Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

A Review of Pathway Databases and Related Methods Analysis

Author(s): Ali Ghulam, Xiujuan Lei*, Min Guo and Chen Bian

Volume 15, Issue 5, 2020

Page: [379 - 395] Pages: 17

DOI: 10.2174/1574893614666191018162505

Price: $65

Abstract

Pathway analysis integrates most of the computational tools for the investigation of high-level and complex human diseases. In the field of bioinformatics research, biological pathways analysis is an important part of systems biology. The molecular complexities of biological pathways are difficult to understand in human diseases, which can be explored through pathway analysis. In this review, we describe essential information related to pathway databases and their mechanisms, algorithms and methods. In the pathway database analysis, we present a brief introduction on how to gain knowledge from fundamental pathway data in regard to specific human pathways and how to use pathway databases and pathway analysis to predict diseases during an experiment. We also provide detailed information related to computational tools that are used in complex pathway data analysis, the roles of these tools in the bioinformatics field and how to store the pathway data. We illustrate various methodological difficulties that are faced during pathway analysis. The main ideas and techniques for the pathway-based examination approaches are presented. We provide the list of pathway databases and analytical tools. This review will serve as a helpful manual for pathway analysis databases.

Keywords: Biological pathway databases, pathway analysis, pathway algorithms, analytics tools, disease pathways, molecular biology.

Next »
Graphical Abstract

[1]
Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004; 5(2): 101-13.
[http://dx.doi.org/10.1038/nrg1272] [PMID: 14735121]
[2]
Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 2000; 71(1-2): 121-38.
[http://dx.doi.org/10.1006/mgme.2000.3027] [PMID: 11001804]
[3]
Hunter JJ, Chien KR, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 1999; 341(17): 1276-83.
[http://dx.doi.org/10.1056/NEJM199910213411706] [PMID: 10528039]
[4]
Hao T, Ma HW, Zhao XM, Goryanin I. Compartmentalization of the Edinburgh Human Metabolic Network. BMC Bioinformatics 2010; 11: 393.
[http://dx.doi.org/10.1186/1471-2105-11-393] [PMID: 20649990]
[5]
Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list. Nucleic Acids Res 2006; 34(Database issue): D504-6.
[http://dx.doi.org/10.1093/nar/gkj126] [PMID: 16381921]
[6]
Meldal B, Combe C, Bye-A-Jee H, Heimbach J, Koch M, Sullivan J, et al. Complex portal - a unifying protein complex database. Genomics and Computational Biology 2018; 4(1) e100052.
[http://dx.doi.org/10.18547/gcb.2018.vol4.iss1.e100052]
[7]
Millán PP, Duesbury M, Koch M, Orchard S. The entire archive for mutations influencing molecular interactions. Genomics and Computational Biology 2018; 4(1) e100053.
[http://dx.doi.org/10.18547/gcb.2018.vol4.iss1.e100053]
[8]
Babur O, Luna A, Korkut A, et al. Causal, interactions from proteomic profiles: molecular data meets pathway knowledge. bioRxiv 2018.
[http://dx.doi.org/10.1101/258855]
[9]
Marco-Ramell A, Palau-Rodriguez M, Alay A, et al. Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinformatics 2018; 19(1): 1.
[http://dx.doi.org/10.1186/s12859-017-2006-0] [PMID: 29291722]
[10]
Moškon M, Zimic N, Mraz M N Z M M. 2., Grohar: automated visualization of genome-scale metabolic models and their pathways. J Comput Biol 2018; 25(5): 505-8.
[http://dx.doi.org/10.1089/cmb.2017.0209] [PMID: 29461874]
[11]
Chadly DM, Best J, Ran C, et al. Developmental profiling of microRNAs in the human embryonic inner ear. PLoS One 2018; 13(1) e0191452.
[http://dx.doi.org/10.1371/journal.pone.0191452] [PMID: 29373586]
[12]
Mlecnik B, Galon J, Bindea G. Comprehensive functional analysis of extensive lists of genes and proteins. Journal of Proteomics. J Proteomics 2018; 171: 2-10.
[http://dx.doi.org/10.1016/j.jprot.2017.03.016] [PMID: 28343001]
[13]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E. Pathway analysis: state of the art. Front Physiol 2015; 6(278): 383.
[PMID: 26733877]
[16]
Walsh CJ, Hu P, Batt J, Santos CCD. Microarray meta-analysis and cross-platform normalization: integrative genomics for robust biomarker discovery. Microarrays 2015; 4(3): 389-406.
[http://dx.doi.org/10.3390/microarrays4030389] [PMID: 27600230]
[17]
Jia Z, Liu Y, Guan N, Bo X, Luo Z, Barnes MR. Cogena, a novel tool for co-expressed gene-set enrichment analysis, applied to drug repositioning and drug mode of action discovery. BMC Genomics 2016; 17: 414.
[http://dx.doi.org/10.1186/s12864-016-2737-8] [PMID: 27234029]
[18]
Werner T. Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol 2008; 19(1): 50-4.
[http://dx.doi.org/10.1016/j.copbio.2007.11.005] [PMID: 18207385]
[19]
Shriner Daniel. National Human Genome Research Institute( NHGRI). Url: https://www.genome.gov/27530687/
[20]
Liang Y, Kelemen A. Computational dynamic approaches for temporal omics data with applications to systems medicine. BioData Min 2017; 10(1): 20.
[http://dx.doi.org/10.1186/s13040-017-0140-x] [PMID: 28638442]
[21]
Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio--the analysis and navigation of molecular networks. Bioinformatics 2003; 19(16): 2155-7.
[http://dx.doi.org/10.1093/bioinformatics/btg290] [PMID: 14594725]
[22]
Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol 2006; 176(3): 1305-10.
[http://dx.doi.org/10.4049/jimmunol.176.3.1305] [PMID: 16424154]
[23]
Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res 2002; 30(1): 42-6.
[http://dx.doi.org/10.1093/nar/30.1.42] [PMID: 11752249]
[24]
Guoying Zhang1, M. B., Determination of core pathways for oral squamous cell carcinoma via the method of attracting. J Cancer Ther Res 2018; 14: 1029-34.
[http://dx.doi.org/10.4103/0973-1482.206868]
[25]
Karp PD, Ouzounis CA, Moore-Kochlacs C, et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 2005; 33(19): 6083-9.
[http://dx.doi.org/10.1093/nar/gki892] [PMID: 16246909]
[26]
Luo L, Peng G, Zhu Y, Dong H, Amos CI, Xiong M. Genome-wide gene and pathway analysis. Eur J Hum Genet 2010; 18(9): 1045-53.
[http://dx.doi.org/10.1038/ejhg.2010.62] [PMID: 20442747]
[27]
Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010; 11(1): R3.
[http://dx.doi.org/10.1186/gb-2010-11-1-r3] [PMID: 20067622]
[28]
Krull M, Pistor S, Voss N, et al. TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 2006; 34(Database issue): D546-51.
[http://dx.doi.org/10.1093/nar/gkj107] [PMID: 16381929]
[29]
Becker KG, White SL, Muller J, Engel J. BBID: the biological biochemical image database. Bioinformatics 2000; 16(8): 745-6.
[http://dx.doi.org/10.1093/bioinformatics/16.8.745] [PMID: 11099263]
[30]
Takai-Igarashi T, Kaminuma T. A pathway finding system for the cell signaling networks database. In Silico Biol (Gedrukt) 1999; 1(3): 129-46.
[PMID: 11471234]
[31]
Bloom FE. New online tools for scholars: 3. Science 1999; 286(5440): 679.
[http://dx.doi.org/10.1126/science.286.5440.679] [PMID: 10577220]
[32]
Waagmeester AS, Kelder T, Evelo CTA. The role of bioinformatics in pathway curation. Genes Nutr 2008; 3(3-4): 139-42.
[http://dx.doi.org/10.1007/s12263-008-0098-x] [PMID: 19034548]
[33]
Chowdhury S, Sarkar RR. Comparison of human cell signaling pathway databases--evolution, drawbacks, and challenges. Database 2015; 2015 pii: bau126.
[34]
Xenarios I, Salwínski L, Duan XJ, Higney P, Kim SM, Eisenberg D. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002; 30(1): 303-5.
[http://dx.doi.org/10.1093/nar/30.1.303] [PMID: 11752321]
[35]
Mi H, Lazareva-Ulitsky B, Loo R, et al. The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 2005; 33(Database issue): D284-8.
[http://dx.doi.org/10.1093/nar/gki078] [PMID: 15608197]
[36]
Jupe S, Ray K, Roca CD, et al. Interleukins and their signaling pathways in the Reactome biological pathway database. J Allergy Clin Immunol 2018; 141(4): 1411-6.
[http://dx.doi.org/10.1016/j.jaci.2017.12.992] [PMID: 29378288]
[37]
Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling pathways. BMC Neurosci 2006; 7(S1)(Suppl. 1): S10.
[http://dx.doi.org/10.1186/1471-2202-7-S1-S10] [PMID: 17118154]
[38]
Hackl H, Maurer M, Mlecnik B, et al. GOLD.db: genomics of lipid-associated disorders database. BMC Genomics 2004; 5(1): 93.
[http://dx.doi.org/10.1186/1471-2164-5-93] [PMID: 15588328]
[39]
Le Novère N, Bornstein B, Broicher A, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006; 34(Database issue): D689-91.
[http://dx.doi.org/10.1093/nar/gkj092] [PMID: 16381960]
[40]
Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol 2008; 6(7) e184.
[http://dx.doi.org/10.1371/journal.pbio.0060184] [PMID: 18651794]
[41]
Schaefer CF, Anthony K, Krupa S, et al. Pid: the pathway interaction database. Nucleic Acids Res 2009; 37(Database issue): D674-9.
[http://dx.doi.org/10.1093/nar/gkn653] [PMID: 18832364]
[42]
Rondeau G, Abedinpour P, Chrastina A, Pelayo J, Borgstrom P, Welsh J. Differential gene expression induced by anti-cancer agent plumbagin is mediated by androgen receptor in prostate cancer cells. Sci Rep 2018; 8(1): 2694.
[http://dx.doi.org/10.1038/s41598-018-20451-9] [PMID: 29426892]
[43]
Rodchenkov I, Babur O, Luna A, et al. Pathway Commons 2019 Update: integration, analysis and exploration of pathway data. Nucleic Acids Res 2020; 48(D1): D489-97.
[http://dx.doi.org/10.1093/nar/gkz946] [PMID: 31647099]
[44]
Katakami N, Mita T, Irie Y, et al. Sitagliptin Preventive study of Intima-media thickness Evaluation (SPIKE) Collaborators. Effect of sitagliptin on tissue characteristics of the carotid wall in patients with type 2 diabetes: a post hoc sub-analysis of the sitagliptin preventive study of intima-media thickness evaluation (SPIKE). Cardiovasc Diabetol 2018; 17(1): 24.
[http://dx.doi.org/10.1186/s12933-018-0666-3] [PMID: 29402270]
[45]
Yu N, Seo J, Rho K, et al. hiPathDB: a human-integrated pathway database with facile visualization. Nucleic Acids Res 2012; 40(Database issue): D797-802.
[http://dx.doi.org/10.1093/nar/gkr1127] [PMID: 22123737]
[46]
Singh V, Ostaszewski M, Kalliolias GD, et al. Computational systems biology approach for the study of rheumatoid arthritis: from a molecular map to a dynamical model. Genom Comput Biol 2018; 4(1) pii: e100050.
[47]
Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLOS Comput Biol 2015; 11(2) e1004085.
[http://dx.doi.org/10.1371/journal.pcbi.1004085] [PMID: 25706687]
[48]
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015; 1(6): 417-25.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[49]
Perfetto L, Briganti L, Calderone A, et al. SIGNOR: a database of causal relationships between biological entities. Nucleic Acids Res 2016; 44(D1): D548-54.
[http://dx.doi.org/10.1093/nar/gkv1048] [PMID: 26467481]
[50]
Rodriguezmartinez A, Ayala R, Posma JM, Neves AL, Gauguier D, Nicholson JK, et al. Metabosignal: a network-based approach for the topological analysis of metabotype regulation via metabolic and signaling pathways. Bioinformatics 2016; 33(5): 773-5.
[PMID: 26520853]
[51]
Subhra SD, James M, Paul S, Chakravorty N. Mirnalyze: an interactive database linking tool to unlock intuitive microRNA regulation of cell signaling pathways. Database 2017; 2017 bax015.
[52]
Ichise R, Lecue F, Kawamura T, Zhao D, Muggleton S, Kozaki K. Semantic Technology: 8th Joint International Conference, JIST 2018; Awaji, Japan, November, 26-28, Proceedings 2018 ISSN 0302-9743. ISSN 1611-3349.
[53]
Belinky F, Nativ N, Stelzer G, et al. PathCards: multi-source consolidation of human biological pathways. Database (Oxford) 2015; 2015 bav006.
[http://dx.doi.org/10.1093/database/bav006] [PMID: 25725062]
[54]
Pittman ME, Edwards SW, Ives C, Mortensen HM. AOP-DB: A database resource for the exploration of Adverse Outcome Pathways through integrated association networks. Toxicol Appl Pharmacol 2018; 343(343): 71-83.
[http://dx.doi.org/10.1016/j.taap.2018.02.006] [PMID: 29454060]
[55]
Mathur R, Rotroff D, Ma J, Shojaie A, Motsinger-Reif A. Gene set analysis methods: a systematic comparison. BioData Min 2018; 11(1): 8.
[http://dx.doi.org/10.1186/s13040-018-0166-8] [PMID: 29881462]
[56]
Zeeberg BR, Feng W, Wang G, et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 2003; 4(4): R28.
[http://dx.doi.org/10.1186/gb-2003-4-4-r28] [PMID: 12702209]
[57]
Zheng Q, Wang XJ. Goeast: a web-based software toolkit for gene ontology enrichment analysis. Nucleic Acids Res 2008; 36(Web Server issue): 358-63.
[58]
Qureshi R, Sacan A. Weighted set enrichment of gene expression data. BMC Syst Biol 2013; 7(Suppl. 4): S10.
[http://dx.doi.org/10.1186/1752-0509-7-S4-S10] [PMID: 24565001]
[59]
Kong SW, Pu WT, Park PJ. A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics 2006; 22(19): 2373-80.
[http://dx.doi.org/10.1093/bioinformatics/btl401] [PMID: 16877751]
[60]
Boorsma A, Foat BC, Vis D, Klis F, Bussemaker HJ. T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res 2005; 33(Web Server issue): W592-5.
[http://dx.doi.org/10.1093/nar/gki484] [PMID: 15980543]
[61]
Edelman E, Porrello A, Guinney J, et al. Analysis of sample set enrichment scores: assaying the enrichment of sets of genes for individual samples in genome-wide expression profiles. Bioinformatics 2006; 22(14): e108-16.
[http://dx.doi.org/10.1093/bioinformatics/btl231] [PMID: 16873460]
[62]
Mitrea C, Taghavi Z, Bokanizad B, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol 2013; 4(278): 278.
[http://dx.doi.org/10.3389/fphys.2013.00278] [PMID: 24133454]
[63]
Jin L, Zuo XY, Su WY, et al. Pathway-based analysis tools for complex diseases: a review. Genomics Proteomics Bioinformatics 2014; 12(5): 210-20.
[http://dx.doi.org/10.1016/j.gpb.2014.10.002] [PMID: 25462153]
[64]
Wang K, Li M, Bucan M. Pathway-based approaches for analysis of genomewide association studies. Am J Hum Genet 2007; 81(6): 1278-83.
[http://dx.doi.org/10.1086/522374] [PMID: 17966091]
[65]
Chen X, Wang L, Hu B, Guo M, Barnard J, Zhu X. Pathway-based analysis for genome-wide association studies using supervised principal components. Genet Epidemiol 2010; 34(7): 716-24.
[http://dx.doi.org/10.1002/gepi.20532] [PMID: 20842628]
[66]
Massa MS, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol 2010; 014(1): 121.
[67]
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLOS Comput Biol 2012; 8(2) e1002375.
[http://dx.doi.org/10.1371/journal.pcbi.1002375] [PMID: 22383865]
[68]
Sun D, Liu Y, Zhang X-S, Wu LY. CEA: Combination-based gene set functional enrichment analysis. Sci Rep 2018; 8(1): 13085.
[http://dx.doi.org/10.1038/s41598-018-31396-4] [PMID: 30166636]
[69]
Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37(1): 1-13.
[http://dx.doi.org/10.1093/nar/gkn923] [PMID: 19033363]
[70]
Villavicencio-Diaz TN, Rodriguez-Ulloa A, Guirola-Cruz O, Perez-Riverol Y. Teresa Nuñez de Villavicencio. Bioinformatics tools for the functional interpretation of quantitative proteomics results. Curr Top Med Chem 2014; 14(3): 435-49.
[http://dx.doi.org/10.2174/1568026613666131204105110] [PMID: 24304321]
[71]
Steinfeld I, Navon R, Ach R, Yakhini Z. miRNA target enrichment analysis reveals directly active miRNAs in health and disease. Nucleic Acids Res 2013; 41(3) e45.
[http://dx.doi.org/10.1093/nar/gks1142] [PMID: 23209027]
[72]
Haynes WA, Higdon R, Stanberry L, Collins D, Kolker E. Differential expression analysis for pathways. PLOS Comput Biol 2013; 9(3) e1002967.
[http://dx.doi.org/10.1371/journal.pcbi.1002967] [PMID: 23516350]
[73]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[74]
Weng MP, Liao BY. DroPhEA: Drosophila phenotype enrichment analysis for insect functional genomics. Bioinformatics 2011; 27(22): 3218-9.
[http://dx.doi.org/10.1093/bioinformatics/btr530] [PMID: 21976423]
[75]
Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[76]
Weng MP, Liao BY. MamPhEA: a web tool for mammalian phenotype enrichment analysis. Bioinformatics 2010; 26(17): 2212-3.
[http://dx.doi.org/10.1093/bioinformatics/btq359] [PMID: 20605928]
[77]
Croft D, O’Kelly G, Wu G, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011; 39(Database issue): D691-7.
[http://dx.doi.org/10.1093/nar/gkq1018] [PMID: 21067998]
[78]
Paszkowski-Rogacz M, Slabicki M, Pisabarro MT, Buchholz F. PhenoFam-gene set enrichment analysis through protein structural information. BMC Bioinformatics 2010; 11: 254.
[http://dx.doi.org/10.1186/1471-2105-11-254] [PMID: 20478033]
[79]
Draghici S, Khatri P, Tarca AL, et al. A systems biology approach for pathway level analysis. Genome Res 2007; 17(10): 1537-45.
[http://dx.doi.org/10.1101/gr.6202607] [PMID: 17785539]
[80]
Bianco L, Riccadonna S, Lavezzo E, et al. Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms. Bioinformatics 2017; 33(3): 453-5.
[http://dx.doi.org/10.1093/bioinformatics/btw636] [PMID: 28158604]
[81]
Tarca AL, Draghici S, Khatri P, et al. A novel signaling pathway impact analysis. Bioinformatics 2009; 25(1): 75-82.
[http://dx.doi.org/10.1093/bioinformatics/btn577] [PMID: 18990722]
[82]
Lachmann A, Ma’ayan A. KEA: kinase enrichment analysis. Bioinformatics 2009; 25(5): 684-6.
[http://dx.doi.org/10.1093/bioinformatics/btp026] [PMID: 19176546]
[83]
Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics 2012; 28(18): i451-7.
[http://dx.doi.org/10.1093/bioinformatics/bts389] [PMID: 22962466]
[84]
Dutta B, Wallqvist A, Reifman J. PathNet: a tool for pathway analysis using topological information. Source Code Biol Med 2012; 7(1): 10.
[http://dx.doi.org/10.1186/1751-0473-7-10] [PMID: 23006764]
[85]
Liu Y, Koyutürk M, Barnholtz-Sloan JS, Chance MR. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases. BMC Syst Biol 2012; 6: 65.
[http://dx.doi.org/10.1186/1752-0509-6-65] [PMID: 22694839]
[86]
Wang X, Kang DD, Shen K, et al. An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. Bioinformatics 2012; 28(19): 2534-6.
[http://dx.doi.org/10.1093/bioinformatics/bts485] [PMID: 22863766]
[87]
Fontanillo C, Nogales-Cadenas R, Pascual-Montano A, De las Rivas J. Functional analysis beyond enrichment: non-redundant reciprocal linkage of genes and biological terms. PLoS One 2011; 6(9) e24289.
[http://dx.doi.org/10.1371/journal.pone.0024289] [PMID: 21949701]
[88]
Lee S, Cha JY, Kim H, Yu U. GoBean: a Java GUI application for visual exploration of GO term enrichments. BMB Rep 2012; 45(2): 120-5.
[http://dx.doi.org/10.5483/BMBRep.2012.45.2.120] [PMID: 22360891]
[89]
Tabas-Madrid D, Nogales-Cadenas R, Pascual-Montano A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res 2012; 40(Web Server issue): W478-83.
[http://dx.doi.org/10.1093/nar/gks402] [PMID: 22573175]
[90]
Jantzen SG, Sutherland BJ, Minkley DR, Koop BF, Trimming GO. G.O Trimming: Systematically reducing redundancy in large Gene Ontology datasets. BMC Res Notes 2011; 4: 267.
[http://dx.doi.org/10.1186/1756-0500-4-267] [PMID: 21798041]
[91]
Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 2009; 37(Web Server issue): W305-11.
[http://dx.doi.org/10.1093/nar/gkp427 ] [PMID: 19465376]
[92]
Wang J, Huang Q, Liu ZP, et al. NOA: a novel Network Ontology Analysis method. Nucleic Acids Res 2011; 39(13) e87.
[http://dx.doi.org/10.1093/nar/gkr251] [PMID: 21543451]
[93]
Rho K, Kim B, Jang Y, et al. GARNET--gene set analysis with exploration of annotation relations. BMC Bioinformatics 2011; 12(Suppl. 1): S25.
[http://dx.doi.org/10.1186/1471-2105-12-S1-S25] [PMID: 21342555]
[94]
Huang Q, Wu LY, Wang Y, Zhang XS. GOMA: functional enrichment analysis tool based on GO modules. Chin J Cancer 2013; 32(4): 195-204.
[http://dx.doi.org/10.5732/cjc.012.10151] [PMID: 23237213]
[95]
Frijters R, Heupers B, van Beek P, et al. CoPub: a literature-based keyword enrichment tool for microarray data analysis. Nucleic Acids Res 2008; 36(Web Server issue): W406-10.
[http://dx.doi.org/10.1093/nar/gkn215] [PMID: 18442992]
[96]
Stojmirović A, Yu YK. Robust and accurate data enrichment statistics via distribution function of sum of weights. Bioinformatics 2010; 26(21): 2752-9.
[http://dx.doi.org/10.1093/bioinformatics/btq511] [PMID: 20826881]
[97]
Wang K, Zhang H, Kugathasan S, et al. Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn Disease. Am J Hum Genet 2009; 84(3): 399-405.
[http://dx.doi.org/10.1016/j.ajhg.2009.01.026] [PMID: 19249008]
[98]
Butkiewicz M, Cooke Bailey JN, Frase A, et al. Pathway analysis by randomization incorporating structure-PARIS: an update. Bioinformatics 2016; 32(15): 2361-3.
[http://dx.doi.org/10.1093/bioinformatics/btw130] [PMID: 27153576]
[99]
Becker K, Siegert S, Toliat MR, et al. German Dupuytren Study Group. Meta-analysis of genome-wide association studies and network analysis-based integration with gene expression data identify new suggestive loci and unravel a wnt-centric network associated with dupuytren’s disease. PLoS One 2016; 11(7) e0158101.
[http://dx.doi.org/10.1371/journal.pone.0158101] [PMID: 27467239]
[100]
Uh HW, Tsonaka R, Houwing-Duistermaat JJ. Does pathway analysis make it easier for common variants to tag rare ones? BMC Proc 2011; 5(9): S90.
[http://dx.doi.org/10.1186/1753-6561-5-S9-S90] [PMID: 22373113]
[101]
O’Dushlaine C, Kenny E, Heron EA, et al. The SNP ratio test: pathway analysis of genome-wide association datasets. Bioinformatics 2009; 25(20): 2762-3.
[http://dx.doi.org/10.1093/bioinformatics/btp448] [PMID: 19620097]
[102]
Zhang K, Cui S, Chang S, Zhang L, Wang J. I-gsea4gwas: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genomewide association study. Nucleic Acids Res 2010; 38(Web Server issue): W90-5.
[103]
Santonja A, Pajares B, Jiménez-Rodríguez B, Sousa C, et al. Germline genetic background contribution to metastatic dissemination in breast cancer extreme phenotype patients. Annals Oncol 2016; 27(Suppl. 6): vi546.
[104]
Thirunavukkarasu S, Plain KM, de Silva K, Begg D, Whittington RJ, Purdie AC. Expression of genes associated with cholesterol and lipid metabolism identified as a novel pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-infection in cattle. Vet Immunol Immunopathol 2014; 160(3-4): 147-57.
[http://dx.doi.org/10.1016/j.vetimm.2014.04.002] [PMID: 24930699]
[105]
Geller F, Feenstra B, Carstensen L, et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat Genet 2014; 46(9): 957-63.
[http://dx.doi.org/10.1038/ng.3063] [PMID: 25108383]
[106]
Uimari O, Rahmioglu N, Nyholt DR, et al. Genome-wide pathway analysis highlight the role of Wnt signaling in endometriosis. Oxford Genomics Centre. University of Oxford 2015; 30: pp. 283-4.
[107]
Quan B, Qi X, Yu Z, Jiang Y, Liao M, Wang G, et al. Pathway analysis of genome-wide association study and transcriptome data highlights New biological pathways in colorectal cancer. Mol Genet Genomics 2015; 290(2): 603-10.
[PMID: 25362561]
[108]
Dekervel J, Bulle A, Windmolders P, et al. Acriflavine inhibits acquired drug resistance by blocking the epithelial-to-mesenchymal transition and the unfolded protein response. Transl Oncol 2017; 10(1): 59-69.
[http://dx.doi.org/10.1016/j.tranon.2016.11.008] [PMID: 27987431]
[109]
Chikri M, Elachhab Y, Yengo L, Leloire A, Vaxilaire M, Froguel P. A Genome Wide Association Search for Type 2 Diabetes Genes in Arabic Populations. Qatar Foundation Annual Research Conference Proceedings HBPP3328
[http://dx.doi.org/10.5339/qfarc.2016.HBPP3328]
[110]
Nagarajan A, Malvi P, Wajapeyee N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2016; 2(7): 365-77.
[http://dx.doi.org/10.1016/j.trecan.2016.06.002] [PMID: 27822561]
[111]
Shen Y, Rahman M, Piccolo SR, et al. ASSIGN: context-specific genomic profiling of multiple heterogeneous biological pathways. Bioinformatics 2015; 31(11): 1745-53.
[http://dx.doi.org/10.1093/bioinformatics/btv031] [PMID: 25617415]
[112]
MacNeil , et al. Dissecting cancer using computational pathway-analysis. The University of Utah, ProQuest Dissertations Publishing 2017; p. 10276032.
[113]
Lee H, Shin M. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data. BioData Min 2017; 10(1): 3.
[http://dx.doi.org/10.1186/s13040-017-0127-7] [PMID: 28168005]
[114]
Li C, Lee J, Ding J, Sun S. Integrative analysis of gene expression and methylation data for breast cancer cell lines. BioData Min 2018; 11(1): 13.
[http://dx.doi.org/10.1186/s13040-018-0174-8] [PMID: 29983747]
[115]
Mei Y, Yang JP, Lang YH, et al. Global expression profiling and pathway analysis of mouse mammary tumor reveals strain and stage specific dysregulated pathways in breast cancer progression. Cell Cycle, 1-11 2018; 17(8): 963-73.
[http://dx.doi.org/10.1080/15384101.2018.1442629]
[116]
Mejía-Pedroza RA, Espinal-Enríquez J, Hernández-Lemus E. Pathway- based drug repositioning for breast cancer molecular subtypes. Front Pharmacol 2018; 9: 905.
[http://dx.doi.org/10.3389/fphar.2018.00905] [PMID: 30158869]
[117]
Dong B, Liang Z, Chen Z, et al. Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Sci China Life Sci 2018; 61(9): 999-1009.
[http://dx.doi.org/10.1007/s11427-018-9324-y] [PMID: 30054832]
[118]
Lian X, Lin YM, Kozono S, et al. Correction to: Pin1 inhibition exerts potent activity against acute myeloid leukemia through blocking multiple cancer-driving pathways. J Hematol Oncol 2018; 11(1): 94.
[http://dx.doi.org/10.1186/s13045-018-0634-0] [PMID: 29996897]
[119]
Zhou Y, Zhou J, Lu X, Tan TZ, Chng WJ. BET Bromodomain inhibition promotes De-repression of TXNIP and activation of ASK1-MAPK pathway in acute myeloid leukemia. BMC Cancer 2018; 18(1): 731.
[http://dx.doi.org/10.1186/s12885-018-4661-6] [PMID: 29996811]
[120]
Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer 2018; 17(1)
[http://dx.doi.org/10.1186/s12943-018-0776-2]
[121]
Ahmad Adnan. BMC Med Genomics 2018; 11: 88.
[http://dx.doi.org/10.1186/s12920-018-0406-2] [PMID: 30285760]
[122]
Wang ZD, Wei SQ, Wang QY. Targeting oncogenic KRAS in non-small cell lung cancer cells by phenformin inhibits growth and angiogenesis. Am J Cancer Res 2015; 5(11): 3339-49.
[PMID: 26807315]
[123]
Zimmaro LA, Sephton SE, Siwik CJ, et al. Depressive symptoms predict head and neck cancer survival: Examining plausible behavioral and biological pathways. Cancer 2018; 124(5): 1053-60.
[http://dx.doi.org/10.1002/cncr.31109] [PMID: 29355901]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy