Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

White Blood Cell Image Segmentation Based on Color Component Combination and Contour Fitting

Author(s): Chuansheng Wang, Hong Zhang*, Zuoyong Li*, Xiaogen Zhou, Yong Cheng* and Rongyan Chen

Volume 15, Issue 5, 2020

Page: [463 - 471] Pages: 9

DOI: 10.2174/1574893614666191017102310

Price: $65

Abstract

Background: White Blood Cell (WBC) image segmentation plays a key role in cell morphology analysis. However, WBC segmentation is still a challenging task due to the diversity of WBCs under different staining conditions.

Objective: In this paper, we propose a novel WBC segmentation method based on color component combination and contour fitting to segment WBC images accurately.

Methods: Specifically, the proposed method first uses color component combination and image thresholding to achieve nucleus segmentation, then uses a color prior to remove image background, and extracts the initial WBC contour via Canny edge detection, and finally judges and closes the unclosed WBC contour by contour fitting. Accordingly, cytoplasm segmentation is achieved by subtracting the nucleus region from the WBC region.

Results: Experimental results on 100 WBC images under rapid staining condition and 50 WBC images under standard staining condition showed that the proposed method improved segmentation accuracy of white blood cells under rapid and standard staining conditions.

Conclusion: The proposed color component combination and contour fitting is effective in WBC segmentation task.

Keywords: White Blood Cell (WBC) segmentation, color component combination, color prior, image background removal, Canny edge detection, contour fitting.

Graphical Abstract

[1]
Li Z, Liu G, Xu Y, Cheng Y. Modified directional weighted filter for removal of salt & pepper noise. Pattern Recognit Lett 2014; 40(1): 113-20.
[http://dx.doi.org/10.1016/j.patrec.2013.12.022]
[2]
Li Z, Cheng Y, Tang K, Xu Y, Zhang D. A salt & pepper noise filter based on local and global image information. Neurocomputing 2015; 159: 172-85.
[http://dx.doi.org/10.1016/j.neucom.2014.12.087]
[3]
Liu GH, Yang JY. Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 2019; 28(1): 6-16.
[http://dx.doi.org/10.1109/TIP.2018.2847422] [PMID: 29994257]
[4]
Li Z, Liu G, Zhang D, Xu Y. Robust single-object image segmentation based on salient transition region. Pattern Recognit 2016; 52: 317-31.
[http://dx.doi.org/10.1016/j.patcog.2015.10.009]
[5]
Liu G, Yang J, Li Z. Content-based image retrieval using computational visual attention model. Pattern Recognit 2015; 48(8): 2554-66.
[http://dx.doi.org/10.1016/j.patcog.2015.02.005]
[6]
Wen J, Xu Y, Li Z, Ma Z, Xu Y. Inter-class sparsity based discriminative least square regression. Neural Netw 2018; 102: 36-47.
[http://dx.doi.org/10.1016/j.neunet.2018.02.002] [PMID: 29524766]
[7]
Wei L, Hu J, Li F, Song J, Su R, Zou Q. Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Brief Bioinform 2018.
[http://dx.doi.org/10.1093/bib/bby107] [PMID: 30383239]
[8]
Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018; 34(23): 4007-16.
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[9]
Nie L, Deng L, Fan C, Zhan W, Tang Y. Prediction of protein s-sulfenylation sites using a deep belief network. Curr Bioinform 2018; 13(5): 461-7.
[http://dx.doi.org/10.2174/1574893612666171122152208]
[10]
Zheng X, Wang Y, Wang G, Chen Z. A novel algorithm based on visual saliency attention for localization and segmentation in rapidly-stained leukocyte images. Micron 2014; 56: 17-28.
[http://dx.doi.org/10.1016/j.micron.2013.09.006] [PMID: 24148877]
[11]
Zheng X, Wang Y, Wang G. White blood cell segmentation using expectation-maximization and automatic support vector machine learning. J Data Acquisition Proc 2013; 28(5): 217-31.
[12]
Wei L, Luan S, Nagai LAE, Su R, Zou Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2019; 35(8): 1326-33.
[PMID: 30239627]
[13]
Li Y, Niu M, Zou Q. ELM-MHC: An improved MHC identification method with extreme learning machine algorithm. J Proteome Res 2019; 18(3): 1392-401.
[http://dx.doi.org/10.1021/acs.jproteome.9b00012] [PMID: 30698979]
[14]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2019; 35(9): 1469-77.
[PMID: 30247625]
[15]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[PMID: 30428009]
[16]
He W, Jia C, Zou Q. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics 2019; 35(4): 593-601.
[http://dx.doi.org/10.1093/bioinformatics/bty668] [PMID: 30052767]
[17]
Pan C, Park DS, Yoon S, Yang JC. Leukocyte image segmentation using simulated visual attention. Expert Syst Appl 2012; 39(8): 7479-94.
[http://dx.doi.org/10.1016/j.eswa.2012.01.114]
[18]
Pan C, Park DS, Lu H, Wu X. Color image segmentation by fixation-based active learning with ELM. Soft Comput 2012; 16(9): 1569-84.
[http://dx.doi.org/10.1007/s00500-012-0830-8]
[19]
Ruberto CD, Loddo A, Putzu L. A multiple classifier learning by sampling system for white blood cells segmentation. International Conference on Computer Analysis of Images and Patterns CAIP 2015: Computer Analysis of Images and Patterns 2015; 9257: 415-25.
[http://dx.doi.org/10.1007/978-3-319-23117-4_36]
[20]
Cui F, Pan C, Wu X, Xu J. White blood cell image segmentation based on active learning. J Image Graphics 2012; 17(8): 1029-34.
[21]
Saidi M, Bechar MEA, Settouti N, Chikh MA. Application of pixel selection in pixel-based classification for automatic white blood cell segmentation. Proceedings of the Mediterranean Conference on Pattern Recognition and Artificial Intelligence 2016; 31-8.
[http://dx.doi.org/10.1145/3038884.3038890]
[22]
Ananthi VP, Balasubramaniam P. A new thresholding technique based on fuzzy set as an application to leukocyte nucleus segmentation. Comput Methods Programs Biomed 2016; 134: 165-77.
[http://dx.doi.org/10.1016/j.cmpb.2016.07.002] [PMID: 27480741]
[23]
Gu G, Cui D. Flexible combination segmentation algorithm for leukocyte images. Yiqi Yibiao Xuebao 2008; 29(9): 1977-81.
[24]
Viswanathan P. Fuzzy C means detection of leukemia based on morphological contour segmentation. Procedia Comput Sci 2015; 58: 84-90.
[http://dx.doi.org/10.1016/j.procs.2015.08.017]
[25]
Chaira T. Accurate segmentation of leukocyte in blood cell images using Atanassov’s intuitionistic fuzzy and interval Type II fuzzy set theory. Micron 2014; 61: 1-8.
[http://dx.doi.org/10.1016/j.micron.2014.01.004] [PMID: 24792441]
[26]
Jiang K, Liao QM, Xiong Y. A novel white blood cell segmentation scheme based on feature space clustering. Soft Comput 2006; 10(1): 12-9.
[http://dx.doi.org/10.1007/s00500-005-0458-z]
[27]
Rezatofighi SH, Soltanian-Zadeh H. Automatic recognition of five types of white blood cells in peripheral blood. Comput Med Imaging Graph 2011; 35(4): 333-43.
[http://dx.doi.org/10.1016/j.compmedimag.2011.01.003] [PMID: 21300521]
[28]
Dorini LB, Minetto R, Leite NJ. Semiautomatic white blood cell segmentation based on multiscale analysis. IEEE J Biomed Health Inform 2013; 17(1): 250-6.
[http://dx.doi.org/10.1109/TITB.2012.2207398] [PMID: 22855228]
[29]
Ko BC, Gim JW, Nam JY. Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron 2011; 42(7): 695-705.
[http://dx.doi.org/10.1016/j.micron.2011.03.009] [PMID: 21530280]
[30]
Pan C, Park DS, Yang Y, Yoo HM. Leukocyte image segmentation by visual attention and extreme learning machine. Neural Comput Appl 2012; 21(6): 1217-27.
[http://dx.doi.org/10.1007/s00521-011-0522-9]
[31]
Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 1979; 9(1): 62-6.
[http://dx.doi.org/10.1109/TSMC.1979.4310076]
[32]
Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1986; 8(6): 679-98.
[http://dx.doi.org/10.1109/TPAMI.1986.4767851] [PMID: 21869365]
[33]
Yasnoff WA, Mui JK, Bacus JW. Error measures for scene segmentation. Pattern Recognit 1977; 9(4): 217-23.
[http://dx.doi.org/10.1016/0031-3203(77)90006-1]
[34]
Fawcelt T. An introduction to ROC analysis. Pattern Recognit Lett 2006; 27(8): 861-74.
[http://dx.doi.org/10.1016/j.patrec.2005.10.010]
[35]
Fleiss JL, Cohen J, Everitt BS. Large sample standard errors of kappa and weighted kappa. Psychol Bull 1969; 72(5): 323-7.
[http://dx.doi.org/10.1037/h0028106]
[36]
Chen W, Lv H, Nie F, Lin H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics 2019; 35(16): 2796-800.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[37]
Jia C, Zuo Y, Zou Q. O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique. Bioinformatics 2018; 34(12): 2029-36.
[http://dx.doi.org/10.1093/bioinformatics/bty039] [PMID: 29420699]
[38]
Lin H, Liang ZY, Tang H, Chen W. Identifying sigma70 promoters with novel pseudo nucleotide composition. IEEE/ACM Trans Comput Biol Bioinform 2019; 16(4): 1316-21.
[PMID: 28186907]
[39]
Zhang T, Tan P, Wang L, et al. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res 2017; 45(D1): D135-8.
[PMID: 27543076]
[40]
Jiang J, Xing F, Zeng X, Zou Q, Ricyer DB. A database for collecting rice yield-related genes with biological analysis. Int J Biol Sci 2018; 14(8): 965-70.
[http://dx.doi.org/10.7150/ijbs.23328] [PMID: 29989091]
[41]
Liang ZY, Lai HY, Yang H, et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics 2017; 33(3): 467-9.
[PMID: 28171531]
[42]
Su R, Wu H, Xu B, Liu X, Wei L. Developing a Multi-Dose Computational Model for Drug-induced Hepatotoxicity Prediction based on Toxicogenomics Data. IEEE/ACM Trans Comput Biol Bioinform 2019; 16(4): 1231-9.
[PMID: 30040651]
[43]
Hajibaba M, Sharifi M, Gorgin S. The influence of memory-aware computation on distributed blast. Curr Bioinform 2019; 14(2): 157-63.
[http://dx.doi.org/10.2174/1574893613666180601080811]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy