Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

定义明确的氧化石墨烯是肺癌治疗中的潜在成分

卷 20, 期 1, 2020

页: [47 - 58] 页: 12

弟呕挨: 10.2174/1568009619666191021113807

价格: $65

摘要

背景:氧化石墨烯(GO)具有独特的物理和化学性质,可用于抗癌治疗-特别是作为药物载体。由于存在多个碳原子杂化层(sp2),氧化石墨烯具有较大的表面,可高效载药。另外,GO在其表面具有大量羧基,羟基和环氧基,可以通过共价键,疏水相互作用,氢键和静电相互作用为各种药物分子充电。 目的:我们的工作目的是评估将来使用氧化石墨烯作为抗癌药物载体的可能性。 方法:在本文中,我们介绍了GO的合成,表征以及对其生物学特性的研究。测试了明确定义的氧化石墨烯对从同一器官分离的癌细胞和非恶性细胞的细胞毒性作用,这在文献中并不经常出现。 结果:进行的研究证实高浓度(> 300μgmL-1)的GO选择性降低了癌细胞系的生存能力。此外,我们表明GO片对癌细胞核有很高的亲和力,这会影响它们的代谢(抑制癌细胞增殖)。此外,我们已经证明,高浓度的GO会引起细胞膜损伤,并主要在癌细胞中低水平地产生活性氧。 结论:提出的GO可用于抗癌治疗。高浓度的GO有选择地导致肿瘤细胞死亡,而低浓度的GO可能是负载抗癌药物的潜在材料。

关键词: 氧化石墨烯,肺癌,细胞毒性,石墨烯基材料,石墨烯,药物载体。

图形摘要

[1]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[2]
World Cancer Report. World Health Organization, 2014.
[3]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[4]
Wang, X.; Yang, L.; Chen, Z.G.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., 2008, 58(2), 97-110.
[http://dx.doi.org/10.3322/CA.2007.0003] [PMID: 18227410]
[5]
Filippousi, M.; Siafaka, P.I.; Amanatiadou, E.P.; Nanaki, S.G.; Neratzaki, M.; Bikiaris, D.N.; Vizirianakis, I.S.; van Tendeloo, G. Modified chitosan coated mesoporous strontium hydroxyapatite nanorods as drug carriers. J. Mater. Chem. B Mater. Biol. Med., 2015, 3, 5991-6000.
[http://dx.doi.org/10.1039/C5TB00827A]
[6]
Pourjavadi, A.; Tehrani, Z.M.; Jokar, S. Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-G-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. J. Ind. Eng. Chem., 2015, 28, 45-53.
[http://dx.doi.org/10.1016/j.jiec.2015.01.021]
[7]
Kaminski, G.A.T.; Sierakowski, M.R.; Pontarolo, R.; Santos, L.A.; de Freitas, R.A. Layer-by-layer polysaccharide-coated liposomes for sustained delivery of epidermal growth factor. Carbohydr. Polym., 2016, 140, 129-135.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.014] [PMID: 26876836]
[8]
Gokce, E.H.; Korkmaz, E.; Dellera, E.; Sandri, G.; Bonferoni, M.C.; Ozer, O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine, 2012, 7, 1841-1850.
[http://dx.doi.org/10.2147/IJN.S29710] [PMID: 22605933]
[9]
Hami, Z.; Amini, M.; Ghazi-Khansari, M.; Rezayat, S.M.; Gilani, K. Synthesis and in vitro evaluation of a pH-sensitive PLA-PEG-folate based polymeric micelle for controlled delivery of docetaxel. Colloids Surf. B Biointerfaces, 2014, 116, 309-317.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.015] [PMID: 24503352]
[10]
Stroh, M.; Zimmer, J.P.; Duda, D.G.; Levchenko, T.S.; Cohen, K.S.; Brown, E.B.; Scadden, D.T.; Torchilin, V.P.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat. Med., 2005, 11(6), 678-682.
[http://dx.doi.org/10.1038/nm1247] [PMID: 15880117]
[11]
Jeyamohan, P.; Hasumura, T.; Nagaoka, Y.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. Int. J. Nanomedicine, 2013, 8, 2653-2667.
[PMID: 23926428]
[12]
Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3(2), 362-382.
[http://dx.doi.org/10.1039/C0NR00647E] [PMID: 21157592]
[13]
Lima-Tenório, M.K.; Pineda, E.A.; Ahmad, N.M.; Fessi, H.; Elaissari, A. Magnetic nanoparticles: In vivo cancer diagnosis and therapy. Int. J. Pharm., 2015, 493(1-2), 313-327.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.059] [PMID: 26232700]
[14]
Wickline, S.A.; Neubauer, A.M.; Winter, P.M.; Caruthers, S.D.; Lanza, G.M. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J. Magn. Reson. Imaging, 2007, 25(4), 667-680.
[http://dx.doi.org/10.1002/jmri.20866] [PMID: 17347992]
[15]
Li, Y.; Dong, H.; Li, Y.; Shi, D. Graphene-based nanovehicles for photodynamic medical therapy. Int. J. Nanomedicine, 2015, 10, 2451-2459.
[PMID: 25848263]
[16]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[17]
Jung, H.S.; Lee, M.Y.; Kong, W.H.; Do, I.H.; Hahn, S.K. Nano graphene oxide–hyaluronic acid conjugate for target specific cancer drug delivery. RSC Advances, 2014, 4, 14197-14200.
[http://dx.doi.org/10.1039/c4ra00605d]
[18]
Kim, H.; Namgung, R.; Singha, K.; Oh, I.K.; Kim, W.J. Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug. Chem., 2011, 22(12), 2558-2567.
[http://dx.doi.org/10.1021/bc200397j] [PMID: 22034966]
[19]
Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem, 2018, 8, 123-137.
[http://dx.doi.org/10.1007/s40097-018-0265-6]
[20]
Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater., 2007, 6(3), 183-191.
[http://dx.doi.org/10.1038/nmat1849] [PMID: 17330084]
[21]
Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci., 2011, 56, 1178-1271.
[http://dx.doi.org/10.1016/j.pmatsci.2011.03.003]
[22]
Wu, J.; Yang, R.; Zhang, L.; Fan, Z.; Liu, S. Cytotoxicity effect of graphene oxide on human MDA-MB-231 cells. Toxicol. Mech. Methods, 2015, 25(4), 312-319.
[http://dx.doi.org/10.3109/15376516.2015.1031415] [PMID: 25996036]
[23]
Zhang, Y.; Ali, S.F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A.S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 2010, 4(6), 3181-3186.
[http://dx.doi.org/10.1021/nn1007176] [PMID: 20481456]
[24]
Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev., 2010, 39(1), 228-240.
[http://dx.doi.org/10.1039/B917103G] [PMID: 20023850]
[25]
Bengtson, S.; Kling, K.; Madsen, A.M.; Noergaard, A.W.; Jacobsen, N.R.; Clausen, P.A.; Alonso, B.; Pesquera, A.; Zurutuza, A.; Ramos, R.; Okuno, H.; Dijon, J.; Wallin, H.; Vogel, U. No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environ. Mol. Mutagen., 2016, 57(6), 469-482.
[http://dx.doi.org/10.1002/em.22017] [PMID: 27189646]
[26]
Liu, Y.; Wang, X.; Wang, J.; Nie, Y.; Du, H.; Dai, H.; Wang, J.; Wang, M.; Chen, S.; Hei, T.K.; Deng, Z.; Wu, L.; Xu, A. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ. Sci. Technol., 2016, 50(6), 3154-3164.
[http://dx.doi.org/10.1021/acs.est.5b03895] [PMID: 26876502]
[27]
Liu, Y.; Luo, Y.; Wu, J.; Wang, Y.; Yang, X.; Yang, R.; Wang, B.; Yang, J.; Zhang, N. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci. Rep., 2013, 3, 3469.
[http://dx.doi.org/10.1038/srep03469] [PMID: 24326739]
[28]
Lammel, T.; Boisseaux, P.; Fernández-Cruz, M.L.; Navas, J.M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part. Fibre Toxicol., 2013, 10, 27.
[http://dx.doi.org/10.1186/1743-8977-10-27] [PMID: 23849434]
[29]
Chang, Y.; Yang, S.T.; Liu, J.H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett., 2011, 200(3), 201-210.
[http://dx.doi.org/10.1016/j.toxlet.2010.11.016] [PMID: 21130147]
[30]
Xu, Z.; Wang, S.; Li, Y.; Wang, M.; Shi, P.; Huang, X. Covalent functionalization of graphene oxide with biocompatible poly(ethylene glycol) for delivery of paclitaxel. ACS Appl. Mater. Interfaces, 2014, 6(19), 17268-17276.
[http://dx.doi.org/10.1021/am505308f] [PMID: 25216036]
[31]
Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano, 2011, 5(5), 3693-3700.
[http://dx.doi.org/10.1021/nn200021j] [PMID: 21500856]
[32]
Chen, J.; Wang, X.; Chen, T. Facile and green reduction of covalently PEGylated nanographene oxide via a ‘water-only’ route for high-efficiency photothermal therapy. Nanoscale Res. Lett., 2014, 9(1), 86-96.
[http://dx.doi.org/10.1186/1556-276X-9-86] [PMID: 24548613]
[33]
Hummers, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80, 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[34]
Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenom., 2014, 195, 145-154.
[http://dx.doi.org/10.1016/j.elspec.2014.07.003]
[35]
Rampersad, S.N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel), 2012, 12(9), 12347-12360.
[http://dx.doi.org/10.3390/s120912347] [PMID: 23112716]
[36]
D’Autréaux, B.; Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol., 2007, 8(10), 813-824.
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[37]
Chng, E.L.K.; Sofer, Z.; Pumera, M. Cytotoxicity profile of highly hydrogenated graphene. Chemistry, 2014, 20(21), 6366-6373.
[http://dx.doi.org/10.1002/chem.201304911] [PMID: 24711117]
[38]
De Marzi, L.; Ottaviano, L.; Perrozzi, F.; Nardone, M.; Santucci, S.; De Lapuente, J.; Borras, M.; Treossi, E.; Palermo, V.; Poma, A. Flake size-dependent cyto and genotoxic evaluation of graphene oxide on in vitro A549, CaCo2 and vero cell lines. J. Biol. Regul. Homeost. Agents, 2014, 28(2), 281-289.
[PMID: 25001660]
[39]
Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol., 2014, 27(2), 159-168.
[http://dx.doi.org/10.1021/tx400385x] [PMID: 24422439]
[40]
Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Grácio, J.J.; Dash, D. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 2012, 6(3), 2731-2740.
[http://dx.doi.org/10.1021/nn300172t] [PMID: 22376049]
[41]
Amrollahi-Sharifabadi, M.; Koohi, M.K.; Zayerzadeh, E.; Hablolvarid, M.H.; Hassan, J.; Seifalian, A.M. In vivo toxicological evaluation of graphene oxide nanoplatelets for clinical application. Int. J. Nanomedicine, 2018, 13, 4757-4769.
[http://dx.doi.org/10.2147/IJN.S168731] [PMID: 30174424]
[42]
Vallabani, N.V.; Mittal, S.; Shukla, R.K.; Pandey, A.K.; Dhakate, S.R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol., 2011, 7(1), 106-107.
[http://dx.doi.org/10.1166/jbn.2011.1224] [PMID: 21485826]
[43]
Wang, A.; Pu, K.; Dong, B.; Liu, Y.; Zhang, L.; Zhang, Z.; Duan, W.; Zhu, Y. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol., 2013, 33(10), 1156-1164.
[http://dx.doi.org/10.1002/jat.2877] [PMID: 23775274]
[44]
Yuan, X.; Liu, Z.; Guo, Z.; Ji, Y.; Jin, M.; Wang, X. Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res. Lett., 2014, 9(1), 108.
[http://dx.doi.org/10.1186/1556-276X-9-108] [PMID: 24597852]
[45]
Jaworski, S.; Sawosz, E.; Grodzik, M.; Winnicka, A.; Prasek, M.; Wierzbicki, M.; Chwalibog, A. In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int. J. Nanomedicine, 2013, 8, 413-420.
[PMID: 23378763]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy