID: 12740062]
[2]
Roediger WE. The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet 1980; 2(8197): 712-5.
[http://dx.doi.org/10.1016/S0140-6736(80)91934-0] [PMID: 6106826]
[3]
Kien CL, Blauwiekel R, Bunn JY, Jetton TL, Frankel WL, Holst JJ. Cecal infusion of butyrate increases intestinal cell proliferation in piglets. J Nutr 2007; 137(4): 916-22.
[http://dx.doi.org/10.1093/jn/137.4.916] [PMID: 17374654]
[4]
Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res 2007; 61(1): 37-41.
[http://dx.doi.org/10.1203/01.pdr.0000250014.92242.f3] [PMID: 17211138]
[5]
Claus R, Lösel D, Lacorn M, Mentschel J, Schenkel H. Effects of butyrate on apoptosis in the pig colon and its consequences for skatole formation and tissue accumulation. J Anim Sci 2003; 81(1): 239-48.
[http://dx.doi.org/10.2527/2003.811239x] [PMID: 12597395]
[6]
Mentschel J, Claus R. Increased butyrate formation in the pig colon by feeding raw potato starch leads to a reduction of colonocyte apoptosis and a shift to the stem cell compartment. Metabolism 2003; 52(11): 1400-5.
[http://dx.doi.org/10.1016/S0026-0495(03)00318-4] [PMID: 14624397]
[7]
Peng L, Li ZR, Green RS, Holzman IR, Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr 2009; 139(9): 1619-25.
[http://dx.doi.org/10.3945/jn.109.104638] [PMID: 19625695]
[8]
Nofrarías M, Martínez-Puig D, Pujols J, Majó N, Pérez JF. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition 2007; 23(11-12): 861-70.
[http://dx.doi.org/10.1016/j.nut.2007.08.016] [PMID: 17936196]
[9]
Kotunia A, Woliński J, Laubitz D, et al. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J Physiol Pharmacol 2004; 55(Suppl. 2): 59-68.
[10]
Lu JJ, Zou XT, Wang YM. Effects of sodium butyrate on the growth performance, intestinal microflora and morphology of weanling pigs. J Anim Feed Sci 2008; 17(4): 568-78.
[http://dx.doi.org/10.22358/jafs/66685/2008]
[11]
Claus R, Günthner D, Letzguss H. Effects of feeding fat-coated butyrate on mucosal morphology and function in the small intestine of the pig. J Anim Physiol Anim Nutr (Berl) 2007; 91(7-8): 312-8.
[http://dx.doi.org/10.1111/j.1439-0396.2006.00655.x] [PMID: 17615002]
[12]
Le Gall M, Gallois M, Sève B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. Br J Nutr 2009; 102(9): 1285-96.
[http://dx.doi.org/10.1017/S0007114509990213] [PMID: 19480733]
[13]
Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 2017; 12(6)e0179586
[http://dx.doi.org/10.1371/journal.pone.0179586] [PMID: 28654658]
[14]
Qiu Y, Ma X, Yang X, Wang L, Jiang Z. Effect of sodium butyrate on cell proliferation and cell cycle in porcine intestinal epithelial (IPEC-J2) cells. In Vitro Cell Dev Biol Anim 2017; 53(4): 304-11.
[http://dx.doi.org/10.1007/s11626-016-0119-9] [PMID: 28127702]
[15]
Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988; 29(8): 1035-41.
[http://dx.doi.org/10.1136/gut.29.8.1035] [PMID: 3410329]
[16]
Hinnebusch BF, Siddique A, Henderson JW, et al. Enterocyte differentiation marker intestinal alkaline phosphatase is a target gene of the gut-enriched Kruppel-like factor. Am J Physiol Gastrointest Liver Physiol 2004; 286(1): G23-30.
[http://dx.doi.org/10.1152/ajpgi.00203.2003] [PMID: 12919939]
[17]
Diesing AK, Nossol C, Panther P, et al. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicol Lett 2011; 200(1-2): 8-18.
[http://dx.doi.org/10.1016/j.toxlet.2010.10.006] [PMID: 20937367]
[18]
Cury-Boaventura MF, Curi R. Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci (Lond) 2005; 108(3): 245-53.
[http://dx.doi.org/10.1042/CS20040281] [PMID: 15563273]
[19]
Liu F, Wang L, Fu JL, et al. Analysis of non-sumoylated and sumoylated isoforms of Pax-6, the master regulator for eye and brain development in ocular cell lines. Curr Mol Med 2018; 18(8): 566-73.
[http://dx.doi.org/10.2174/1566524019666190111153310] [PMID: 30636604]
[20]
Hendzel MJ, Wei Y, Mancini MA, et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 1997; 106(6): 348-60.
[http://dx.doi.org/10.1007/s004120050256] [PMID: 9362543]
[21]
Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci 2010; 67(10): 1567-79.
[http://dx.doi.org/10.1007/s00018-010-0283-0] [PMID: 20198502]
[22]
González-Flores D, Rodríguez AB, Pariente JA. TNFα-induced apoptosis in human myeloid cell lines HL-60 and K562 is dependent of intracellular ROS generation. Mol Cell Biochem 2014; 390(1-2): 281-7.
[http://dx.doi.org/10.1007/s11010-014-1979-5] [PMID: 24488173]
[23]
Shen HM, Pervaiz S. TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 2006; 20(10): 1589-98.
[http://dx.doi.org/10.1096/fj.05-5603rev] [PMID: 16873882]
[24]
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469(7330): 323-35.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[25]
Tang Y, Li J, Li F, et al. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radic Biol Med 2015; (89): 944-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.09.012]
[26]
Chen JW, Murphy TL, Willingham MC, Pastan I, August JT. Identification of two lysosomal membrane glycoproteins. J Cell Biol 1985; 101(1): 85-95.
[http://dx.doi.org/10.1083/jcb.101.1.85] [PMID: 2409098]
[27]
Barone MV, Crozat A, Tabaee A, Philipson L, Ron D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev 1994; 8(4): 453-64.
[http://dx.doi.org/10.1101/gad.8.4.453] [PMID: 8125258]
[28]
Dzierzewicz Z, Orchel A, Weglarz L, Latocha M, Wilczok T. Changes in the cellular behaviour of human colonic cell line Caco-2 in response to butyrate treatment. Acta Biochim Pol 2002; 49(1): 211-20.
[PMID: 12136943]
[29]
Verma SP, Agarwal A, Das P. Sodium butyrate induces cell death by autophagy and reactivates a tumor suppressor gene DIRAS1 in renal cell carcinoma cell line UOK146. In Vitro Cell Dev Biol Anim 2018; 54(4): 295-303.
[http://dx.doi.org/10.1007/s11626-018-0239-5] [PMID: 29556894]
[30]
Schwab M, Reynders V, Steinhilber D, Stein J. Combined treatment of Caco-2 cells with butyrate and mesalazine inhibits cell proliferation and reduces Survivin protein level. Cancer Lett 2009; 273(1): 98-106.
[http://dx.doi.org/10.1016/j.canlet.2008.07.027] [PMID: 18774638]
[31]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863(12): 2977-92.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[32]
Zhan J, He J, Zhou Y, et al. Crosstalk between the autophagy-lysosome pathway and the ubiquitin-proteasome pathway in retinal pigment epithelial cells. Curr Mol Med 2016; 16(5): 487-95.
[http://dx.doi.org/10.2174/1566524016666160429121606] [PMID: 27132793]
[33]
Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy 2006; 2(2): 85-90.
[http://dx.doi.org/10.4161/auto.2.2.2463] [PMID: 16874083]
[34]
Munson MJ, Ganley IG. MTOR, PIK3C3, and autophagy: Signaling the beginning from the end. Autophagy 2015; 11(12): 2375-6.
[http://dx.doi.org/10.1080/15548627.2015.1106668] [PMID: 26565689]
[35]
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease. Ann N Y Acad Sci 2016; 1371(1): 30-44.
[http://dx.doi.org/10.1111/nyas.12966] [PMID: 26599521]
[36]
Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification-The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev 2016; (32): 75-88.
[http://dx.doi.org/10.1016/j.arr.2016.05.004]
[37]
Xiao T, Wu S, Yan C, et al. Butyrate upregulates the TLR4 expression and the phosphorylation of MAPKs and NK-κB in colon cancer cell in vitro. Oncol Lett 2018; 16(4): 4439-47.
[PMID: 30214578]
[38]
Han A, Bennett N, Ahmed B, Whelan J, Donohoe DR. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases. Oncotarget 2018; 9(43): 27280-92.
[http://dx.doi.org/10.18632/oncotarget.25546] [PMID: 29930765]
[39]
McHenry P, Wang WL, Devitt E, et al. Iejimalides A and B inhibit lysosomal vacuolar H+-ATPase (V-ATPase) activity and induce S-phase arrest and apoptosis in MCF-7 cells. J Cell Biochem 2010; 109(4): 634-42.
[PMID: 20039309]
[40]
Mei F, You J, Liu B, et al. LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol 2015; 36(4): 2831-44.
[http://dx.doi.org/10.1007/s13277-014-2910-0] [PMID: 25501280]
[41]
Aasebø E, Bartaula-Brevik S, Hernandez-Valladares M, Bruserud Ø. Vacuolar ATPase as a possible therapeutic target in human acute myeloid leukemia. Expert Rev Hematol 2018; 11(1): 13-24.
[http://dx.doi.org/10.1080/17474086.2018.1407239] [PMID: 29168399]
[42]
Jung YS, Jun S, Kim MJ, et al. TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/β-catenin signalling. Nat Cell Biol 2018; 20(12): 1421-33.
[http://dx.doi.org/10.1038/s41556-018-0219-8] [PMID: 30374053]
[43]
Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 2012; 48(4): 612-26.
[http://dx.doi.org/10.1016/j.molcel.2012.08.033] [PMID: 23063526]
[44]
Li Q, Ding C, Meng T, et al. Butyrate suppresses motility of colorectal cancer cells via deactivating Akt/ERK signaling in histone deacetylase dependent manner. J Pharmacol Sci 2017; 135(4): 148-55.
[http://dx.doi.org/10.1016/j.jphs.2017.11.004] [PMID: 29233468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy