Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

O-AcylTEMPOs, a Modified and Fundamental, but Unexplored Carboxylic Derivative: Recent Progress in Synthetic Applications

Author(s): Hiroyuki Kawafuchi*, Lijian Ma, Md Imran Hossain and Tsutomu Inokuchi

Volume 23, Issue 19, 2019

Page: [2102 - 2121] Pages: 20

DOI: 10.2174/1385272823666191019102511

Price: $65

Abstract

O-Acylated 2,2,6,6-tetramethylpiperidine-N-oxyls (abbr. O-AcylTEMPOs) are easily available and stable carboxylic derivatives, but their utility in organic synthesis is unexplored in contrast to analogues, such as the N-methoxy-N-methylamides, known as Weinreb amides. Especially, the O–N unit of the O-acylTEMPOs dictates a fairly electronwithdrawing character for the carbonyl function. This enhances the reactivity and stability of the resulting enolate ions. Accordingly, O-acylTEMPOs allow various transformations and this review encompasses seven topics: (1) Reactivity of O-acylTEMPOs towards nucleophiles and chemoselective transformations, (2) Reactivity of anionic species derived from O-acylTEMPOs, (3) E-Selective Knoevenagel condensation of acetoacetylTEMPOs and synthesis of furans, (4) Electrocyclization of 2,4-dienones derived from acetoacetic derivatives and 2-substituted enals, (5) Diastereoselective addition of amide anion to O-(2-alkenoyl)TEMPOs and β-amino acid synthesis, (6) Thermolysis of O-acylTEMPOs, and (7) Applications for Umpolung reactions using O-benzoylTEMPOs, useful for the electrophilic amination of alkenes and alkynes.

Keywords: O-AcylTEMPO, E-Selective Knoevenagel reaction, ester-protecting group, carboxy-aldehyde conversion, diastereoselective amide addition, β-Amino acid, amination.

Graphical Abstract

[1]
Smith, M.B. In March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 7th Ed; John Wiley & Sons: Hoboken, 2013.
[2]
Carey, F.A.; Sundberg, R.J. Addition, Condensation and Substitution Reactions of Carbonyl Compounds.Advanced Organic Chemistry, Part A: Structure and Mechanisms; Springer: Boston, 2007, pp. 629-711.
[http://dx.doi.org/10.1007/978-0-387-44899-2_7]
[3]
Robert, H.D. Synthesis of carboxylic and carbonic ortho esters. Synthesis, 1974, 153-172.
[http://dx.doi.org/10.1055/s-1974-23268]
[4]
Corey, E.J.; Raju, N. A new general synthetic route to bridged carboxylic ortho esters. Tetrahedron Lett., 1983, 24, 5571-5574.
[http://dx.doi.org/10.1016/S0040-4039(00)94143-1]
[5]
Lawesson, S-O.; Yang, N.C. Reactions of Grignard reagents with peroxy compounds. J. Am. Chem. Soc., 1959, 81, 4230-4233.
[http://dx.doi.org/10.1021/ja01525a028]
[6]
Dodonov, V.A.; Sofronova, S.M.; Stepovik, L.P. Reactions of organoaluminum compounds with peresters. Zh. Obsh. Khimii, 1986, 56, 1566.
[7]
Zhdankin, V.V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds; Wiley, 2013.
[8]
Stang, P.J.; Boehshar, M.; Wingert, H.; Kitamura, T. Acetylenic esters. Preparation and characterization of alkynyl carboxylates via polyvalent iodonium species. J. Am. Chem. Soc., 1988, 110, 3272-3278.
[http://dx.doi.org/10.1021/ja00218a043]
[9]
Nahm, S.; Weinreb, S.M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett., 1981, 22, 3815-3818.
[http://dx.doi.org/10.1016/S0040-4039(01)91316-4]
[10]
Balasubramaniam, S.; Aidhen, I.S. The growing synthetic utility of the Weinreb amide. Synthesis, 2008, 2008(23), 3707-3738.
[http://dx.doi.org/10.1055/s-0028-1083226]
[11]
Singh, J.; Satyamurthi, N.; Aidhen, I.S. The growing synthetic utility of Weinreb’s amide. J. Prakt. Chem., 2000, 342, 340-347.
[http://dx.doi.org/10.1002/(SICI)1521-3897(200004)342:4<340:AID-PRAC340>3.0.CO;2-1]
[12]
Wakefield, B.J. The Chemistry of Organolithium Compounds; Pergamon Press: New York, 1974.
[13]
Knapp, S.; Calienni, J. Conjugate addition of alkyllithium reagents to α, β-unsaturated N, N′,N′-trimethylhydrazides. Synth. Commun., 1980, 10, 837-842.
[http://dx.doi.org/10.1080/00397918008062766]
[14]
Braslau, R.; Anderson, M.O.; Rivera, F.; Jimenez, A.; Haddad, T.; Axon, J.R. Acyl hydrazines as precursors to acyl radicals. Tetrahedron, 2002, 58, 5513-5523.
[http://dx.doi.org/10.1016/S0040-4020(02)00490-8]
[15]
Allen, A.D.; Cheng, B.; Fenwick, M.H.; Huang, W-W.; Missiha, S.; Tahmassebi, D.; Tidwell, T.T. Radical additions of TEMPO to ketenes: correlation of free radical and nucleophilic reactivity. Org. Lett., 1999, 1(5), 693-696.
[http://dx.doi.org/10.1021/ol990628i] [PMID: 16118865]
[16]
Anderson, J.E.; Corrie, J.E.T. The rotation-dominated ring inversion/nitrogen inversion/rotation process in N-acyloxy-2,2,6,6-tetramethylpiperidines. A dynamic NMR study. J. Chem. Soc., Perkin Trans. 2. Phys. Org. Chem., 1992, 7, 1027-1031.
[http://dx.doi.org/10.1039/P29920001027]
[17]
Studer, A. Angew. Chem. Int. Ed. Engl., 2000, 39(6), 1108-1111.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000317)39:6<1108:AID-ANIE1108>3.0.CO;2-A] [PMID: 10760935]
[18]
Lebelev, O.L.; Kazarnovskii, S.N. Catalytic oxidation of aliphatic amines with hydrogen peroxide. Zhur. Obshch. Khim., 1960, 30, 1631-1635.
[19]
Golubev, V.A.; Rozantsev, E.G.; Neiman, M.B. Some reactions of free iminoxyl radicals with unpaired electron participation. Izv. Akad. Nauk SSSR [Khim], 1965, 11, 1927-1936.
[20]
Kaifer, A.E.; Bard, A.J. Polymer films on electrodes. 20. An ESR study of several spin probes incorporated into Nafion. J. Phys. Chem., 1986, 90, 868-873.
[http://dx.doi.org/10.1021/j100277a032]
[21]
Anelli, P.L.; Biffi, C.; Montanari, F.; Quici, S. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions. J. Org. Chem., 1987, 52, 2559-2562.
[http://dx.doi.org/10.1021/jo00388a038]
[22]
Osa, T.; Akiba, U.; Segawa, I.; Bobbitt, J.M. Electrocatalytic oxidation of nerol with nitroxyl radical covalently immobilized to poly(acrylic acid) coated on carbon electrodes. Chem. Lett., 1988, 17(8), 1423-1426.
[http://dx.doi.org/10.1246/cl.1988.1423]
[23]
de Nooy, A.E.J.; Besemer, A.C.; van Bekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols. Synthesis, 1996, 1996(10), 1153-1174.
[http://dx.doi.org/10.1055/s-1996-4369]
[24]
Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D.M.; Grabowski, E.J.J.; Reider, P.J. Oxidation of primary alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and bleach. J. Org. Chem., 1999, 64, 2564-2566.
[http://dx.doi.org/10.1021/jo982143y]
[25]
Epp, J.B.; Widlanski, T.S. Facile preparation of nucleoside-5′-carboxylic acids. J. Org. Chem., 1999, 64(1), 293-295.
[http://dx.doi.org/10.1021/jo981316g] [PMID: 11674117]
[26]
Barriga, S. 2,2,6,6-Tetramethylpiperidin-1-oxyl (TEMPO). Synlett, 2001, 2001(4), 563.
[http://dx.doi.org/10.1055/s-2001-12332]
[27]
Zanocco, A.L.; Canetem, A.; Melendez, M.X. Kinetic study of the reaction between 2-p-methoxyphenyl-4-phenyl-2-oxazolin-5-one and 2,2,6,6-tetramethyl-1-piperidinyl-N-oxide. Bol. Soc. Chil. Quím., 2000, 45, 123-129.
[http://dx.doi.org/10.4067/S0366-16442000000100016]
[28]
Sheldon, R.A.; Arends, I.W.C.E.; Ten Brink, G.J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res., 2002, 35(9), 774-781.
[http://dx.doi.org/10.1021/ar010075n] [PMID: 12234207]
[29]
Inokuchi, T.; Matsumoto, S.; Torii, S. Recent advances in the catalytic oxidation of alcohols with 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) and its application to organic synthesis. J. Synth. Org. Chem. Jpn., 1993, 51, 910-920.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.51.910]
[30]
Inokuchi, T.; Kawafuchi, H. Reactivity of TEMPO anion as a nucleophile and its applications for selective transformations of haloalkanes or acyl halides to aldehydes. Tetrahedron, 2004, 60, 11969-11975.
[http://dx.doi.org/10.1016/j.tet.2004.09.067]
[31]
Henry-Riyad, H.; Tidwell, T.T. Thermolysis of N-tetramethylpiperidinyl esters: homolytic fragmentation and induced decomposition. ARKIVOC (Gainesville, FL, United States), 2008, 60, 113-126.
[http://dx.doi.org/10.3998/ark.5550190.0009.a10]
[32]
Sung, K.; Tidwell, T.T. Theoretical study of the reactivity of ketene with free radicals. J. Org. Chem., 1998, 63, 9690-9697.
[http://dx.doi.org/10.1021/jo980901e]
[33]
Uenoyama, Y.; Tsukida, M.; Doi, T.; Ryu, I.; Studer, A. CO-trapping reaction under thermolysis of alkoxyamines: application to the synthesis of 3,4-cyclopenta-1-tetralones. Org. Lett., 2005, 7(14), 2985-2988.
[http://dx.doi.org/10.1021/ol050951n] [PMID: 15987186]
[34]
Inokuchi, T.; Kawafuchi, H.; Nokami, J. Reactivity of N-alkanoyloxy-2,2,6,6-tetramethylpiperidines (O-acylTEMPOs) towards hydride-transferring or metallic alkylating reagents; unprecedented stability and application to chemoselective transformations. Chem. Commun., 2005, 2005(4), 537-539.
[http://dx.doi.org/10.1039/B414129F]
[35]
Böck, St.; Nöth, H.; Rahm, P. Lithium dimethylamino hydrido aluminates: The solution state in diethylether, tetrahydrofuran and dimethyldiglycol ether. Z. Naturforsch. Teil B, 1988, 43, 53-60.[www.znaturforsch.com/ab/v43b/c43b.htm]
[36]
Heine, A.; Stalke, D. Structures of two highly reactive intermediates upon LiAlH4 reduction in the solid state and in solution: [(Me3Si)2NAlH3Li · 2Et2O]2 and [(Me3Si)2N]2AlH2Li · 2Et2O. Angew. Chem. Int. Ed. Engl., 1992, 31, 854-855.
[http://dx.doi.org/10.1002/anie.199208541]
[37]
Montero, M.L.; Wessel, H.; Roesky, H.W.; Teichert, M.; Usón, I. The reaction of primary and secondary amines with LiAIH4 and Na(AlHEt3). Angew. Chem. Int. Ed. Engl., 1997, 36, 629-631.
[http://dx.doi.org/10.1002/anie.199706291]
[38]
Pfeiffer, M.; Murso, A.; Mahalakshmi, L.; Moigno, D.; Kiefer, W.; Stalke, D. Experimental and computational study on a variety of structural motifs and coordination modes in aluminium complexes of di(2‐pyridyl)amides and ‐phosphanides. Eur. J. Inorg. Chem., 2002, 2002(12), 3222-3234.
[http://dx.doi.org/10.1002/1099-0682(200212)2002:12<3222:AID-EJIC3222>3.0.CO;2-U]
[39]
(a)Corey, E.J.; Raju, N. A new general synthetic route to bridged carboxylic ortho esters. Tetrahedron Lett., 1983, 24, 5571-5574.
[http://dx.doi.org/10.1016/S0040-4039(00)94143-1]
(b)Corey, E.J.; Beames, D.J. Method for the protection of lactones and esters against nucleophilic attack. J. Am. Chem. Soc., 1973, 95, 5829-5831.
[http://dx.doi.org/10.1021/ja00798a100]
(c)Macor, J.E.; Chenard, B.L.; Post, R.J. Use of 2,5-dimethylpyrrole as an amino-protecting group in an efficient synthesis of 5-amino-3-[(N-methyl- pyrrolidin-2(R)-yl)methyl]indole. J. Org. Chem., 1994, 59, 7496-7498.
[http://dx.doi.org/10.1021/jo00103a052]
[40]
Gardiner, M.G.; Lawrence, S.M.; Raston, C.L. The reaction of LiAlH4 with 1,4-di-tert-butyl-1,4-diazabutadiene: Imine-containing aluminum hydrides stabilized by lithium coordination. Inorg. Chem., 1999, 38(20), 4467-4472.
[http://dx.doi.org/10.1021/ic990298y] [PMID: 11671158]
[41]
de las Heras, M.A.; Vaquero, J.J.; Navio, J.G.; Alvarez-Builla, J. Synthesis of carbonyl and dicarbonyl compounds from organometallic reagents and N-imidazolium-N-methyl amides and bis-amides. Tetrahedron, 1996, 52, 14297-14310.
[http://dx.doi.org/10.1016/0040-4020(96)00882-4]
[42]
de las Heras, M.A.; Vaquero, J.J.; Garcia-Navio, J.L.; Alvarez-Builla, J. Chemoselective addition of grignard reagents to alkoxycarbonylalkyl-N-imidazolium-N-methyl amides: Synthesis of 4-oxo and homologous esters. Tetrahedron Lett., 1997, 38, 1817-1820.
[http://dx.doi.org/10.1016/S0040-4039(97)00159-7]
[43]
Torii, S.; Hase, H.; Kuroboshi, M.; Amatore, C.; Jutand, A.; Kawafuchi, H. Synthesis of terminal-biradical compounds consisting of two N-oxyl groups connected with conjugated π-systems. Tetrahedron Lett., 1997, 38, 7391-7394.
[http://dx.doi.org/10.1016/S0040-4039(97)01732-2]
[44]
Inokuchi, T.; Kawafuchi, H. Alkylation, aldol, and related reactions of O-alkanoyl- and 2-alkenoylTEMPOs (2,2,6,6-tetramethylpiperidine-N-oxyl): insight into the reactivity of their anionic species in comparison with esters and amides. J. Org. Chem., 2007, 72(4), 1472-1475.
[http://dx.doi.org/10.1021/jo0617316] [PMID: 17253744]
[45]
Michael, A. Ueber die Addition von Natriumacetessig- und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. J. Prakt. Chem., 1887, 35, 349-356.
[http://dx.doi.org/10.1002/prac.18870350136]
[46]
Michael, A. Ueber die Addition von Natriumacetessig- und Natriummalonsäureäther zu den Aethern ungesättigter Säuren. J. Prakt. Chem., 1894, 49, 20-25.
[http://dx.doi.org/10.1002/prac.18940490103]
[47]
Bergmann, E.D.; Corett, R. Basic exchange resins as catalysts in the Michael reaction. J. Org. Chem., 1958, 23, 1507-1510.
[http://dx.doi.org/10.1021/jo01104a028]
[48]
Bergmann, E.D.; Ginsburg, D.; Pappo, R. The Michael reaction. Org. React., 1959, 10, 179-555.
[http://dx.doi.org/10.1002/0471264180.or010.03]
[49]
Lacey, R.N. 6-Acetylcyclohex-2-enones: the condensation of β-diketones with α,β-unsaturated ketones. J. Chem. Soc., 1960, 1625-1633.
[http://dx.doi.org/10.1039/JR9600001625]
[50]
Jung, M.E. Comprehensive Organic Synthesis; Pergamon: Oxford, 1991, Vol. 4, pp. 1-67.
[51]
Lee, V.J. Comprehensive Organic Synthesis, Pergamon: Oxford. 1991, 4, pp. 69-137.; Pergamon: Oxford. 1991, Vol. 4, pp. 139-168.
[52]
Kozlowski, J.A. Comprehensive Organic Synthesis; Pergamon: Oxford, 1991, Vol. 4, pp. 169-198.
[53]
d’Angelo, J.; Desmaele, D.; Dumas, F.; Guingant, A. The asymmetric Michael addition reactions using chiral imines. Tetrahedron Asymmetry, 1992, 3, 459-505.
[http://dx.doi.org/10.1016/S0957-4166(00)80251-7]
[54]
Leonard, J.; Diez-Barra, E.; Merino, S. Control of asymmetry through conjugate addition reactions. Eur. J. Org. Chem., 1998, 1998(10), 2051-2061.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199810)1998:10<2051:AID-EJOC2051>3.0.CO;2-T]
[55]
Kane, R. Ueber den Essiggeist und einige davon abgeleitete Verbindungen. J. Prakt. Chem., 1838, 15, 129-155.
[http://dx.doi.org/10.1002/prac.18380150112]
[56]
Kane, R. Aldol reaction (condensation). Ann. Phys. Chem. Ser. 2, 1838, 44, 475.[www.drugfuture.com/OrganicNameReactions/onr4.htm]
[57]
Mukaiyama, T. The directed aldol reaction. Org. React., 1982, 28, 203-331.
[http://dx.doi.org/10.1002/0471264180.or028.03]
[58]
Heathcock, C.H. Comprehensive Organic Synthesis; Pergamon: Oxford, 1991, Vol. 2, pp. 133-179.
[59]
Machajewski, T.D.; Wong, C-H. The catalytic asymmetric aldol reaction. Angew. Chem. Int. Ed., 2000, 39, 1352-1375.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1352:AID-ANIE1352>3.0.CO;2-J]
[60]
Palomo, C.; Oiarbide, M.; García, J.M. The aldol addition reaction: an old transformation at constant rebirth. Chemistry, 2002, 8(1), 36-44.
[http://dx.doi.org/10.1002/1521-3765(20020104)8:1<36:AID-CHEM36>3.0.CO;2-L] [PMID: 11822463]
[61]
Mahrwald, R. Modern Aldol Reactions; Wiley-VCH: Weinheim, 2004.
[62]
Palomo, C.; Oiarbide, M.; García, J.M. Current progress in the asymmetric aldol addition reaction. Chem. Soc. Rev., 2004, 33(2), 65-75.
[http://dx.doi.org/10.1039/B202901D] [PMID: 14767502]
[63]
Schetter, B.; Mahrwald, R. Modern aldol methods for the total synthesis of polyketides. Angew. Chem. Int. Ed. Engl., 2006, 45(45), 7506-7525.
[http://dx.doi.org/10.1002/anie.200602780] [PMID: 17103481]
[64]
Otera, J.; Fujita, Y.; Sato, T.; Nozaki, H.; Fukuzumi, S.; Fujita, M. How can high diastereoselectivity be attained in the Michael addition of ketene silyl acetals? J. Org. Chem., 1992, 57, 5054-5055.
[http://dx.doi.org/10.1021/jo00045a005]
[65]
Seebach, D.; Amstutz, R.; Laube, T.; Schweizer, W.B.; Duniz, J.D. Structures of three lithium ester enolates by X-ray diffraction: Derivation of reaction path for cleavage into ketene and alcoholate. J. Am. Chem. Soc., 1985, 107, 5403-5409.
[http://dx.doi.org/10.1021/ja00305a014]
[66]
Ma, Y.; Hoepker, A.C.; Gupta, L.; Faggin, M.F.; Collum, D.B. 1,4-addition of lithium diisopropylamide to unsaturated esters: Role of rate-limiting deaggregation, autocatalysis, lithium chloride catalysis, and other mixed aggregation effects. J. Am. Chem. Soc., 2010, 132(44), 15610-15623.
[http://dx.doi.org/10.1021/ja105855v] [PMID: 20961095]
[67]
Meyers, A.I.; Reider, P.J. Stereoselective synthesis of threo-3-hydroxy-2-methylcarboxylic acids using alkoxyalkyl propionates. J. Am. Chem. Soc., 1979, 101, 2501.
[http://dx.doi.org/10.1021/ja00503a052]
[68]
Synthesis of. syn-1,2-diol derivatives: Cartigny, D.; Püntener, K.; Ayad, T.; Scalone, M.; Ratovelomanana-Vidal, V. Highly diastereo- and enantioselective synthesis of monodifferentiated syn-1,2-diol derivatives through asymmetric transfer hydrogenation via dynamic kinetic resolution. Org. Lett., 2010, 12(17), 3788-3791.
[http://dx.doi.org/10.1021/ol101451s] [PMID: 20672834]
[69]
Knoevenagel, E. Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges., 1898, 31, 2596-2619.
[http://dx.doi.org/10.1002/cber.18980310308]
[70]
Doebner, O. Ueber die der Sorbinsäure homologen, ungesättigten Säuren mit zwei Doppelbindungen. Ber. Dtsch. Chem. Ges., 1900, 33, 2140-2142.
[http://dx.doi.org/10.1002/cber.190203501187]
[71]
Johnson, J.R. Perkin reaction and related reactions. Org. React., 1942, 1, 210-265.
[http://dx.doi.org/dx.doi:10.1002/0471264180.or001.08]
[72]
Jones, G. The Knoevenagel condensation. Org. React., 1967, 15, 204-599.
[73]
Tietze, L.F.; Beifuss, U. Comprehensive Organic Synthesis; Pergamon: Oxford, 1991, Vol. 2, pp. 341-394.
[74]
Yadav, J.S.; Reddy, B.S.S.; Basak, A.K.; Visali, B.; Narsaiah, A.V.; Nagaiah, K. Phosphane-catalyzed Knoevenagel condensation: A facile synthesis of α-cyanoacrylates and α-cyanoacrylonitriles. Eur. J. Org. Chem., 2004, 2004(3), 546-551.
[http://dx.doi.org/dx.doi:10.1002/ejoc.200300513]
[75]
Inokuchi, T.; Kawafuchi, H. E- or Z-selective Knoevenagel condensation of acetoacetic derivatives: Effect of acylated substituent, that is, TEMPO and amines, as an auxiliary, and new accesses to trisubstituted E- and Z-2-alkenals and furans. J. Org. Chem., 2006, 71(3), 947-953.
[http://dx.doi.org/10.1021/jo051952w] [PMID: 16438506]
[76]
Lawesson, S-O.; Sandberg, R. Organic Syntheses; Wiley & Sons: New York, 1973, pp. 155-157.
[77]
Inokuchi, T. 1,2-Acyl transfer reaction for the construction of multiple carbonyl-functionalized architecture by Sm(II)-induced tandem formation and breaking of cyclopropanol. J. Org. Chem., 2005, 70(4), 1497-1500.
[http://dx.doi.org/10.1021/jo0402529] [PMID: 15704995]
[78]
Inokuchi, T.; Okano, M.; Miyamoto, T. Catalyzed Diels-Alder reaction of alkylidene- or arylideneacetoacetates and Danishefsky’s dienes with lanthanide salts aimed at selective synthesis of cis-4,5-dimethyl-2-cyclohexenone derivatives. J. Org. Chem., 2001, 66(24), 8059-8063.
[http://dx.doi.org/10.1021/jo010575u] [PMID: 11722205]
[79]
Inokuchi, T.; Okano, M.; Miyamoto, T.; Madon, H.B.; Takagi, M. Lewis acid catalyzed procedure for selective conversion of the carbocyclic Diels-Alder adducts of Danishefsky’s diene to 2-cyclohexenones and its extension to their one-pot syntheses. Synlett, 2000, 1549-1552.
[http://dx.doi.org/10.1055/s-2000-7940]
[80]
Burfeindt, J.; Patz, M.; Müller, M.; Mayr, H. Determination of the nucleophilicities of silyl and alkyl enol ethers. J. Am. Chem. Soc., 1998, 120, 3629-3634.
[http://dx.doi.org/10.1021/ja974003w]
[81]
Mase, N.; Horibe, T. Organocatalytic Knoevenagel condensations by means of carbamic acid ammonium salts. Org. Lett., 2013, 15, 1854-1857.
[http://dx.doi.org/10.1021/ol400462d]
[82]
Tanikaga, R.; Konya, N.; Hamamura, K.; Kaji, A. Stereochemical behavior of intermediary compounds in the amine-catalyzed Knoevenagel reaction. Bull. Chem. Soc. Jpn., 1988, 61, 3211-3216.
[http://dx.doi.org/10.1246/bcsj.61.3211]
[83]
You, J.; Xu, J.; Verkade, J.G. A highly active and selective catalyst system for the Baylis-Hillman reaction. Angew. Chem. Int. Ed., 2003, 41, 5054-5066.
[http://dx.doi.org/dx. doi.10.1002/anie.200352233]
[84]
Basavaiah, D.; Rao, A.J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev., 2003, 103(3), 811-892.
[http://dx.doi.org/10.1021/cr010043d] [PMID: 12630854]
[85]
Liu, Q.; Rovis, T. Enantio- and diastereoselective intermolecular Stetter reaction of glyoxamide and alkylidene ketoamides. Org. Lett., 2009, 11(13), 2856-2859.
[http://dx.doi.org/10.1021/ol901081a] [PMID: 19507841]
[86]
Peng, W.; Hirabaru, T.; Kawafuchi, H.; Inokuchi, T. Substituent-controlled electrocyclization of 2,4-dienones: Synthesis of 2,3,6-trisubstituted 2H-Pyran-5-carboxylates and their transformations. Eur. J. Org. Chem., 2011, 2011(28), 5469-5474.
[http://dx.doi.org/10.1002/ejoc.201100780]
[87]
Hsung, R.P.; Kurdyumov, A.V.; Sydorenko, N. A formal [3+3] cycloaddition approach to natural-product synthesis. Eur. J. Org. Chem., 2005, 2005(1), 23-44.
[http://dx.doi.org/10.1002/ejoc.200400567]
[88]
Hossain, Md. I.; Shaban, E.; Ikemi, T.; Peng, W.; Kawafuchi, H.; Inokuchi, T. Annulation of 2H-pyran onto 1-oxa- or 1-azacyclohexane-2,4-diones and their analogues via sequential condensation with α-substituted enals and 6π-electrocyclization. Bull. Chem. Soc. Jpn., 2013, 86, 870-879.
[http://dx.doi.org/10.1246/bcsj.20130069]
[89]
Hossain, M.I.; Świtalska, M.; Peng, W.; Takashima, M.; Wang, N.; Kaiser, M.; Wietrzyk, J.; Dan, S.; Yamori, T.; Inokuchi, T. Design, synthesis, and in vitro cancer cell growth inhibition evaluation and antimalarial testing of trioxanes installed in cyclic 2-enoate substructures. Eur. J. Med. Chem., 2013, 69, 294-309.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.008] [PMID: 24056020]
[90]
Ma, L-J.; Mei, Z-W.; Toyohara, K.; Kawafuchi, H.; Nokami, J.; Inokuchi, T. Diastereoselective Michael addition of magnesium amide to O-(2-alkenoyl)TEMPOs and comparison of reactivity with acyl substituent-modified carboxylic analogues. Bull. Chem. Soc. Jpn., 2010, 83, 1545-1547.
[http://dx.doi.org/10.1246/bcsj.20100172]
[91]
Davies, S.G.; Fletcher, A.M.; Roberts, P.M.; Thomson, J.E. The conjugate addition of enantiomerically pure lithium amides as chiral ammonia equivalents part II: 2005-2011. Tetrahedron Asymmetry, 2012, 23, 1111-1153.
[http://dx.doi.org/10.1016/j.tetasy.2012.08.009]
[92]
Asano, N.; Uyehara, T.; Yamamoto, Y. Lithium N-benzyltrimethylsilylamide (LSA): a new reagent for conjugate addition-enolate trapping reactions. Tetrahedron, 1988, 44, 4173-4180.
[http://dx.doi.org/10.1016/S0040-4020(01)86664-3]
[93]
Davies, S.G.; Smith, A.D.; Price, P.D. The conjugate addition of enantiomerically pure lithium amides as homochiral ammonia equivalents: Scope, limitations and synthetic applications. Tetrahedron Asymmetry, 2005, 16, 2833-2891.
[http://dx.doi.org/10.1016/j.tetasy.2005.08.006]
[94]
Henry-Riyad, H.; Tidwell, T.T. Thermolysis of N-tetramethylpiperidinyl triphenylacetate: Homolytic fragmentation of a TEMPO ester. J. Phys. Org. Chem., 2003, 16, 559-563.
[http://dx.doi.org/10.1002/poc.655]
[95]
Roth, M.; Pfaendner, R.; Nesvadba, P.; Zink, M.-O. Hydroxylamine esters as polymerization initiators. WO 2001090113, November 29, 2001.
[96]
Chin, H.; Gande, M.E.; Leggio, A.J. Electret materials. US 20070235903, October 11, 2007.
[97]
Rucker, R.P.; Whittaker, A.M.; Dang, H.; Lalic, G. Synthesis of tertiary alkyl amines from terminal alkenes: Copper-catalyzed amination of alkyl boranes. J. Am. Chem. Soc., 2012, 134(15), 6571-6574.
[http://dx.doi.org/10.1021/ja3023829] [PMID: 22469028]
[98]
Zhu, S.; Niljianskul, N.; Buchwald, S.L. Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J. Am. Chem. Soc., 2013, 135(42), 15746-15749.
[http://dx.doi.org/10.1021/ja4092819] [PMID: 24106781]
[99]
Zhu, S.; Buchwald, S.L. Enantioselective CuH-catalyzed anti-Markovnikov hydroamination of 1,1-disubstituted alkenes. J. Am. Chem. Soc., 2014, 136(45), 15913-15916.
[http://dx.doi.org/10.1021/ja509786v] [PMID: 25339089]
[100]
Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed enantioselective formal hydroamination of oxa- and azabicyclic alkenes with hydrosilanes and hydroxylamines. Org. Lett., 2014, 16(5), 1498-1501.
[http://dx.doi.org/10.1021/ol5003219] [PMID: 24555736]
[101]
Nishikawa, D.; Hirano, K.; Miura, M. Asymmetric synthesis of α-aminoboronic acid derivatives by copper-catalyzed enantioselective hydroamination. J. Am. Chem. Soc., 2015, 137(50), 15620-15623.
[http://dx.doi.org/10.1021/jacs.5b09773] [PMID: 26653275]
[102]
Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Copper-catalyzed amination of ketene silyl acetals with hydroxylamines: Electrophilic amination approach to α-amino acids. Angew. Chem. Int. Ed., 2012, 51, 11827-11831.
[http://dx.doi.org/10.1002/anie.201206755]
[103]
Mailig, M.; Rucker, R.P.; Lalic, G. Practical catalytic method for synthesis of sterically hindered anilines. Chem. Commun., 2015, 51(55), 11048-11051.
[http://dx.doi.org/10.1039/C5CC03565A] [PMID: 26065394]
[104]
Rucker, R.P.; Whittaker, A.M.; Dang, H.; Lalic, G. Synthesis of hindered anilines: copper-catalyzed electrophilic amination of aryl boronic esters. Angew. Chem. Int. Ed. Engl., 2012, 51(16), 3953-3956.
[http://dx.doi.org/10.1002/anie.201200480] [PMID: 22407928]
[105]
Shi, S-L.; Buchwald, S.L. Copper-catalysed selective hydroamination reactions of alkynes. Nat. Chem., 2015, 7(1), 38-44.
[http://dx.doi.org/10.1038/nchem.2131] [PMID: 25515888]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy