Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Use of Chou’s 5-Steps Rule to Reveal Active Compound and Mechanism of Shuangshen Pingfei San on Idiopathic Pulmonary Fibrosis

Author(s): Yeqing Chen and Xinsheng Fan*

Volume 20, Issue 3, 2020

Page: [220 - 230] Pages: 11

DOI: 10.2174/1566524019666191011160543

Price: $65

Abstract

Background: Shuangshen Pingfei San (SPS) is the derivative from the classic formula Renshen Pingfei San in treating idiopathic pulmonary fibrosis (IPF).

Methods: In this study, Chou’s 5-steps rule was performed to explore the potential active compound and mechanism of SPS on IPF. Compound–target network, target– pathway network, herb–target network and the core gene target interaction network were established and analyzed. A total of 296 compounds and 69 candidate therapeutic targets of SPS in treating IPF were obtained. Network analysis revealed that the main active compounds were flavonoids (such as apigenin, quercetin, naringenin, luteolin), other clusters (such as ginsenoside Rh2, diosgenin, tanshinone IIa), which might also play significant roles. SPS regulated multiple IPF relative genes, which affect fibrosis (PTGS2, KDR, FGFR1, TGFB, VEGFA, MMP2/9) and inflammation (PPARG, TNF, IL13, IL4, IL1B, etc.).

Conclusion: In conclusion, anti-pulmonary fibrosis effect of SPS might be related to the regulation of inflammation and pro-fibrotic signaling pathways. These findings revealed that the potential active compounds and mechanisms of SPS on IPF were a benefit to further study.

Keywords: Shuangshen pingfei san, idiopathic pulmonary fibrosis, Chou’s 5-steps rule, active compound, antifibrosis mechanism.

[1]
Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med 2018; 378(19): 1811-23.
[http://dx.doi.org/10.1056/NEJMra1705751] [PMID: 29742380]
[2]
Kim HJ, Perlman D, Tomic R. Natural history of idiopathic pulmonary fibrosis. Respir Med 2015; 109(6): 661-70.
[http://dx.doi.org/10.1016/j.rmed.2015.02.002] [PMID: 25727856]
[3]
Raghu G, Chen SY, Yeh WS, et al. Idiopathic pulmonary fibrosis in US Medicare beneficiaries aged 65 years and older: incidence, prevalence, and survival, 2001-11. Lancet Respir Med 2014; 2(7): 566-72.
[http://dx.doi.org/10.1016/S2213-2600(14)70101-8] [PMID: 24875841]
[4]
Vancheri C, Failla M, Crimi N, Raghu G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J 2010; 35(3): 496-504.
[http://dx.doi.org/10.1183/09031936.00077309] [PMID: 20190329]
[5]
Barratt SL, Creamer A, Hayton C, Chaudhuri N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J Clin Med 2018; 7(8): 201.
[http://dx.doi.org/10.3390/jcm7080201] [PMID: 30082599]
[6]
Lunardi F, Pezzuto F, Vuljan SE, Calabrese F. Idiopathic pulmonary fibrosis and antifibrotic treatments: focus on experimental studies. Arch Pathol Lab Med 2018; 142(9): 1090-7.
[http://dx.doi.org/10.5858/arpa.2018-0080-RA] [PMID: 30141997]
[7]
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol 2018; 233(4): 2815-23.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[8]
Hu Y, Li M, Zhang M, Jin Y. Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int J Pharm 2018; 551(1-2): 212-22.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.031] [PMID: 30227240]
[9]
Smith MR, Gangireddy SR, Narala VR, et al. Curcumin inhibits fibrosis-related effects in IPF fibroblasts and in mice following bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 298(5): L616-25.
[http://dx.doi.org/10.1152/ajplung.00002.2009] [PMID: 20061443]
[10]
Aliomrani M, Sepand MR, Mirzaei HR, Kazemi AR, Nekonam S, Sabzevari O. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. Daru 2016; 24(1): 15.
[http://dx.doi.org/10.1186/s40199-016-0154-9] [PMID: 27150961]
[11]
Richeldi L, du Bois RM, Raghu G, et al. INPULSIS Trial Investigators. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 2014; 370(22): 2071-82.
[http://dx.doi.org/10.1056/NEJMoa1402584] [PMID: 24836310]
[12]
Noble PW, Albera C, Bradford WZ, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J 2016; 47(1): 243-53.
[http://dx.doi.org/10.1183/13993003.00026-2015] [PMID: 26647432]
[13]
Hayton C, Chaudhuri N. Managing idiopathic pulmonary fibrosis: which drug for which patient? Drugs Aging 2017; 34(9): 647-53.
[http://dx.doi.org/10.1007/s40266-017-0488-0] [PMID: 28861727]
[14]
Chen F, Wang PL, Fan XS, Yu JH, Zhu Y, Zhu ZH. Effect of Renshen Pingfei Decoction, a traditional Chinese prescription, on IPF induced by Bleomycin in rats and regulation of TGF-β1/Smad3. J Ethnopharmacol 2016; 186: 289-97.
[http://dx.doi.org/10.1016/j.jep.2016.03.051] [PMID: 27013092]
[15]
Xu K, Xu HQ, Fan XS, et al. The effect and mechanism of renshen pingfei prescription in the pulmonary fibrosis model induced by silica in rats. Nanjing zhongyiyao daxue xuebao 2017; 33(01): 49-53.
[16]
Oxenoid K, Dong Y, Cao C, et al. Architecture of the mitochondrial calcium uniporter. Nature 2016; 533(7602): 269-73.
[http://dx.doi.org/10.1038/nature17656] [PMID: 27135929]
[17]
Dev J, Park D, Fu Q, et al. Structural basis for membrane anchoring of HIV-1 envelope spike. Science 2016; 353(6295): 172-5.
[http://dx.doi.org/10.1126/science.aaf7066] [PMID: 27338706]
[18]
Chou KC, Tomasselli AG, Heinrikson RL. Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett 2000; 470(3): 249-56.
[http://dx.doi.org/10.1016/S0014-5793(00)01333-8] [PMID: 10745077]
[19]
Chou KC, Howe WJ. Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun 2002; 292(3): 702-8.
[http://dx.doi.org/10.1006/bbrc.2002.6686] [PMID: 11922623]
[20]
Ma Y, Wang SQ, Xu WR, Wang RL, Chou KC. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One 2012; 7(6): e38546
[http://dx.doi.org/10.1371/journal.pone.0038546] [PMID: 22685582]
[21]
Du X, Diao Y, Liu H, Li S. MsDBP: exploring DNA-binding proteins by integrating multiscale sequence information via chou’s five-step rule. J Proteome Res 2019; 18(8): 3119-32.
[http://dx.doi.org/10.1021/acs.jproteome.9b00226] [PMID: 31267738]
[22]
Ju Z, Wang SY. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5- steps rule and general pseudo components. Genomics 2019; S0888-7543(19): 30219-8.
[23]
Le NQK, Yapp EKY, Ou YY, Yeh HY. iMotor-CNN: Identifying molecular functions of cytoskeleton motor proteins using 2D convolutional neural network via Chou’s 5-step rule. Anal Biochem 2019; 575: 17-26.
[http://dx.doi.org/10.1016/j.ab.2019.03.017] [PMID: 30930199]
[24]
Liang Y, Zhang S. Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou’s 5-steps rule. Biophys Chem 2019; 253: 106227
[http://dx.doi.org/10.1016/j.bpc.2019.106227] [PMID: 31325710]
[25]
Tahir M, Tayara H, Chong KT. iDNA6mA (5-step rule): Identification of DNA N6-methyladenine sites in the rice genome by intelligent computational model via Chou’s 5-step rule. CHEMOLAB 2019; 189: 96-101.
[http://dx.doi.org/10.1016/j.chemolab.2019.04.007]
[26]
Chou KC. Impacts of bioinformatics to medicinal chemistry. Med Chem 2015; 11(3): 218-34.
[http://dx.doi.org/10.2174/1573406411666141229162834] [PMID: 25548930]
[27]
Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition. J Theor Biol 2011; 273(1): 236-47.
[http://dx.doi.org/10.1016/j.jtbi.2010.12.024] [PMID: 21168420]
[28]
Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6: 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[29]
Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res 2013; 41(Database issue): D1089-95.
[PMID: 23203875]
[30]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[31]
Gong J, Cai C, Liu X, et al. ChemMapper: a versatile web server for exploring pharmacology and chemical structure association based on molecular 3D similarity method. Bioinformatics 2013; 29(14): 1827-9.
[http://dx.doi.org/10.1093/bioinformatics/btt270] [PMID: 23712658]
[32]
Dunkel M, Günther S, Ahmed J, Wittig B, Preissner R. SuperPred: drug classification and target prediction. Nucleic Acids Res 2008; 36(Web Server issue): W55-9.
[PMID: 18499712]
[33]
Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci Rep 2016; 6: 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[34]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[35]
Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 2016; 44(D1): D1069-74.
[http://dx.doi.org/10.1093/nar/gkv1230] [PMID: 26578601]
[36]
Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2017. Nucleic Acids Res 2017; 45(D1): D972-8.
[http://dx.doi.org/10.1093/nar/gkw838] [PMID: 27651457]
[37]
UniProt Consortium T. UniProt. the universal protein knowledgebase. Nucleic Acids Res 2018; 46(5): 2699.
[http://dx.doi.org/10.1093/nar/gky092] [PMID: 29425356]
[38]
Xie C, Mao X, Huang J, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39(Web Server issue): W316-22.
[http://dx.doi.org/10.1093/nar/gkr483] [PMID: 21715386]
[39]
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[40]
Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 2017; 45(D1): D362-8.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[41]
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27(3): 431-2.
[http://dx.doi.org/10.1093/bioinformatics/btq675] [PMID: 21149340]
[42]
Nagini S. Carcinoma of the stomach: A review of epidemiology, pathogenesis, molecular genetics and chemoprevention. World J Gastrointest Oncol 2012; 4(7): 156-69.
[http://dx.doi.org/10.4251/wjgo.v4.i7.156] [PMID: 22844547]
[43]
Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 2017; 3: 17074.
[http://dx.doi.org/10.1038/nrdp.2017.74] [PMID: 29052582]
[44]
Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic idiopathic pulmonary fibrosis. an integral model. Am J Respir Crit Care Med 2014; 189(10): 1161-72.
[http://dx.doi.org/10.1164/rccm.201312-2221PP] [PMID: 24641682]
[45]
Davoodvandi A, Sahebnasagh R, Mardanshah O, et al. Medicinal plants as natural polarizers of macrophages: phytochemicals and pharmacological effects. Curr Pharm Des 2019; 25: 3225-38.
[http://dx.doi.org/10.2174/1381612825666190829154934] [PMID: 31465276]
[46]
Trawinska MA, Rupesinghe RD, Hart SP. Patient considerations and drug selection in the treatment of idiopathic pulmonary fibrosis. Ther Clin Risk Manag 2016; 12: 563-74.
[PMID: 27114711]
[47]
King CS, Nathan SD. POINT: Should all patients with idiopathic pulmonary fibrosis, even those with more than moderate impairment, be treated with nintedanib or pirfenidone? Yes Chest 2016; 150(2): 273-5.
[http://dx.doi.org/10.1016/j.chest.2016.04.034] [PMID: 27292047]
[48]
Corte T, Bonella F, Crestani B, et al. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir Res 2015; 16: 116.
[http://dx.doi.org/10.1186/s12931-015-0276-5] [PMID: 26400368]
[49]
Zhang J, Chao L, Liu X, et al. The potential application of strategic released apigenin from polymeric carrier in pulmonary fibrosis. Exp Lung Res 2017; 43(9-10): 359-69.
[http://dx.doi.org/10.1080/01902148.2017.1380086] [PMID: 29206498]
[50]
Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J Ethnopharmacol 2017; 198: 45-63.
[http://dx.doi.org/10.1016/j.jep.2016.12.042] [PMID: 28038955]
[51]
Sellarés J, Rojas M. Quercetin in Idiopathic Pulmonary Fibrosis: Another Brick in the Senolytic Wall. Am J Respir Cell Mol Biol 2018. [Epub ahead of print
[PMID: 30211613]
[52]
Lin Y, Tan D, Kan Q, Xiao Z, Jiang Z. The Protective Effect of Naringenin on Airway Remodeling after Mycoplasma Pneumoniae Infection by Inhibiting Autophagy-Mediated Lung Inflammation and Fibrosis. Mediators Inflamm 2018; 2018 8753894
[http://dx.doi.org/10.1155/2018/8753894] [PMID: 29849498]
[53]
Du G, Jin L, Han X, Song Z, Zhang H, Liang W. Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res 2009; 69(7): 3205-12.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3393] [PMID: 19318568]
[54]
Chen CY, Peng WH, Wu LC, Wu CC, Hsu SL. Luteolin ameliorates experimental lung fibrosis both in vivo and in vitro: implications for therapy of lung fibrosis. J Agric Food Chem 2010; 58(22): 11653-61.
[http://dx.doi.org/10.1021/jf1031668] [PMID: 20958047]
[55]
Zhou HT, Yu XF, Zhou GM. Diosgenin inhibits angiotensin II-induced extracellular matrix remodeling in cardiac fibroblasts through regulating the TGFβ1/Smad3 signaling pathway. Mol Med Rep 2017; 15(5): 2823-8.
[http://dx.doi.org/10.3892/mmr.2017.6280] [PMID: 28260007]
[56]
Lo SH, Hsu CT, Niu HS, Niu CS, Cheng JT, Chen ZC. Ginsenoside Rh2 improves cardiac fibrosis via PPARδ-STAT3 signaling in type 1-like diabetic rats. Int J Mol Sci 2017; 18(7)E1364
[http://dx.doi.org/10.3390/ijms18071364] [PMID: 28672855]
[57]
An L, Peng LY, Sun NY, et al. Tanshinone IIA activates nuclear factor-erythroid 2-related factor 2 to restrain pulmonary fibrosis via regulation of redox homeostasis and glutaminolysis. antioxid redox signal 2018. [J]. [Epub ahead of print].
[PMID: 30105924]
[58]
Tang H, He H, Ji H, et al. Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition. J Surg Res 2015; 197(1): 167-75.
[http://dx.doi.org/10.1016/j.jss.2015.02.062] [PMID: 25911951]
[59]
Akgedik R, Akgedik S, Karamanlı H, et al. Effect of resveratrol on treatment of bleomycin-induced pulmonary fibrosis in rats. Inflammation 2012; 35(5): 1732-41.
[http://dx.doi.org/10.1007/s10753-012-9491-0] [PMID: 22707284]
[60]
Wang J, He F, Chen L, et al. Resveratrol inhibits pulmonary fibrosis by regulating miR-21 through MAPK/AP-1 pathways. Biomed Pharmacother 2018; 105: 37-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.104] [PMID: 29843043]
[61]
Huang SK, Chen CY, Shih HM, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 2013; 4 e621
[http://dx.doi.org/10.1038/cddis.2013.146] [PMID: 23640463]
[62]
Chou KC, Forsen S, Zhou GQ. Three schematic rules for deriving apparent rate constants. Chem Scr 1980; 16: 109-13.
[63]
Chou KC, Carter RE, Forsen S. A new graphical method for deriving rate equations for complicated mechanisms. Chem Scr 1981; 18: 82-6.
[64]
Chou KC, Forsen S. Graphical rules of steady-state reaction systems. Can J Chem 1981; 59: 737-55.
[http://dx.doi.org/10.1139/v81-107]
[65]
Chou KC. Low-frequency vibrations of helical structures in protein molecules. Biochem J 1983; 209(3): 573-80.
[http://dx.doi.org/10.1042/bj2090573] [PMID: 6870784]
[66]
Chou KC. Low-frequency motions in protein molecules. Beta-sheet and beta-barrel. Biophys J 1985; 48(2): 289-97.
[http://dx.doi.org/10.1016/S0006-3495(85)83782-6] [PMID: 4052563]
[67]
Chou KC. Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady-state systems. Biophys Chem 1990; 35(1): 1-24.
[http://dx.doi.org/10.1016/0301-4622(90)80056-D] [PMID: 2183882]
[68]
Liu H, Wang M, Chou KC. Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 2005; 336(3): 737-9. [BBRC
[http://dx.doi.org/0.1016/j.bbrc.2005.08.160] [PMID: 16140260]
[69]
Chou KC. Graphic rule for drug metabolism systems. Curr Drug Metab 2010; 11(4): 369-78.
[http://dx.doi.org/10.2174/138920010791514261] [PMID: 20446902]
[70]
Li J, Wei DQ, Wang JF, Yu ZT, Chou KC. Molecular dynamics simulations of CYP2E1. Med Chem 2012; 8(2): 208-21.
[http://dx.doi.org/10.2174/157340612800493692] [PMID: 22385180]
[71]
Wang JF, Chou KC. Recent advances in computational studies on influenza a virus M2 proton channel. Mini Rev Med Chem 2012; 12(10): 971-8.
[http://dx.doi.org/10.2174/138955712802762275] [PMID: 22420575]
[72]
Jia J, Liu Z, Xiao X, Liu B, Chou KC. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol 2015; 377: 47-56.
[http://dx.doi.org/10.1016/j.jtbi.2015.04.011] [PMID: 25908206]
[73]
Chou KC. Proposing pseudo amino acid components is an important milestone for proteome and genome analyses. Int J Pept Res Ther 2019.
[http://dx.doi.org/10.1007/s10989-019-09910-7]
[74]
Chou KC, Shen HB. Recent advances in developing web-servers for predicting protein attributes. Nat Sci 2009; 1: 63-92.
[http://dx.doi.org/10.4236/ns.2009.12011]
[75]
Cheng X, Xiao X, Chou KC. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Mol Biosyst 2017; 13(9): 1722-7.
[http://dx.doi.org/10.1039/C7MB00267J] [PMID: 28702580]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy