Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antimicrobial Peptides: A Promising Avenue for Human Healthcare

Author(s): Girish M. Bhopale*

Volume 21, Issue 2, 2020

Page: [90 - 96] Pages: 7

DOI: 10.2174/1389201020666191011121722

Price: $65

Abstract

Antimicrobial drugs resistant microbes have been observed worldwide and therefore alternative development of antimicrobial peptides has gained interest in human healthcare. Enormous progress has been made in the development of antimicrobial peptide during the last decade due to major advantages of AMPs such as broad-spectrum activity and low levels of induced resistance over the current antimicrobial agents. This review briefly provides various categories of AMP, their physicochemical properties and mechanism of action which governs their penetration into microbial cell. Further, the recent information on current status of antimicrobial peptide development, their applications and perspective in human healthcare are also described.

Keywords: Antimicrobial peptides, antimicrobial peptide development, therapeutic agents, antimicrobial resistance, synthetic antimicrobial peptide, drug resistant bacteria.

« Previous
Graphical Abstract

[1]
O’Neil, J. Trackling drug-resistant infections globally: Final report and recommendations. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf [last accessed 23 Feb., 2019
[2]
Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol., 2011, 6(6), 635-651.
[http://dx.doi.org/10.2217/fmb.11.27] [PMID: 21707311]
[3]
Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382.
[http://dx.doi.org/10.1038/nbt.2572] [PMID: 23657384]
[4]
Naafs, M.A.B. The antimicrobial peptides: Ready for clinical trials? Biomed. J. Sci. Tech. Res., 2018, 7, 6038-6042.
[http://dx.doi.org/10.26717/BJSTR.2018.07.001536]
[5]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268, 43-66.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_3] [PMID: 25555720]
[7]
Takahashi, D.; Shukla, S.K.; Prakash, O.; Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie, 2010, 92(9), 1236-1241.
[http://dx.doi.org/10.1016/j.biochi.2010.02.023] [PMID: 20188791]
[8]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[9]
Seo, M.D.; Won, H.S.; Kim, J.H.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules, 2012, 17(10), 12276-12286.
[http://dx.doi.org/10.3390/molecules171012276] [PMID: 23079498]
[10]
Chung, P.Y.; Khanum, R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J. Microbiol. Immunol. Infect., 2017, 50(4), 405-410.
[http://dx.doi.org/10.1016/j.jmii.2016.12.005] [PMID: 28690026]
[11]
Kumar, P.; Kizhakkedathu, J.N.; Straus, S.K. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[12]
Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol., 2009, 30(3), 131-141.
[http://dx.doi.org/10.1016/j.it.2008.12.003] [PMID: 19217824]
[13]
Le, C.F.; Fang, C.M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother., 2017, 61(4), 1-16.
[http://dx.doi.org/10.1128/AAC.02340-16] [PMID: 28167546]
[14]
Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[15]
Akoki, W.; Ueda, M. Characterization of antimicrobial peptides towards the development of novel antibiotics. Pharmaceutical, 2013, 6, 1055-1081.
[16]
Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.004] [PMID: 29330093]
[17]
Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: Therapeutic potentials. Expert Rev. Anti Infect. Ther., 2014, 12(12), 1477-1486.
[http://dx.doi.org/10.1586/14787210.2014.976613] [PMID: 25371141]
[18]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[19]
Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Peptide Sci, 2019, e24122.
[http://dx.doi.org/10.1002/pep2.24122]
[20]
North, J.R.; Takenaka, S.; Rozek, A.; Kielczewska, A.; Opal, S.; Morici, L.A.; Finlay, B.B.; Schaber, C.J.; Straube, R.; Donini, O. A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy. J. Biotechnol., 2016, 226, 24-34.
[http://dx.doi.org/10.1016/j.jbiotec.2016.03.032] [PMID: 27015977]
[21]
Kudrimoti, M.; Curtis, A.; Azawi, S.; Worden, F.; Katz, S.; Adkins, D.; Bonomi, M.; Elder, J.; Sonis, S.T.; Straube, R.; Donini, O. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J. Biotechnol., 2016, 239, 115-125.
[http://dx.doi.org/10.1016/j.jbiotec.2016.10.010] [PMID: 27746305]
[22]
Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: A new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther., 2018, 16, 259-268.
[http://dx.doi.org/10.1080/14787210.2018.1441024]
[23]
Sader, H.S.; Fedler, K.A.; Rennie, R.P.; Stevens, S.; Jones, R.N. Omiganan pentahydrochloride (MBI 226), a topical 12-amino-acid cationic peptide: Spectrum of antimicrobial activity and measurements of bactericidal activity. Antimicrob. Agents Chemother., 2004, 48(8), 3112-3118.
[http://dx.doi.org/10.1128/AAC.48.8.3112-3118.2004] [PMID: 15273128]
[24]
Wiig, M.E.; Dahlin, L.B.; Friden, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trials. PLoS 0ne, 2014, 9, 1-11.
[25]
Grönberg, A.; Mahlapuu, M.; Ståhle, M.; Whately-Smith, C.; Rollman, O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: A randomized, placebo-controlled clinical trial. Wound Repair Regen., 2014, 22(5), 613-621.
[http://dx.doi.org/10.1111/wrr.12211] [PMID: 25041740]
[26]
Guo, L.; Edlund, A. Targeted antimicrobial peptides: A novel technology to eradicate harmful Streptococcus mutans. J. Calif. Dent. Assoc., 2017, 45(10), 557-564.
[PMID: 29899655]
[27]
Oyston, P.C.; Fox, M.A.; Richards, S.J.; Clark, G.C. Novel peptide therapeutics for treatment of infections. J. Med. Microbiol., 2009, 58(Pt 8), 977-987.
[http://dx.doi.org/10.1099/jmm.0.011122-0] [PMID: 19528155]
[28]
Chou, H.T.; Kuo, T.Y.; Chiang, J.C.; Pei, M.J.; Yang, W.T.; Yu, H.C.; Lin, S.B.; Chen, W.J. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int. J. Antimicrob. Agents, 2008, 32(2), 130-138.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.04.003] [PMID: 18586467]
[29]
Zhao, C.X.; Dwyer, M.D.; Yu, A.L.; Wu, Y.; Fang, S.; Middelberg, A.P. A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol. Bioeng., 2015, 112(5), 957-964.
[http://dx.doi.org/10.1002/bit.25505] [PMID: 25425208]
[30]
Giacometti, A.; Cirioni, O.; Kamysz, W.; D’Amato, G.; Silvestri, C.; Licci, A.; Nadolski, P.; Riva, A.; Lukasiak, J.; Scalise, G. In vitro activity of MSI-78 alone and in combination with antibiotics against bacteria responsible for bloodstream infections in neutropenic patients. Int. J. Antimicrob. Agents, 2005, 26(3), 235-240.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.06.011] [PMID: 16122911]
[31]
Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676.
[http://dx.doi.org/10.1080/14712598.2017.1315402] [PMID: 28368216]
[32]
Wu, X.; Li, Z.; Li, X.; Tian, Y.; Fan, Y.; Yu, C.; Zhou, B.; Liu, Y.; Xiang, R.; Yang, L. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des. Devel. Ther., 2017, 11, 939-946.
[http://dx.doi.org/10.2147/DDDT.S107195] [PMID: 28356719]
[33]
Yu, G.; Baeder, D.Y.; Regoes, R.R.; Rolff, J. Combination effects of antimicrobial peptides. Antimicrob. Agents Chemother., 2016, 60(3), 1717-1724.
[http://dx.doi.org/10.1128/AAC.02434-15] [PMID: 26729502]
[34]
Lim, K.; Chua, R.R.; Bow, H.; Tambyah, P.A.; Hadinoto, K.; Leong, S.S. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater., 2015, 15, 127-138.
[http://dx.doi.org/10.1016/j.actbio.2014.12.015] [PMID: 25541344]
[35]
da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial peptides: An alternative for innovative medicines? Appl. Microbiol. Biotechnol., 2015, 99(5), 2023-2040.
[http://dx.doi.org/10.1007/s00253-015-6375-x] [PMID: 25586583]
[36]
Safder, I.; Islam, A. Antimicrobial peptides: Therapeutic potential as an alternative to conventional antibiotics. J. Innov. Pharm. Bio. Sci., 2017, 4, 25-32.
[37]
Xie, Z.; Aphale, N.V.; Kadapure, T.D.; Wadajkar, A.S.; Orr, S.; Gyawali, D.; Qian, G.; Nguyen, K.T.; Yang, J. Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. J. Biomed. Mater. Res. A, 2015, 103(12), 3907-3918.
[http://dx.doi.org/10.1002/jbm.a.35512] [PMID: 26014899]
[38]
Meikle, T.G.; Zabara, A.; Waddington, L.J.; Separovic, F.; Drummond, C.J.; Conn, C.E. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf. B Biointerfaces, 2017, 152, 143-151.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.004] [PMID: 28107705]
[39]
Grieco, P.; Luca, V.; Auriemma, L.; Carotenuto, A.; Saviello, M.R.; Campiglia, P.; Barra, D.; Novellino, E.; Mangoni, M.L. Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta. J. Pept. Sci., 2011, 17(5), 358-365.
[http://dx.doi.org/10.1002/psc.1350] [PMID: 21337476]
[40]
Lorenzon, E.N.; Piccoli, J.P.; Santos-Filho, N.A.; Cilli, E.M. dimerization of antimicrobial peptide: A promising strategy to enhance antimicrobial peptide activity. Protein Pept. Lett., 2019, 26(2), 98-107.
[http://dx.doi.org/10.2174/0929866526666190102125304] [PMID: 30605048]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy