Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Biological Production of (S)-acetoin: A State-of-the-Art Review

Author(s): Neng-Zhong Xie*, Jian-Xiu Li and Ri-Bo Huang*

Volume 19, Issue 25, 2019

Page: [2348 - 2356] Pages: 9

DOI: 10.2174/1568026619666191018111424

Price: $65

Abstract

Acetoin is an important four-carbon compound that has many applications in foods, chemical synthesis, cosmetics, cigarettes, soaps, and detergents. Its stereoisomer (S)-acetoin, a high-value chiral compound, can also be used to synthesize optically active drugs, which could enhance targeting properties and reduce side effects. Recently, considerable progress has been made in the development of biotechnological routes for (S)-acetoin production. In this review, various strategies for biological (S)- acetoin production are summarized, and their constraints and possible solutions are described. Furthermore, future prospects of biological production of (S)-acetoin are discussed.

Keywords: (S)-Acetoin, Chiral compound, Whole-cell biocatalyst, In situ cofactor regeneration, Biological production, Side effects.

Graphical Abstract

[1]
Werpy, T.A.; Petersen, G. Top value added chemicals from biomass, Results of screening for potential candidates from sugars and synthesis gas, US Department of Energy, 1; , 2004.
[http://dx.doi.org/10.2172/926125]
[2]
Xiao, Z.; Lu, J.R. Strategies for enhancing fermentative production of acetoin: a review. Biotechnol. Adv., 2014, 32(2), 492-503.
[http://dx.doi.org/10.1016/j.biotechadv.2014.01.002] [PMID: 24412764]
[3]
Song, G.; Qin, T.; Liu, H.; Xu, G.B.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; Sun, G.P.; Chen, Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer, 2010, 67(2), 227-231.
[http://dx.doi.org/10.1016/j.lungcan.2009.03.029] [PMID: 19409642]
[4]
Fu, X.A.; Li, M.; Knipp, R.J.; Nantz, M.H.; Bousamra, M. Noninvasive detection of lung cancer using exhaled breath. Cancer Med., 2014, 3(1), 174-181.
[http://dx.doi.org/10.1002/cam4.162] [PMID: 24402867]
[5]
Ji, X.J.; Huang, H.; Ouyang, P.K. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv., 2011, 29(3), 351-364.
[http://dx.doi.org/10.1016/j.biotechadv.2011.01.007] [PMID: 21272631]
[6]
Yang, T.; Rao, Z.; Zhang, X.; Xu, M.; Xu, Z.; Yang, S.T. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit. Rev. Biotechnol., 2017, 37(8), 990-1005.
[http://dx.doi.org/10.1080/07388551.2017.1299680] [PMID: 28423947]
[7]
Wang, Q.Y.; Xie, N.Z.; Li, Z.C.; Chen, D.; Huang, R.B. Progress and prospect on microbial production of (R,R)-2,3-butanediol. Jiyinzuxue Yu Yingyong Shengwuxue, 2014, 33(6), 1367-1373.
[8]
Tanaka, T.; Kawase, M.; Tani, S. α-hydroxyketones as inhibitors of urease. Bioorg. Med. Chem., 2004, 12(2), 501-505.
[http://dx.doi.org/10.1016/j.bmc.2003.10.017] [PMID: 14723968]
[9]
Wallace, O.B.; Smith, D.W.; Deshpande, M.S.; Polson, C.; Felsenstein, K.M. Inhibitors of Abeta production: solid-phase synthesis and SAR of α-hydroxycarbonyl derivatives. Bioorg. Med. Chem. Lett., 2003, 13(6), 1203-1206.
[http://dx.doi.org/10.1016/S0960-894X(02)01058-2] [PMID: 12643944]
[10]
Fang, Q.K.; Han, Z.X.; Grover, P.; Kessler, D.; Senanayake, C.H.; Wald, S.A. Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an α-ketotriflate. Tetrahedron Asymmetry, 2000, (11), 3659-3663.
[http://dx.doi.org/10.1016/S0957-4166(00)00349-9]
[11]
Gao, J.; Xu, Y.Y.; Li, F.W.; Ding, G. Production of S-acetoin from diacetyl by Escherichia coli transformant cells that express the diacetyl reductase gene of Paenibacillus polymyxa ZJ-9. Lett. Appl. Microbiol., 2013, 57(4), 274-281.
[PMID: 23701367]
[12]
Peng, Y.; Chen, S.Z. Synthesis of 4-chloro-4,5-dimethyl-1,3-dioxolan-2-one. J. Fine Chem. Intermediates, 2002, 1(32), 20.
[13]
Chen, W.; Ding, H.; Feng, P.; Lin, H.; Chou, K.C. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget, 2016, 7(13), 16895-16909.
[http://dx.doi.org/10.18632/oncotarget.7815] [PMID: 26942877]
[14]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. Using deformation energy to analyze nucleosome positioning in genomes. Genomics, 2016, 107(2-3), 69-75.
[http://dx.doi.org/10.1016/j.ygeno.2015.12.005] [PMID: 26724497]
[15]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8(3), 4208-4217.
[http://dx.doi.org/10.18632/oncotarget.13758] [PMID: 27926534]
[16]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chou, K.C. iRNA-3typeA: Identifying 3-types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11(11), 468-474.
[http://dx.doi.org/10.1016/j.omtn.2018.03.012] [PMID: 29858081]
[17]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41(6)e68
[http://dx.doi.org/10.1093/nar/gks1450] [PMID: 23303794]
[18]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[http://dx.doi.org/10.1155/2014/623149] [PMID: 24967386]
[19]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5(5)e332
[PMID: 28427142]
[20]
Ding, H.; Deng, E.Z.; Yuan, L.F.; Liu, L.; Lin, H.; Chen, W.; Chou, K.C. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int., 2014, 2014286419
[http://dx.doi.org/10.1155/2014/286419] [PMID: 24991545]
[21]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W.; Chou, K.C. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2018, 111(1), 96-102.
[http://dx.doi.org/10.1016/j.ygeno.2018.1001.1005] [PMID: 29360500]
[22]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442(1), 118-125.
[http://dx.doi.org/10.1016/j.ab.2013.05.024] [PMID: 23756733]
[23]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: a sequence-based predictor for identifying σ-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42(21), 12961-12972.
[http://dx.doi.org/10.1093/nar/gku1019] [PMID: 25361964]
[24]
Su, Z.D.; Huang, Y.; Zhang, Z.Y.; Zhao, Y.W.; Wang, D.; Chen, W.; Chou, K.C.; Lin, H. iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC. Bioinformatics, 2018, 34(24), 4196-4204.
[http://dx.doi.org/10.1093/bioinformatics/bty508] [PMID: 29931187]
[25]
Chen, W.; Feng, P.; Ding, H.; Lin, H.; Chou, K.C. iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 2015, 490, 26-33.
[http://dx.doi.org/10.1016/j.ab.2015.08.021] [PMID: 26314792]
[26]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14(8), 883-891.
[http://dx.doi.org/10.7150/ijbs.24616] [PMID: 29989083]
[27]
Zhang, C.J.; Tang, H.; Li, W.C.; Lin, H.; Chen, W.; Chou, K.C. iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. Oncotarget, 2016, 7(43), 69783-69793.
[http://dx.doi.org/10.18632/oncotarget.11975] [PMID: 27626500]
[28]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 2011, 273(1), 236-247.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[29]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451(7178), 591-595.
[http://dx.doi.org/10.1038/nature06531] [PMID: 18235503]
[30]
Wang, J.; Pielak, R.M.; McClintock, M.A.; Chou, J.J. Solution structure and functional analysis of the influenza B proton channel. Nat. Struct. Mol. Biol., 2009, 16(12), 1267-1271.
[http://dx.doi.org/10.1038/nsmb.1707] [PMID: 19898475]
[31]
Chou, J.J.; Li, S.; Klee, C.B.; Bax, A. Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains. Nat. Struct. Biol., 2001, 8(11), 990-997.
[http://dx.doi.org/10.1038/nsb1101-990] [PMID: 11685248]
[32]
Call, M.E.; Wucherpfennig, K.W.; Chou, J.J. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat. Immunol., 2010, 11(11), 1023-1029.
[http://dx.doi.org/10.1038/ni.1943] [PMID: 20890284]
[33]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476(7358), 109-113.
[http://dx.doi.org/10.1038/nature10257] [PMID: 21785437]
[34]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498(7455), 521-525.
[http://dx.doi.org/10.1038/nature12283] [PMID: 23739335]
[35]
Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the mitochondrial calcium uniporter. Nature, 2016, 533(7602), 269-273.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[36]
Zhou, G.P.; Troy, F.A. II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6(5), 399-411.
[http://dx.doi.org/10.2174/138920305774329377] [PMID: 16248792]
[37]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14(9), 2421-2428.
[http://dx.doi.org/10.1110/ps.051528905] [PMID: 16131665]
[38]
Zhou, G.P.; Troy, F.A. II NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15(4), 347-359.
[http://dx.doi.org/10.1093/glycob/cwi016] [PMID: 15563715]
[39]
Zhou, G.P.; Huang, R.B.; Troy, F.A. II 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22(2), 137-148.
[http://dx.doi.org/10.2174/0929866521666141019192221] [PMID: 25329332]
[40]
Zhou, G.P. The structural determinations of the leucine zipper coiled-coil domains of the cGMP-dependent protein kinase Iα and its interaction with the myosin binding subunit of the myosin light chains phosphase. Protein Pept. Lett., 2011, 18(10), 966-978.
[http://dx.doi.org/10.2174/0929866511107010966] [PMID: 21592084]
[41]
Bjorndahl, T.C.; Zhou, G.P.; Liu, X.; Perez-Pineiro, R.; Semenchenko, V.; Saleem, F.; Acharya, S.; Bujold, A.; Sobsey, C.A.; Wishart, D.S. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry, 2011, 50(7), 1162-1173.
[http://dx.doi.org/10.1021/bi101435c] [PMID: 21189021]
[42]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283(47), 32860-32869.
[http://dx.doi.org/10.1074/jbc.M804916200] [PMID: 18782776]
[43]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying helix-helix interactions in proteins by incorporating the wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16(6), 581-590.
[http://dx.doi.org/10.2174/1568026615666150819104617] [PMID: 26286215]
[44]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett., 2000, 470(3), 249-256.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[45]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419(1), 49-54.
[http://dx.doi.org/10.1016/S0014-5793(97)01246-5] [PMID: 9426218]
[46]
Chou, K.C. Insights from modeling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3(4), 856-861.
[http://dx.doi.org/10.1021/pr049931q] [PMID: 15359741]
[47]
Chou, K.C. Insights from modeling the tertiary structure of human BACE2. J. Proteome Res., 2004, 3(5), 1069-1072.
[http://dx.doi.org/10.1021/pr049905s] [PMID: 15473697]
[48]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4(5), 1657-1660.
[http://dx.doi.org/10.1021/pr050135+] [PMID: 16212418]
[49]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of α7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319(2), 433-438.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.016] [PMID: 15178425]
[50]
Wang, S.Q.; Du, Q.S.; Chou, K.C. Study of drug resistance of chicken influenza A virus (H5N1) from homology-modeled 3D structures of neuraminidases. Biochem. Biophys. Res. Commun., 2007, 354(3), 634-640.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.235] [PMID: 17266937]
[51]
Chou, K.C. Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11(16), 2105-2134.
[http://dx.doi.org/10.2174/0929867043364667] [PMID: 15279552]
[52]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Palmer, J.R.; Thomas, R.C.; Aristoff, P.A. Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E. Biochemistry, 1993, 32(26), 6548-6554.
[http://dx.doi.org/10.1021/bi00077a008] [PMID: 7687145]
[53]
Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. J. Biol. Chem., 1993, 268(20), 14875-14880.
[PMID: 7686907]
[54]
Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; LeMay, R.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Thomas, R.C.; Aristoff, P.A. Steady-state kinetic studies with the polysulfonate U-9843, an HIV reverse transcriptase inhibitor. Experientia, 1994, 50(1), 23-28.
[http://dx.doi.org/10.1007/BF01992044] [PMID: 7507441]
[55]
Chou, K.C.; Forsén, S. Graphical rules for enzyme-catalysed rate laws. Biochem. J., 1980, 187(3), 829-835.
[http://dx.doi.org/10.1042/bj1870829] [PMID: 7188428]
[56]
Zhou, G.P.; Deng, M.H. An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem. J., 1984, 222(1), 169-176.
[http://dx.doi.org/10.1042/bj2220169] [PMID: 6477507]
[57]
Chou, K.C.; Kézdy, F.J.; Reusser, F. Kinetics of processive nucleic acid polymerases and nucleases. Anal. Biochem., 1994, 221(2), 217-230.
[http://dx.doi.org/10.1006/abio.1994.1405] [PMID: 7529005]
[58]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrP(c) to PrP(sc.). Curr. Top. Med. Chem., 2013, 13(10), 1152-1163.
[http://dx.doi.org/10.2174/15680266113139990003] [PMID: 23647538]
[59]
Zhou, G.P. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284(1), 142-148.
[http://dx.doi.org/10.1016/j.jtbi.2011.06.006] [PMID: 21718705]
[60]
Zhou, G.P.; Surks, H.K.; Schnell, J.R.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. The three-dimensional structure of the cGMP-dependent protein kinase I - α leucine zipper domain and its interaction with the myosin binding subunit. Blood, 2004, 104(11), 3539.
[http://dx.doi.org/doi.org/10.1182/blood.V104.11.3539.3539]
[61]
Huang, R.B.; Cheng, D.; Liao, S.M.; Lu, B.; Wang, Q.Y.; Xie, N.Z.; Troy Ii, F.A.; Zhou, G.P. The intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17(21), 2359-2369.
[http://dx.doi.org/10.2174/1568026617666170414150730] [PMID: 28413949]
[62]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8(2)e55844
[http://dx.doi.org/10.1371/journal.pone.0055844] [PMID: 23409062]
[63]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[http://dx.doi.org/10.1016/j.ab.2015.12.009] [PMID: 26723495]
[64]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[http://dx.doi.org/10.1016/j.jtbi.2016.01.020] [PMID: 26807806]
[65]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Chou, K.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7(28), 44310-44321.
[http://dx.doi.org/10.18632/oncotarget.10027] [PMID: 27322424]
[66]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iCar-PseCp: identify carbonylation sites in proteins by Monte Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7(23), 34558-34570.
[http://dx.doi.org/10.18632/oncotarget.9148] [PMID: 27153555]
[67]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9(8)e105018
[http://dx.doi.org/10.1371/journal.pone.0105018] [PMID: 25121969]
[68]
Xu, Y.; Shao, X.J.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ, 2013, 1(1)e171
[http://dx.doi.org/10.7717/peerj.171] [PMID: 24109555]
[69]
Chou, K.C.; Lin, W.Z.; Xiao, X. Wenxiang: A web-server for drawing wenxiang diagrams. Nat. Sci., 2011, 3(10), 862-865.
[http://dx.doi.org/10.4236/ns.2011.310111]
[70]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X.; Chou, K.C. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8(25), 41178-41188.
[http://dx.doi.org/10.18632/oncotarget.17104] [PMID: 28476023]
[71]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R.; Chou, K.C. pRNAm-PC: Predicting N(6)-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[http://dx.doi.org/10.1016/j.ab.2015.12.017] [PMID: 26748145]
[72]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. iDNA-Methyl: identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem., 2015, 474, 69-77.
[http://dx.doi.org/10.1016/j.ab.2014.12.009] [PMID: 25596338]
[73]
Liu, Z.; Xiao, X.; Qiu, W.R.; Chou, K.C. Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition. Data Brief, 2015, 4(4), 87-89.
[http://dx.doi.org/10.1016/j.dib.2015.04.021] [PMID: 26217768]
[74]
Chou, K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins, 2001, 43(3), 246-255.
[http://dx.doi.org/10.1002/prot.1035] [PMID: 11288174]
[75]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6(4), 262-274.
[http://dx.doi.org/10.2174/157016409789973707]
[76]
Chen, W.; Lei, T.Y.; Jin, D.C.; Lin, H.; Chou, K.C. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition. Anal. Biochem., 2014, 456(456), 53-60.
[http://dx.doi.org/10.1016/j.ab.2014.04.001] [PMID: 24732113]
[77]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11(10), 2620-2634.
[http://dx.doi.org/10.1039/C5MB00155B] [PMID: 26099739]
[78]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One: a web server for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic Acids Res., 2015, 43(W1), W65-W71.
[http://dx.doi.org/10.1093/nar/gkv458] [PMID: 25958395]
[79]
Liu, B.; Liu, F.; Wang, X.; Chen, J.; Fang, L.; Chou, K.C. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein sequences. Nat. Sci., 2017, 9(4), 67-91.
[http://dx.doi.org/10.4236/ns.2017.94007]
[80]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17(21), 2337-2358.
[http://dx.doi.org/10.2174/1568026617666170414145508] [PMID: 28413951]
[81]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1(5), 429-433.
[http://dx.doi.org/10.1021/pr025527k] [PMID: 12645914]
[82]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13(9), 1722-1727.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]
[83]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[http://dx.doi.org/10.1016/j.gene.2017.07.036] [PMID: 28728979]
[84]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33(22), 3524-3531.
[http://dx.doi.org/10.1093/bioinformatics/btx476] [PMID: 29036535]
[85]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34(9), 1448-1456.
[http://dx.doi.org/10.1093/bioinformatics/btx711] [PMID: 29106451]
[86]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2017, S0888- 7543(17), 30102-30107.
[PMID: 28989035]
[87]
Xiao, X.; Cheng, X.; Su, S.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of gram-positive bacterial proteins. Nat. Sci., 2017, 9(09), 331-349.
[http://dx.doi.org/10.4236/ns.2017.99032]
[88]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110(1), 50-58.
[http://dx.doi.org/10.1016/j.ygeno.2017.08.005] [PMID: 28818512]
[89]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9(6), 1092-1100.
[http://dx.doi.org/10.1039/c3mb25555g] [PMID: 23536215]
[90]
Chou, K.C.; Zhang, C.T.; Maggiora, G.M. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers, 1994, 34(1), 143-153.
[http://dx.doi.org/10.1002/bip.360340114] [PMID: 8110966]
[91]
Xie, N.Z.; Li, J.X.; Song, L.F.; Hou, J.F.; Guo, L.; Du, Q.S.; Yu, B.; Huang, R.B. Genome sequence of type strain Paenibacillus polymyxa DSM 365, a highly efficient producer of optically active (R,R)-2,3-butanediol. J. Biotechnol., 2015, 195, 72-73.
[http://dx.doi.org/10.1016/j.jbiotec.2014.07.441] [PMID: 25450636]
[92]
W. G. Biotechnological production of 2,3-butanediol—Current state and prospects. Biotechnol. Adv., 2009, 27(3), 715-725.
[93]
Li, L.; Li, K.; Wang, Y.; Chen, C.; Xu, Y.; Zhang, L.; Han, B.; Gao, C.; Tao, F.; Ma, C.; Xu, P. Metabolic engineering of enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Metab. Eng., 2015, 28, 19-27.
[http://dx.doi.org/10.1016/j.ymben.2014.11.010] [PMID: 25499652]
[94]
Aymes, F.; Monnet, C.; Corrieu, G. Effect of α-acetolactate decarboxylase inactivation on α-acetolactate and diacetyl production by Lactococcus lactis subsp. lactis biovar diacetylactis. J. Biosci. Bioeng., 1999, 87(1), 87-92.
[http://dx.doi.org/10.1016/S1389-1723(99)80013-9] [PMID: 16232430]
[95]
Xiao, Z.; Xu, P. Acetoin metabolism in bacteria. Crit. Rev. Microbiol., 2007, 33(2), 127-140.
[http://dx.doi.org/10.1080/10408410701364604] [PMID: 17558661]
[96]
Sun, W.; Xie, J.; Lin, H.; Mi, S.; Li, Z.; Hua, F.; Hu, Z. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr. Purif., 2012, 83(1), 21-29.
[http://dx.doi.org/10.1016/j.pep.2012.02.006] [PMID: 22387083]
[97]
Ui, S.; Masuda, T.; Masuda, H.; Muraki, H. Mechanism for the formation of 2,3-butanediol stereoisomers in Bacillus polymyxa. J. Ferment. Technol., 1986, 64(6), 481-486.
[http://dx.doi.org/10.1016/0385-6380(86)90070-1]
[98]
Chen, C.; Wei, D.; Shi, J.; Wang, M.; Hao, J. Mechanism of 2,3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl. Microbiol. Biotechnol., 2014, 98(10), 4603-4613.
[http://dx.doi.org/10.1007/s00253-014-5526-9] [PMID: 24535253]
[99]
Liu, Z.; Qin, J.; Gao, C.; Hua, D.; Ma, C.; Li, L.; Wang, Y.; Xu, P. Production of (2S,3S)-2,3-butanediol and (3S)-acetoin from glucose using resting cells of Klebsiella pneumonia and Bacillus subtilis. Bioresour. Technol., 2011, 102(22), 10741-10744.
[http://dx.doi.org/10.1016/j.biortech.2011.08.110] [PMID: 21945208]
[100]
Ui, S.; Odagiri, M.; Mimura, A.; Kanai, H.; Kobayashi, T.; Kudo, T. Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butanediol dehydrogenase gene. J. Ferment. Bioeng., 1996, 81(5), 386-389.
[http://dx.doi.org/10.1016/0922-338X(96)85137-3]
[101]
Li, J.X.; Huang, Y.Y.; Chen, X.R.; Du, Q.S.; Meng, J.Z.; Xie, N.Z.; Huang, R.B. Enhanced production of optical (S)-acetoin by a recombinant Escherichia coli whole-cell biocatalyst with NADH regeneration. RSC Advances, 2018, 1(8), 30512.
[102]
Cui, Z.Z.; Mao, Y.F.; Zhao, Y.J.; Chen, C.; Tang, Y.J.; Chen, T.; Ma, H.W.; Wang, Z.W. Concomitant cell‐free biosynthesis of optically pure D-(-)-acetoin and xylitol via a novel NAD+ regeneration in two-enzyme cascade. J. Chem. Technol. Biotechnol., 2018, 93(12), 3444-3451.
[http://dx.doi.org/10.1002/jctb.5702]
[103]
Xie, N.Z.; Chen, X.R.; Wang, Q.Y.; Chen, D.; Du, Q.S.; Zhou, G.P.; Huang, R.B. Microbial routes to (2R,3R)-2,3-butanediol: Recent advances and future prospects. Curr. Top. Med. Chem., 2017, 17(21), 2433-2439.
[http://dx.doi.org/10.2174/1568026617666170504101646] [PMID: 28474550]
[104]
Vivijs, B.; Haberbeck, L.U.; Baiye Mfortaw Mbong, V.; Bernaerts, K.; Geeraerd, A.H.; Aertsen, A.; Michiels, C.W. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Front. Microbiol., 2015, 6(6), 150.
[http://dx.doi.org/10.3389/fmicb.2015.00150] [PMID: 25762991]
[105]
Vivijs, B.; Moons, P.; Geeraerd, A.H.; Aertsen, A.; Michiels, C.W. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge. Int. J. Food Microbiol., 2014, 175(175), 36-44.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.01.017] [PMID: 24531037]
[106]
Vivijs, B.; Moons, P.; Aertsen, A.; Michiels, C.W. Acetoin synthesis acquisition favors Escherichia coli growth at low pH. Appl. Environ. Microbiol., 2014, 80(19), 6054-6061.
[http://dx.doi.org/10.1128/AEM.01711-14] [PMID: 25063653]
[107]
Loschonsky, S.; Waltzer, S.; Volker, B.; Müller, P.M. Elucidation of the enantioselective cyclohexane-1,2-dione hydrolase catalyzed formation of (S)-acetoin. ChemCatChem, 2014, 6(4), 969-972.
[http://dx.doi.org/10.1002/cctc.201300904]
[108]
Crout, D.H.G.; Morrey, S.M. Synthesis of (R)- and (S)-acetoin (3-hydroxybutan-2-one). J. Chem. Soc. Perkin Trans., 1983, 1, 2435.
[http://dx.doi.org/10.1039/p19830002435]
[109]
Xie, N.Z.; Liang, H.; Huang, R.B.; Xu, P. Biotechnological production of muconic acid: current status and future prospects. Biotechnol. Adv., 2014, 32(3), 615-622.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.001] [PMID: 24751381]
[110]
Zhang, L.Y.; Shuang, C.; Xie, H.B.; Tian, Y.T.; Hu, K.H. Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J. Chem. Technol. Biotechnol., 2012, 87(11), 1551-1557.
[http://dx.doi.org/10.1002/jctb.3791]
[111]
Sun, J.A.; Zhang, L.Y.; Rao, B.; Shen, Y.L.; Wei, D.Z. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour. Technol., 2012, 119, 94-98.
[http://dx.doi.org/10.1016/j.biortech.2012.05.108] [PMID: 22728188]
[112]
Kaneko, T.; Takahashi, M.; Suzuki, H. Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl. Environ. Microbiol., 1990, 56(9), 2644-2649.
[PMID: 16348274]
[113]
Liu, J.; Solem, C.; Jensen, P.R. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineered Lactococcus lactis for fermentative production of (3S)-acetoin. Biotechnol. Bioeng., 2016, 113(12), 2744-2748.
[http://dx.doi.org/10.1002/bit.26038] [PMID: 27344975]
[114]
Takeda, M.; Anamizu, S.; Motomatsu, S.; Chen, X.; Thapa Chhetri, R. Identification and characterization of a mycobacterial NAD+-dependent alcohol dehydrogenase with superior reduction of diacetyl to (S)-acetoin. Biosci. Biotechnol. Biochem., 2014, 78(11), 1879-1886.
[http://dx.doi.org/10.1080/09168451.2014.943649] [PMID: 25082080]
[115]
Park, J.M.; Hong, W.K.; Lee, S.M.; Heo, S.Y.; Jung, Y.R.; Kang, I.Y.; Oh, B.R.; Seo, J.W.; Kim, C.H. Identification and characterization of a short-chain acyl dehydrogenase from Klebsiella pneumoniae and its application for high-level production of L-2,3-butanediol. J. Ind. Microbiol. Biotechnol., 2014, 41(9), 1425-1433.
[http://dx.doi.org/10.1007/s10295-014-1483-7] [PMID: 25037723]
[116]
Wang, Z.; Song, Q.; Yu, M.; Wang, Y.; Xiong, B.; Zhang, Y.; Zheng, J.; Ying, X. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl. Microbiol. Biotechnol., 2014, 98(2), 641-650.
[http://dx.doi.org/10.1007/s00253-013-4870-5] [PMID: 23568047]
[117]
Gao, C.; Zhang, L.; Xie, Y.; Hu, C.; Zhang, Y.; Li, L.; Wang, Y.; Ma, C.; Xu, P. Production of (3S)-acetoin from diacetyl by using stereoselective NADPH-dependent carbonyl reductase and glucose dehydrogenase. Bioresour. Technol., 2013, 137, 111-115.
[http://dx.doi.org/10.1016/j.biortech.2013.02.115] [PMID: 23587814]
[118]
Liu, P.H.; Xie, N.Z.; Lu, Z.X.; Hu, M.; Song, W.D.; Sun, C. Asymmetric synthesis of (S)-acetoin by reduction of 2,3-diacetyl with resting cells. Food Res. Dev., 2013, 1(34), 5-8.
[119]
Wang, Y.; Li, L.; Ma, C.; Gao, C.; Tao, F.; Xu, P. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci. Rep., 2013, 3(3), 2643.
[http://dx.doi.org/10.1038/srep02643] [PMID: 24025762]
[120]
Wichmann, R.; Vasic-Racki, D. Cofactor regeneration at the lab scale. Adv. Biochem. Eng. Biotechnol., 2005, 92, 225-260.
[http://dx.doi.org/10.1007/b98911] [PMID: 15791939]
[121]
Wang, Z.; Xu, J.H.; Chen, D. Whole cell microbial transformation in cloud point system. J. Ind. Microbiol. Biotechnol., 2008, 35(7), 645-656.
[http://dx.doi.org/10.1007/s10295-008-0345-6] [PMID: 18392870]
[122]
Xiao, Z.; Lv, C.; Gao, C.; Qin, J.; Ma, C.; Liu, Z.; Liu, P.; Li, L.; Xu, P. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS One, 2010, 5(1)e8860
[http://dx.doi.org/10.1371/journal.pone.0008860] [PMID: 20126645]
[123]
He, Y.; Chen, F.; Sun, M.; Gao, H.; Guo, Z.; Lin, H.; Chen, J.; Jin, W.; Yang, Y.; Zhang, L.; Yuan, J. Efficient (3S)-acetoin and (2S,3S)-2,3-butanediol production from meso-2,3-butanediol using whole-cell biocatalysis. Molecules, 2018, 23(3), 619-634.
[http://dx.doi.org/10.3390/molecules23030691] [PMID: 29562693]
[124]
Stark, B.C.; Dikshit, K.L.; Pagilla, K.R. The biochemistry of Vitreoscilla hemoglobin. Comput. Struct. Biotechnol. J., 2012, 3(3)e201210002
[http://dx.doi.org/10.5936/csbj.201210002] [PMID: 24688662]
[125]
Geckil, H.; Barak, Z.; Chipman, D.M.; Erenler, S.O.; Webster, D.A.; Stark, B.C. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst. Eng., 2004, 26(5), 325-330.
[http://dx.doi.org/10.1007/s00449-004-0373-1] [PMID: 15309606]
[126]
Choi, K.R.; Shin, J.H.; Cho, J.S.; Yang, D.; Lee, S.Y. Systems metabolic engineering of Escherichia coli. Ecosal Plus, 2016, 7(1)
[http://dx.doi.org/10.1128/ecosalplus.ESP-0010-2015] [PMID: 27223822]
[127]
Liu, P.; Zhu, X.; Tan, Z.; Zhang, X.; Ma, Y. Construction of Escherichia coli cell factories for production of organic acids and alcohols. Adv. Biochem. Eng. Biotechnol., 2016, 155, 107-140.
[PMID: 25577396]
[128]
Goldberg, K.; Schroer, K.; Lütz, S.; Liese, A. Biocatalytic ketone reduction--a powerful tool for the production of chiral alcohols-part II: whole-cell reductions. Appl. Microbiol. Biotechnol., 2007, 76(2), 249-255.
[http://dx.doi.org/10.1007/s00253-007-1005-x] [PMID: 17486338]
[129]
Liang, K.; Shen, C.R. Selection of an endogenous 2,3-butanediol pathway in Escherichia coli by fermentative redox balance. Metab. Eng., 2017, 39(39), 181-191.
[http://dx.doi.org/10.1016/j.ymben.2016.11.012] [PMID: 27931827]
[130]
Peng, L.; Xie, N.; Guo, L.; Wang, L.; Yu, B.; Ma, Y. Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLoS One, 2014, 9(9)e107143
[http://dx.doi.org/10.1371/journal.pone.0107143] [PMID: 25192451]
[131]
Fu, J.; Huo, G.; Feng, L.; Mao, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X. Metabolic engineering of Bacillus subtilis for chiral pure meso-2,3-butanediol production. Biotechnol. Biofuels, 2016, 9(9), 90.
[http://dx.doi.org/10.1186/s13068-016-0502-5] [PMID: 27099629]
[132]
Qiu, Y.; Zhang, J.; Li, L.; Wen, Z.; Nomura, C.T.; Wu, S.; Chen, S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol. Biofuels, 2016, 9(9), 117.
[http://dx.doi.org/10.1186/s13068-016-0522-1] [PMID: 27257436]
[133]
Shin, H.D.; Yoon, S.H.; Wu, J.; Rutter, C.; Kim, S.W.; Chen, R.R. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts. Bioresour. Technol., 2012, 118, 367-373.
[http://dx.doi.org/10.1016/j.biortech.2012.04.100] [PMID: 22705958]
[134]
Nielsen, D.R.; Yoon, S.H.; Yuan, C.J.; Prather, K.L.J. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli. Biotechnol. J., 2010, 5(3), 274-284.
[http://dx.doi.org/10.1002/biot.200900279] [PMID: 20213636]
[135]
Lee, S.; Kim, B.; Park, K.; Um, Y.; Lee, J. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Appl. Biochem. Biotechnol., 2012, 166(7), 1801-1813.
[http://dx.doi.org/10.1007/s12010-012-9593-z] [PMID: 22434350]
[136]
Ui, S.; Okajimaa, Y.; Mimuraa, A.; Kanaib, H.; Kudob, T. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2,3-butanediol. J. Ferment. Bioeng., 1997, 84(3), 185-189.
[http://dx.doi.org/10.1016/S0922-338X(97)82052-1]
[137]
Wang, Y.H.; Li, Y.P.; Zhang, Q.; Zhang, X. Enhanced antibiotic activity of Xenorhabdus nematophila by medium optimization. Bioresour. Technol., 2008, 99(6), 1708-1715.
[http://dx.doi.org/10.1016/j.biortech.2007.03.053] [PMID: 17531470]
[138]
Xie, N.Z.; Wang, Q.Y.; Zhu, Q.X.; Qin, Y.; Tao, F.; Huang, R.B.; Xu, P. Optimization of medium composition for cis,cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods. Prep. Biochem. Biotechnol., 2014, 44(4), 342-354.
[http://dx.doi.org/10.1080/10826068.2013.829497] [PMID: 24320235]
[139]
Stowe, R.A.; Mayer, R.P. Efficient screening of process variables. Ind. Eng. Chem., 1966, 58, 36-40.
[http://dx.doi.org/10.1021/ie50674a007]
[140]
Jones, B.; Nachtsheim, C.J. Efficient designs with minimal aliasing. Technometrics, 2011, 53(2), 62-71.
[http://dx.doi.org/10.1198/TECH.2010.09113]
[141]
Ui, S.; Takusagawa, Y.; Sato, T.; Ohtsuki, T.; Mimura, A.; Ohkuma, M.; Kudo, T. Production of L-2,3-butanediol by a new pathway constructed in Escherichia coli. Lett. Appl. Microbiol., 2004, 39(6), 533-537.
[http://dx.doi.org/10.1111/j.1472-765X.2004.01622.x] [PMID: 15548307]
[142]
Ui, S.; Masuda, H.; Muraki, H. Separation and quantitation of acetoin isomers (D(-) and L(+)) by a combined use of enzyme and gas chromatography. Agric. Biol. Chem., 1984, 48, 2837-2838.
[http://dx.doi.org/0.1080/00021369.1984.10866596]
[143]
Ui, S.; Mimura, A.; Ohkuma, M.; Kudo, T. Formation of a chiral acetoinic compound from diacetyl by Escherichia coli expressing meso-2,3-butanediol dehydrogenase. Lett. Appl. Microbiol., 1999, 28(6), 457-460.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00560.x] [PMID: 10389264]
[144]
Yamada-Onodera, K.; Yamamoto, H.; Kawahara, N.; Tani, Y. Expression of the gene of glycerol dehydrogenase from Hansenula polymorpha Dl-1 in Escherichia coli for the production of chiral compounds. Acta Biotechnol., 2002, 22(3-4), 355-362.
[http://dx.doi.org/10.1002/1521-3846(200207)22:3/4<355:AID-ABIO355>3.0.CO;2-6]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy