Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review on the Synthetic Routes to β-Keto Amides

Author(s): Salwa E. M. El-Meligie, Nadia A. Khalil, Hala B. El-Nassan* and Ahmed A. M. Ibraheem

Volume 23, Issue 19, 2019

Page: [2005 - 2015] Pages: 11

DOI: 10.2174/1385272823666191021120336

Price: $65

Abstract

This review summarizes the data published on the methods of preparation of β- keto amides as a versatile synthon for many heterocyclic rings and asymmetric urea derivatives. Based on the starting materials used for the synthesis of β-keto amides, eight methods were reported including β-keto acids and their derivatives, Meldrum’s acid and their derivatives, diketene, 2,6-dimethyl-1,3-dioxin-4-one derivatives (TMD), α-diazo ketones, enamines and enolates, acetamides and their derivatives and reduction of certain Passerini products.

Keywords: β-Keto amides, diketene, β-keto acids, Meldrum’s acid, enamines, enolates, Passerini products.

Next »
Graphical Abstract

[1]
Muthukumar, A.; Sangeetha, S.; Sekar, G. Recent developments in functionalization of acyclic α-keto amides. Org. Biomol. Chem., 2018, 16(39), 7068-7083.
[http://dx.doi.org/10.1039/C8OB01423J] [PMID: 30109345]
[2]
Morris, J.; Wishka, D.G.; Fang, Y. A Cyclodehydration Route to 2-aminochromones. Synth. Commun., 1994, 24(6), 849-858.
[http://dx.doi.org/10.1080/00397919408011307]
[3]
Sosnovskikh, V.Y. Synthesis and reactions of halogen-containing chro-mones. Russ. Chem. Rev., 2003, 72, 489-516.
[http://dx.doi.org/10.1070/RC2003v072n06ABEH000770]
[4]
Savych, I.; Gläsel, T.; Villinger, A.; Sosnovskikh, V.Y.; Iaroshenko, V.O.; Langer, P. Synthesis of functionalized 2-salicyloylfurans, furo[3,2-b]chromen-9-ones and 2-benzoyl-8H-thieno[2,3-b]indoles by one-pot cyclizations of 3-halochromones with β-ketoamides and 1,3-dihydroindole-2-thiones. Org. Biomol. Chem., 2015, 13(3), 729-750.
[http://dx.doi.org/10.1039/C4OB01730G] [PMID: 25382032]
[5]
Song, Z.J.; Tan, L.; Liu, G.; Ye, H.; Dong, J. Concise Cu (I) catalyzed synthesis of substituted benzofurans via a tandem SNAr/C-O coupling process. Org. Process Res. Dev., 2016, 20, 1088-1092.
[http://dx.doi.org/10.1021/acs.oprd.6b00141]
[6]
Sørensen, U.S.; Falch, E.; Krogsgaard-Larsen, P. A novel route to 5-substituted 3-isoxazolols. Cyclization of N, O-DiBoc β-keto hydroxamic acids synthesized via acyl Meldrum’s acids. J. Org. Chem., 2000, 65(4), 1003-1007.
[http://dx.doi.org/10.1021/jo991409d] [PMID: 10814047]
[7]
Sai, K.K.; Esteves, P.M.; da Penha, E.T.; Klumpp, D.A.; Klumpp, D.A. Superacid-promoted reactions of alpha-ketoamides and related systems. J. Org. Chem., 2008, 73(17), 6506-6512.
[http://dx.doi.org/10.1021/jo801208m] [PMID: 18665649]
[8]
Jia, Y-X.; Katayev, D.; Kündig, E.P. Synthesis of 3-hydroxyoxindoles by Pd-catalysed intramolecular nucleophilic addition of aryl halides to α-ketoamides. Chem. Commun. (Camb.), 2010, 46(1), 130-132.
[http://dx.doi.org/10.1039/B917958E] [PMID: 20024316]
[9]
Shin, I.; Ramgren, S.D.; Krische, M.J. Reductive cyclization of halo-ketones to form 3-hydroxy-2-oxindoles via palladium catalyzed hydrogenation: A hydrogen-mediated grignard addition. Tetrahedron, 2015, 71(35), 5776-5780.
[http://dx.doi.org/10.1016/j.tet.2015.05.085] [PMID: 26273111]
[10]
Hu, J.X.; Wu, H.; Li, C.Y.; Sheng, W.J.; Jia, Y.X.; Gao, J.R. Nickel-catalyzed intramolecular nucleophilic addition of aryl or vinyl chlorides to α-ketoamides through C-Cl bond activation. Chemistry, 2011, 17(19), 5234-5237.
[http://dx.doi.org/10.1002/chem.201100256] [PMID: 21462275]
[11]
Gorokhovik, I.; Neuville, L.; Zhu, J. Trifluoroacetic acid-promoted synthesis of 3-hydroxy, 3-amino and spirooxindoles from α-keto-N-anilides. Org. Lett., 2011, 13(20), 5536-5539.
[http://dx.doi.org/10.1021/ol202263a] [PMID: 21957865]
[12]
Fan, F.; Xie, W.; Ma, D. Construction of polycyclic spiro-indolines via an intramolecular oxidative coupling/cyclization cascade reaction process. Org. Lett., 2012, 14(6), 1405-1407.
[http://dx.doi.org/10.1021/ol3003496] [PMID: 22400980]
[13]
Amaresh, R.R.; Perumal, P.T. A new and convenient synthesis of 2-1mino-2H- pyrancarboxaldehydes from β-Ketoamides using Vilsmeier reagent. Tetrahedron, 1999, 55, 8083-8094.
[http://dx.doi.org/10.1016/S0040-4020(99)00416-0]
[14]
Ancizu, S.; Moreno, E.; Solano, B.; Villar, R.; Burguete, A.; Torres, E.; Pérez-Silanes, S.; Aldana, I.; Monge, A. New 3-methylquinoxaline-2-carboxamide 1,4-di-N-oxide derivatives as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2010, 18(7), 2713-2719.
[http://dx.doi.org/10.1016/j.bmc.2010.02.024] [PMID: 20233660]
[15]
Moreno, E.; Gabano, E.; Torres, E.; Platts, J.A.; Ravera, M.; Aldana, I.; Monge, A.; Pérez-Silanes, S. Studies on log Po/w of quinoxaline di-N-oxides: A comparison of RP-HPLC experimental and predictive approaches. Molecules, 2011, 16(9), 7893-7908.
[http://dx.doi.org/10.3390/molecules16097893] [PMID: 22143549]
[16]
Lima, L.M.; do Amaral, D.N. Beirut reaction and its application in the synthesis of quinoxaline-N,N′-dioxides bioactive compounds. Rev. Virtual Quim, 2013, 5(6), 1075-1100.
[17]
Ramanjulu, J.M.; Demartino, M.P.; Lan, Y.; Marquis, R. Titanium(IV) isopropoxide mediated synthesis of pyrimidin-4-ones. Org. Lett., 2010, 12(10), 2270-2273.
[http://dx.doi.org/10.1021/ol100624p] [PMID: 20415483]
[18]
Rajanarendar, E.; Ramesh, P.; Srinivas, M.; Ramu, K.; Mohan, G. Sol-id‐supported synthesis of isoxazole‐substituted 1,4‐dihydropyridines by modified hantzsch method and their aromatization solid-supported. Synth. Commun., 2006, 36, 37-41.
[http://dx.doi.org/10.1080/15459620500408884]
[19]
Allais, C.; Constantieux, T.; Rodriguez, J. Use of beta, gamma-unsaturated alpha-ketocarbonyls for a totally regioselective oxidative multicomponent synthesis of polyfunctionalized pyridines. Chemistry, 2009, 15(47), 12945-12948.
[http://dx.doi.org/10.1002/chem.200902491] [PMID: 19894236]
[20]
Xie, M.F.; Zhou, W.; Tong, X.Y.; Chen, Y.L.; Cai, Y.; Li, Y.; Duan, G.L. High-performance liquid chromatographic determination of memantine hydrochloride in rat plasma using sensitive fluorometric derivatization. J. Sep. Sci., 2011, 34(3), 241-246.
[http://dx.doi.org/10.1002/jssc.201000579] [PMID: 21268245]
[21]
Chen, Z.; Liu, J.; Jin, C.; Tan, Q.; Ye, M. Transition-metal-free highly efficient synthesis of 2-pyridones from β-Keto amides and Ynals. Tetrahedron Lett., 2019, 60, 1265-1267.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.001]
[22]
Dudognon, Y.; Du, H.; Rodriguez, J.; Bugaut, X.; Constantieux, T. Organocatalytic multicomponent synthesis of enantioenriched polycyclic 1,2,3,4-tetrahydropyridines: Key substrate selection enabling regio- and stereoselectivities. Chem. Commun. (Camb.), 2015, 51(10), 1980-1982.
[http://dx.doi.org/10.1039/C4CC08469A] [PMID: 25531307]
[23]
Yuan, Y.; Yang, R.; Zhang-Negrerie, D.; Wang, J.; Du, Y.; Zhao, K. One-pot synthesis of 3-hydroxyquinolin-2(1H)-ones from N-phenylacetoacetamide via PhI(OCOCF3)2-mediated α-hydroxylation and H2SO4-promoted intramolecular cyclization. J. Org. Chem., 2013, 78(11), 5385-5392.
[http://dx.doi.org/10.1021/jo400541s] [PMID: 23656410]
[24]
Shankar, R.; Satish, S.M.; Meesala, V.M.; Vembu, N.; Kumar, S. Synthesis of isoquinoline alkaloids via oxidative amidation - Bischler. Synlett, 2012, 23, 1013-1020.
[http://dx.doi.org/10.1055/s-0031-1290655]
[25]
Feng, X.; Wang, J.; Xun, Z.; Zhang, J.; Huang, Z.; Shi, D. Highly selective synthesis of functionalized polyhydroisoquinoline derivatives via a three-component domino reaction. Chem. Commun. (Camb.), 2015, 51, 1528-1531.
[http://dx.doi.org/10.1039/C4CC08900F] [PMID: 25501740]
[26]
Wei, Y.; Liu, J.; Lin, S.; Ding, H.; Liang, F.; Zhao, B. Acetoacetanilides as masked isocyanates: Facile and efficient synthesis of unsymmetrically substituted ureas. Org. Lett., 2010, 12(19), 4220-4223.
[http://dx.doi.org/10.1021/ol101474f] [PMID: 20809613]
[27]
Du, H.; Dudognon, Y.; Rodriguez, J.; Constantieux, T.; Du, H.; Dudognon, Y.; Rodriguez, J.; Constantieux, T.; Weinreb, X.B. Weinreb β-ketoamides in enantioselective organocatalysis: A balance between reactivity and selectivity. Synlett, 2018, 29, 1272-1280.
[http://dx.doi.org/10.1055/s-0036-1591870]
[28]
Muthukumar, A.; Sekar, G. Friedel-Crafts Hydroxyalkylation of indoles with α-Keto amides using reusable K3PO4/nBu4NBr catalytic system in water. J. Org. Chem., 2018, 83(16), 8827-8839.
[http://dx.doi.org/10.1021/acs.joc.8b00844] [PMID: 30037225]
[29]
Wang, Y.; Wang, S.; Gao, Q.; Li, L.; Zhi, H.; Zhang, T.; Zhang, J. Transition-metal, organic solvent and base free α-hydroxylation of β-keto esters and β-keto amides with peroxides in water. Tetrahedron, 2019, 75(28), 3856-3863.
[http://dx.doi.org/10.1016/j.tet.2019.06.011]
[30]
Yu, S.M.; Cui, K.; Lv, F.; Yang, Z.Y.; Yao, Z.J. Aerobic α-hydroxylation of β-keto esters and amides by co-catalysis of SmI3 and I2 under mild base-free conditions. Tetrahedron Lett., 2016, 57(25), 2818-2821.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.052]
[31]
Kramer, R.; Brückner, R. Asymmetric hydrogenations one by one: Differentiation of up to three beta-ketocarboxylic acid derivatives based on Ruthenium(II)-binap catalysis. Chemistry, 2007, 13(32), 9076-9086.
[http://dx.doi.org/10.1002/chem.200700527] [PMID: 17694528]
[32]
Gerstenberger, B.S.; Lin, J.; Mimieux, Y.S.; Brown, L.E.; Oliver, A.G.; Konopelski, J.P. Structural characterization of an enantiomerically pure amino acid imidazolide and direct formation of the beta-lactam nucleus from an alpha-amino acid. Org. Lett., 2008, 10(3), 369-372.
[http://dx.doi.org/10.1021/ol7025922] [PMID: 18181633]
[33]
Vaske, Y.S.M.; Mahoney, M.E.; Konopelski, J.P.; Rogow, D.L.; McDonald, W.J. Enantiomerically pure trans-β-lactams from α-amino acids via compact fluorescent light (CFL) continuous-flow photolysis. J. Am. Chem. Soc., 2010, 132(32), 11379-11385.
[http://dx.doi.org/10.1021/ja1050023] [PMID: 20698705]
[34]
Huang, H.; Liu, L.T.; Chen, S.; Ku, H. The Synthesis of a chiral fluoxetine intermediate by catalytic enantioselective hydrogenation of benzoylacetamide. Tetrahedron Asymmetry, 1998, 9, 1637-1640.
[http://dx.doi.org/10.1016/S0957-4166(98)00158-X]
[35]
Nielsen, D.U.; Korsager, S.; Lindhardt, A.T. A palladium-catalyzed car-bonylative - deacetylative sequence to 1, 3‐keto amides. Adv. Synth. Catal., 2014, 356, 3519-3524.
[http://dx.doi.org/10.1002/adsc.201400545]
[36]
Sanchez, M.; Baslø, O.; Gønisson, Y.; Plaquevent, J.; Bugaut, X.; Con-stantieux, T.; Rodriguez, J. Enantioselective organocatalytic multicomponent synthesis of 2, 6- angewandte. Angew. Chem. Int. Ed., 2013, 52, 14143-14146.
[http://dx.doi.org/10.1002/anie.201306656]
[37]
Guan, X.; An, D.; Liu, G.; Zhang, H.; Gao, J.; Zhou, T.; Zhang, G.; Zhang, S. Enantioselective α-chlorination of β-keto esters and amides catalyzed by chiral imidodiphosphoric acids. Tetrahedron Lett., 2018, 59(25), 2418-2421.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.024]
[38]
Groß, A.G.; Deppe, H.; Schober, A. Solid-phase synthesis of 3-aryl-3-oxo-propan amides by reaction of lithium enolates with 4-nitrophenyl carbamate resin or polymer-bound isocyanate. Tetrahedron Lett., 2003, 44(2), 3939-3942.
[http://dx.doi.org/10.1016/S0040-4039(03)00757-3]
[39]
Sirisha, K.; Bikshapathi, D.; Achaiah, G.; Reddy, V.M. Synthesis, antibacterial and antimycobacterial activities of some new 4-aryl/heteroaryl-2,6-dimethyl-3,5-bis-N-(aryl)-carbamoyl-1,4-dihydropyridines. Eur. J. Med. Chem., 2011, 46(5), 1564-1571.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.003] [PMID: 21382653]
[40]
Huang, Y.M.; Zheng, C.W.; Zhao, G. Asymmetric Robinson-type annulation reaction between β-ketoamides and α, β-unsaturated ketones. J. Org. Chem., 2015, 80(8), 3798-3805.
[http://dx.doi.org/10.1021/jo502904n] [PMID: 25803128]
[41]
Hogenkamp, D.J.; Johnstone, T.B.C.; Huang, J.C.; Li, W.Y.; Tran, M.; Whittemore, E.R.; Bagnera, R.E.; Gee, K.W. Enaminone amides as novel orally active GABAA receptor modulators. J. Med. Chem., 2007, 50(14), 3369-3379.
[http://dx.doi.org/10.1021/jm070083v] [PMID: 17571865]
[42]
Knorr, L. Synthetische versuche mit dem acetessigester. Justus Liebigs Ann. Chem., 1886, 236(1–2), 69-115.
[http://dx.doi.org/10.1002/jlac.18862360105]
[43]
Witzeman, J.S. The transacetoacetylation: Mechanistic implications. Tetrahedron Lett., 1990, 31(10), 1401-1404.
[http://dx.doi.org/10.1016/S0040-4039(00)88816-4]
[44]
Witzeman, J.S.; Nottingham, W.D. Transacetoacetylation with tert-butyl acetoacetate: Synthetic applications. J. Org. Chem., 1991, 56(5), 1713-1718.
[http://dx.doi.org/10.1021/jo00005a013]
[45]
Wentrup, C.; Heilmayer, W.; Kollenz, G. α-Oxoketenes-preparation and chemistry. Synthesis (Stuttg), 1994, 1994(12), 1219-1248.
[http://dx.doi.org/10.1055/s-1994-25673]
[46]
Tidwell, T.T. Preparation of Ketenes.Ketenes II; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006, pp. 55-191.
[http://dx.doi.org/10.1002/0471767670.ch3]
[47]
Tidwell, T.T. Reactions of Ketenes.Ketenes II; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006, pp. 437-625.
[http://dx.doi.org/10.1002/0471767670.ch5]
[48]
Labelle, M.; Gravel, D. Unusually facile aminolysis of β-ketoesters. Chem. Commun., 1985, 7345(11), 105-106.
[http://dx.doi.org/10.1039/C39850000105]
[49]
Cossy, J.; Thellend, A.A. 4-Dimethylaminopyridine-catalyzed aminolysis of β-ketoesters. formation of β-ketoamides. Synthesis (Stuttg), 1989, 1989(10), 753-755.
[http://dx.doi.org/10.1055/s-1989-27383]
[50]
Suri, O.P.; Satti, N.K.; Suri, K.A. Microwave induced acetoacetylation of hetaryl and aryl amines. Synth. Commun., 2000, 30(20), 3709-3718.
[http://dx.doi.org/10.1080/00397910008086998]
[51]
Kumar, P.; Kumar Pandey, R. A facile and selective procedure for transesterification of β-keto esters promoted by yttria-zirconia based Lewis acid catalyst. Synlett, 2000, 2000(2), 251-253.
[http://dx.doi.org/10.1055/s-2000-6496]
[52]
Štefane, B.; Polanc, S. A New regio- and chemoselective approach to β-keto amides and β-enamino carboxamides via 1,3,2-dioxaborinanes. Synlett, 2004, 2004(4), 698-702.
[http://dx.doi.org/10.1055/s-2003-817787]
[53]
Vandavasi, J.K.; Hsiao, C.T.; Hu, W.P.; Boominathan, S.S.K.; Wang, J.J. Silver(I)-catalyzed tandem approach to β-oxo amides. Eur. J. Org. Chem., 2015, 2015(14), 3171-3177.
[http://dx.doi.org/10.1002/ejoc.201500224]
[54]
Ley, S.V.; Woodward, P.R. The use of β-ketothioesters for the exceptionally mild preparation of β-ketoamides. Tetrahedron Lett., 1987, 28(26), 3019-3020.
[http://dx.doi.org/10.1016/S0040-4039(00)96273-7]
[55]
Healy, A.R.; Vinale, F.; Lorito, M.; Westwood, N.J. Total synthesis and biological evaluation of the tetramic acid based natural product harzianic acid and its stereoisomers. Org. Lett., 2015, 17(3), 692-695.
[http://dx.doi.org/10.1021/ol503717r] [PMID: 25629709]
[56]
Kim, H. ok; Olsen, R. K.; Choi, O.S. Copper(I)-promoted condensation of α-amino acids with β-keto thio Esters: Synthesis of N-acylated L-leucine derivatives containing (S)-4-hydroxy-5-methyl- and (S)-4-hydroxy-2,5-dimethyl-3-oxohexanoic acid. J. Org. Chem., 1987, 52(20), 4531-4536.
[http://dx.doi.org/10.1021/jo00229a019]
[57]
May, A.E.; Hoye, T.R. Room temperature acylketene formation? 1,3-Dioxin-4-ones via silver(I) activation of phenylthioacetoacetate in the presence of ketones. J. Org. Chem., 2010, 75(17), 6054-6056.
[http://dx.doi.org/10.1021/jo101372v] [PMID: 20690691]
[58]
Zhang, C. Recent developments in trifluoromethylation or difluoroalkyla- tion by use of difluorinated phosphonium salts. Adv. Synth. Catal., 2017, 359, 372-383.
[http://dx.doi.org/10.1002/adsc.201601011]
[59]
Zheng, J.; Cai, J.; Lin, J.H.; Guo, Y.; Xiao, J.C. Synthesis and decarboxylative Wittig reaction of difluoromethylene phosphobetaine. Chem. Commun. (Camb.), 2013, 49(68), 7513-7515.
[http://dx.doi.org/10.1039/c3cc44271c] [PMID: 23863949]
[60]
Kimura, M. Recent topics in the syntheses of β-keto carboxylic acids and the derivatives. Tetrahedron Lett., 2018, 59(14), 1295-1300.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.049]
[61]
Pedersen, K.J. The ketonic decomposition of beta-keto carboxylic acids. J. Am. Chem. Soc., 1929, 51(7), 2098-2107.
[http://dx.doi.org/10.1021/ja01382a016]
[62]
Hay, R.W.; Bond, M.A. Kinetics of the decarboxylation of acetoacetic acid. Aust. J. Chem., 1967, 20(9), 1823-1828.
[http://dx.doi.org/10.1071/CH9671823]
[63]
Salmi, E. J. Untersuchungen über ätherartige verbindungen, i. mitteil.: zur darstellung der acetale und ketale. Berichte der Dtsch. Chem. Gesellschaft (A B Ser.), 1938, 71(9), 1803-1808.
[64]
Eberhard, A.; Burlingame, A.L.; Eberhard, C.; Kenyon, G.L.; Nealson, K.H.; Oppenheimer, N.J. Structural identification of autoinducer of photobacterium fischeri luciferase. Biochemistry, 1981, 20(9), 2444-2449.
[http://dx.doi.org/10.1021/bi00512a013] [PMID: 7236614]
[65]
Stossel, D.; Chan, T.H.A. 5C + 5C Bicycloaromatization reaction via an aldol condensation cascade. a regioselective synthesis of functionalized naphthalenes from acyclic precursors. J. Org. Chem., 1988, 53(21), 4901-4908.
[http://dx.doi.org/10.1021/jo00256a002]
[66]
Bainton, N.J.; Stead, P.; Chhabra, S.R.; Bycroft, B.W.; Salmond, G.P.C.; Stewart, G.S.A.B.; Williams, P.N. -(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem. J., 1992, 288(Pt 3), 997-1004.
[http://dx.doi.org/10.1042/bj2880997] [PMID: 1335238]
[67]
Pearson, J.P.; Gray, K.M.; Passador, L.; Tucker, K.D.; Eberhard, A.; Iglewski, B.H.; Greenberg, E.P. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA, 1994, 91(1), 197-201.
[http://dx.doi.org/10.1073/pnas.91.1.197] [PMID: 8278364]
[68]
Goodreid, J.D.; Duspara, P.A.; Bosch, C.; Batey, R.A. Amidation reactions from the direct coupling of metal carboxylate salts with amines. J. Org. Chem., 2014, 79(3), 943-954.
[http://dx.doi.org/10.1021/jo402374c] [PMID: 24354665]
[69]
Dekhane, M.; Douglas, K.T.; Gilbert, P. A novel convenient route to the naturally occurring 3-oxoacyl-l-homoserinelactones and related bacterial autoinducers. Tetrahedron Lett., 1996, 37(11), 1883-1884.
[http://dx.doi.org/10.1016/0040-4039(96)00142-6]
[70]
Anwar, M.; Moloney, M.G. Efficient enantioselective synthesis of tetramic acids and lactams from threonine. Tetrahedron Lett., 2007, 48(41), 7259-7262.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.052]
[71]
Angelov, P. Enamine-based domino strategy for c-acylation/deacetylation of acetoacetamides: A practical synthesis of β-keto amides. Synlett, 2010, 2010(08), 1273-1275.
[http://dx.doi.org/10.1055/s-0029-1219836]
[72]
Davidson, D.; Bernhard, S.A. The structure of Meldrum’s supposed β-lactonic acid. J. Am. Chem. Soc., 1948, 70(10), 3426-3428.
[http://dx.doi.org/10.1021/ja01190a060] [PMID: 18891879]
[73]
Janikowska, K.; Rachoń, J.; Makowiec, S. Acyl meldrum’s acid derivatives: Application in organic synthesis. Russ. Chem. Rev., 2014, 83(7), 620-637.
[http://dx.doi.org/10.1070/RC2014v083n07ABEH004441]
[74]
Pak, C.S.; Yang, H.C.; Choi, E.B. Aminolysis of 5-Acyl-2,2-dimethyl-1,3-dioxane-4,6-diones (acyl meldrum’s acids) as a versatile method for the synthesis of β-oxo carboxamides. Synthesis (Stuttg), 1992, 1992(12), 1213-1214.
[http://dx.doi.org/10.1055/s-1992-26338]
[75]
Moya, P.; Cantín, Á.; Castillo, M.A.; Primo, J.; Miranda, M.A.; Primo-Yúfera, E. Isolation, structural assignment, and synthesis of n-(2-methyl-3- oxodecanoyl)-2-pyrroline, a new natural product from Penicillium brevicompactum with in vivo anti-juvenile hormone activity. J. Org. Chem., 1998, 63(23), 8530-8535.
[http://dx.doi.org/10.1021/jo972267v]
[76]
Sridharan, V.; Ruiz, M.; Menéndez, J.C. Mild and high-yielding synthesis of β-keto esters and β-ketoamides. Synthesis (Stuttg), 2010, 2010(6), 1053-1057.
[http://dx.doi.org/10.1055/s-0029-1217135]
[77]
Chen, Y.; Sieburth, S.M. A new β-keto amide synthesis. Synthesis (Stuttg), 2002, 2002(15), 2191-2194.
[78]
Clemens, R.J. Diketene. Chem. Rev., 1986, 86(2), 241-318.
[http://dx.doi.org/10.1021/cr00072a001]
[79]
Gómez-Bombarelli, R.; González-Pérez, M.; Pérez-Prior, M.T.; Manso, J.A.; Calle, E.; Casado, J. Chemical reactivity and biological activity of diketene. Chem. Res. Toxicol., 2008, 21(10), 1964-1969.
[http://dx.doi.org/10.1021/tx800153j] [PMID: 18759502]
[80]
Chick, F.; Wilsmore, N.T.M. LXXXIX.-Acetylketen: A polymeride of keten. J. Chem. Soc. Trans., 1908, 93(946), 946-950.
[http://dx.doi.org/10.1039/CT9089300946]
[81]
Boese, A.B. Diketene: A new industrial chemical. Ind. Eng. Chem., 1940, 32(1), 16-22.
[http://dx.doi.org/10.1021/ie50361a004]
[82]
Carroll, M.F.; Bader, A.R. The reactions of diketene with ketones. J. Am. Chem. Soc., 1953, 75(21), 5400-5402.
[http://dx.doi.org/10.1021/ja01117a076]
[83]
Clemens, R.J.; Hyatt, J.A. Acetoacetylation with 2,2,6-trimethyl-4h-1,3-dioxin-4-one: a convenient alternative to diketene. J. Org. Chem., 1985, 50(14), 2431-2435.
[http://dx.doi.org/10.1021/jo00214a006]
[84]
Fuse, S.; Yoshida, H.; Oosumi, K.; Takahashi, T. Rapid and structurally diverse synthesis of multi-substituted β -keto amide derivatives based on a dioxinone scaffold. Eur. J. Org. Chem., 2014, 4854-4860.
[http://dx.doi.org/10.1002/ejoc.201402478]
[85]
Karad, S.N.; Chung, W-K.; Liu, R-S. Gold-catalyzed formal [4π+2π]-cycloadditions of tert-butyl propiolates with aldehydes and ketones to form 4H-1,3-dioxine derivatives. Chem. Commun. (Camb.), 2015, 51(65), 13004-13007.
[http://dx.doi.org/10.1039/C5CC04538J] [PMID: 26179180]
[86]
Zawacki, F.J.; Crimmins, M.T. A convenient synthesis of unsymmetrical, substituted γ-pyrones from Meldrum’s acid. Tetrahedron Lett., 1996, 37(36), 6499-6502.
[http://dx.doi.org/10.1016/0040-4039(96)01470-0]
[87]
Zhang, Z.; Liu, Y.; Ling, L.; Li, Y.; Dong, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Pd-catalyzed carbonylation of diazo compounds at atmospheric pressure: A catalytic approach to ketenes. J. Am. Chem. Soc., 2011, 133(12), 4330-4341.
[http://dx.doi.org/10.1021/ja107351d] [PMID: 21370919]
[88]
Hünig, S.; Hübner, K.; Benzing, E. Synthesen Mit Enaminen, VII. Addition von isocyanaten und isothiocyanaten an enamine. Chem. Ber., 1962, 95(4), 926-936.
[http://dx.doi.org/10.1002/cber.19620950417]
[89]
Hendi, S.B.; Hendi, M.S.; Wolfe, J.F. A New synthesis of β-keto amides via reaction of ketone lithium enolates with isocyanates. Synth. Commun., 1987, 17(1), 13-18.
[http://dx.doi.org/10.1080/00397918708063898]
[90]
Yanev, P.; Angelov, P. Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides. Beilstein J. Org. Chem., 2018, 14, 2602-2606.
[http://dx.doi.org/10.3762/bjoc.14.238] [PMID: 30410622]
[91]
McDonald, S.L.; Wang, Q. Selective α-amination and α-acylation of esters and amides via dual reactivity of O-acylhydroxylamines toward zinc enolates. Chem. Commun. (Camb.), 2014, 50(19), 2535-2538.
[http://dx.doi.org/10.1039/C3CC49296F] [PMID: 24463701]
[92]
Ito, Y.; Katsuki, T.; Yamaguchi, M. Asymmetric acylation of carboxamides having -2,5-bis(methoxymethoxymethyl)pyrrolidine moiety as a chiral auxiliary and stereoselective reduction of the resulting 2-alkyl-3-oxoamides. Tetrahedron Lett., 1984, 25(52), 6015-6016.
[http://dx.doi.org/10.1016/S0040-4039(01)81747-0]
[93]
Diehl, J.; Brückner, R. Synthesis of enantiomerically pure β-hydroxy ketones via β-keto weinreb amides by a condensation/asymmetric-hydrogenation/acylation sequence. Eur. J. Org. Chem., 2017, 2017(2), 278-286.
[http://dx.doi.org/10.1002/ejoc.201601202]
[94]
Kulesza, A.; Ebetino, F.H.; Mazur, A.W. Synthesis of 1-substituted 2,3-dihydro-7h-oxepin-4-one from an amino acid. Tetrahedron Lett., 2003, 44(29), 5511-5514.
[http://dx.doi.org/10.1016/S0040-4039(03)01226-7]
[95]
Groebel, B.T.; Seebach, D. Umpolung of the reactivity of carbonyl com-pounds through sulfur-containing reagents. Synthesis (Stuttg), 1977, 6(06), 357-402.
[http://dx.doi.org/10.1055/s-1977-24412]
[96]
Smith, A.B., III; Adams, C.M. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc. Chem. Res., 2004, 37(6), 365-377.
[http://dx.doi.org/10.1021/ar030245r] [PMID: 15196046]
[97]
Rao, R.A.V.; Chakraborty, T.K.; Reddy, L.K. Studies directed towards the synthesis of immunosuppressive agent FK-506: Construction of the tricarbonyl moiety. Tetrahedron Lett., 1990, 31(10), 1439-1442.
[http://dx.doi.org/10.1016/S0040-4039(00)88827-9]
[98]
Neo, A.G.; Delgado, J.; Polo, C.; Marcaccini, S.; Marcos, C.F. A new synthesis of β-keto amides by reduction of passerini adducts. Tetrahedron Lett., 2005, 46(1), 23-26.
[http://dx.doi.org/10.1016/j.tetlet.2004.11.041]
[99]
Li, J.J. Name Reactions, 5th ed; Springer-Verlag Berlin Heidelberg, 2009.
[http://dx.doi.org/10.1007/978-3-642-01053-8]
[100]
Okandeji, B.O.; Sello, J.K. Brønsted acidity of substrates influences the outcome of passerini three-component reactions. J. Org. Chem., 2009, 74(14), 5067-5070.
[http://dx.doi.org/10.1021/jo900831n] [PMID: 19476325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy