Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Enrichment of Up-regulated and Down-regulated Gene Clusters Using Gene Ontology, miRNAs and lncRNAs in Colorectal Cancer

Author(s): Fahimeh Fattahi, Jafar Kiani, Mohsen Khosravi, Somayeh Vafaei, Asghar Mohammadi, Zahra Madjd* and Mohammad Najafi*

Volume 22, Issue 8, 2019

Page: [534 - 545] Pages: 12

DOI: 10.2174/1386207321666191010114149

Price: $65

Abstract

Aim and Objective: It is interesting to find the gene signatures of cancer stages based on the omics data. The aim of study was to evaluate and to enrich the array data using gene ontology and ncRNA databases in colorectal cancer.

Methods: The human colorectal cancer data were obtained from the GEO databank. The downregulated and up-regulated genes were identified after scoring, weighing and merging of the gene data. The clusters with high-score edges were determined from gene networks. The miRNAs related to the gene clusters were identified and enriched. Furthermore, the long non-coding RNA (lncRNA) networks were predicted with a central core for miRNAs.

Results: Based on cluster enrichment, genes related to peptide receptor activity (1.26E-08), LBD domain binding (3.71E-07), rRNA processing (2.61E-34), chemokine (4.58E-19), peptide receptor (1.16E-19) and ECM organization (3.82E-16) were found. Furthermore, the clusters related to the non-coding RNAs, including hsa-miR-27b-5p, hsa-miR-155-5p, hsa-miR-125b-5p, hsa-miR-21-5p, hsa-miR-30e-5p, hsa-miR-588, hsa-miR-29-3p, LINC01234, LINC01029, LINC00917, LINC00668 and CASC11 were found.

Conclusion: The comprehensive bioinformatics analyses provided the gene networks related to some non-coding RNAs that might help in understanding the molecular mechanisms in CRC.

Keywords: Network, miRNA, lncRNA, online gene expression omnibus, gene ontology, omics data.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Coppedè, F.; Lopomo, A.; Spisni, R.; Migliore, L. Genetic and epigenetic biomarkers for diagnosis, prognosis and treatment of colorectal cancer. World J. Gastroenterol., 2014, 20(4), 943-956.
[http://dx.doi.org/10.3748/wjg.v20.i4.943] [PMID: 24574767]
[3]
Goldsmith, Z.G.; Dhanasekaran, N. The microrevolution: Applications and impacts of microarray technology on molecular biology and medicine (review). Int. J. Mol. Med., 2004, 13(4), 483-495.
[http://dx.doi.org/10.3892/ijmm.13.4.483] [PMID: 15010847]
[4]
Shangkuan, W.C.; Lin, H.C.; Chang, Y.T.; Jian, C.E.; Fan, H.C.; Chen, K.H.; Liu, Y.F.; Hsu, H.M.; Chou, H.L.; Yao, C.T.; Chu, C.M.; Su, S.L.; Chang, C.W. Risk analysis of colorectal cancer incidence by gene expression analysis. Peer J, 2017, 15 e3003
[http://dx.doi.org/10.7717/peerj.3003] [PMID: 28229027]
[5]
Chan, S.K.; Griffith, O.L.; Tai, I.T.; Jones, S.J. Meta-analysis of colorectal cancer gene expression profiling studies identifies consistently reported candidate biomarkers. Cancer Epidemiol. Biomarkers Prev., 2008, 17(3), 543-552.
[http://dx.doi.org/10.1158/1055-9965.EPI-07-2615] [PMID: 18349271]
[6]
Nannini, M.; Pantaleo, M.A.; Maleddu, A.; Astolfi, A.; Formica, S.; Biasco, G. Gene expression profiling in colorectal cancer using microarray technologies: Results and perspectives. Cancer Treat. Rev., 2009, 35(3), 201-209.
[http://dx.doi.org/10.1016/j.ctrv.2008.10.006] [PMID: 19081199]
[7]
Chang, Y.T.; Yao, C.T.; Su, S.L.; Chou, Y.C.; Chu, C.M.; Huang, C.S.; Terng, H.J.; Chou, H.L.; Wetter, T.; Chen, K.H.; Chang, C.W.; Shih, Y.W.; Lai, C.H. Verification of gene expression profiles for colorectal cancer using 12 internet public microarray datasets. World J. Gastroenterol., 2014, 20(46), 17476-17482.
[http://dx.doi.org/10.3748/wjg.v20.i46.17476] [PMID: 25516661]
[8]
Liu, Y.J.; Zhang, S.; Hou, K.; Li, Y.T.; Liu, Z.; Ren, H.L.; Luo, D.; Li, S.H. Analysis of key genes and pathways associated with colorectal cancer with microarray technology. Asian Pac. J. Cancer Prev., 2013, 14(3), 1819-1823.
[http://dx.doi.org/10.7314/APJCP.2013.14.3.1819] [PMID: 23679280]
[9]
Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484.
[http://dx.doi.org/10.1007/s00018-017-2626-6] [PMID: 28840253]
[10]
Xie, X.; Tang, B.; Xiao, Y.F.; Xie, R.; Li, B.S.; Dong, H.; Zhou, J.Y.; Yang, S.M. Long non-coding RNAs in colorectal cancer. Oncotarget, 2016, 7(5), 5226-5239.
[http://dx.doi.org/10.18632/oncotarget.6446] [PMID: 26637808]
[11]
Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; Wang, Y.; Brzoska, P.; Kong, B.; Li, R.; West, R.B.; van de Vijver, M.J.; Sukumar, S.; Chang, H.Y. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010, 464(7291), 1071-1076.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[12]
Yamada, A.; Yu, P.; Lin, W.; Okugawa, Y.; Boland, C.R.; Goel, A. A RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci. Rep., 2018, 8(1), 575.
[http://dx.doi.org/10.1038/s41598-017-18407-6] [PMID: 29330370]
[13]
Chen, X.; Liu, B.; Yang, R.; Guo, Y.; Li, F.; Wang, L.; Hu, H. Integrated analysis of long non-coding RNAs in human colorectal cancer. Oncotarget, 2016, 7(17), 23897-23908.
[http://dx.doi.org/10.18632/oncotarget.8192] [PMID: 27004403]
[14]
Berindan-Neagoe, I. Monroig, Pdel.C.; Pasculli, B.; Calin, G.A. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J. Clin., 2014, 64(5), 311-336.
[http://dx.doi.org/10.3322/caac.21244] [PMID: 25104502]
[15]
Liu, Q.; Huang, J.; Zhou, N.; Zhang, Z.; Zhang, A.; Lu, Z.; Wu, F.; Mo, Y.Y. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res., 2013, 41(9), 4976-4987.
[http://dx.doi.org/10.1093/nar/gkt182] [PMID: 23558749]
[16]
Qi, P.; Xu, M.D.; Ni, S.J.; Huang, D.; Wei, P.; Tan, C.; Zhou, X.Y.; Du, X. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J. Transl. Med., 2013, 11, 122.
[http://dx.doi.org/10.1186/1479-5876-11-122] [PMID: 23680400]
[17]
Vermeulen, L.; De Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; Sprick, M.R.; Kemper, K.; Richel, D.J.; Stassi, G.; Medema, J.P. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol., 2010, 12(5), 468-476.
[http://dx.doi.org/10.1038/ncb2048] [PMID: 20418870]
[18]
Sandberg, T.P.; Oosting, J.; van Pelt, G.W.; Mesker, W.E.; Tollenaar, R.A.E.M.; Morreau, H. Molecular profiling of colorectal tumors stratified by the histological tumor-stroma ratio - Increased expression of galectin-1 in tumors with high stromal content. Oncotarget, 2018, 9(59), 31502-31515.
[http://dx.doi.org/10.18632/oncotarget.25845] [PMID: 30140386]
[19]
Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci., 2010, 123(Pt 24), 4195-4200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[20]
Egeblad, M.; Rasch, M.G.; Weaver, V.M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol., 2010, 22(5), 697-706.
[http://dx.doi.org/10.1016/j.ceb.2010.08.015] [PMID: 20822891]
[21]
Emon, B.; Bauer, J.; Jain, Y.; Jung, B.; Saif, T. Biophysics of tumor microenvironment and cancer metastasis - A mini review. Comput. Struct. Biotechnol. J., 2018, 16, 279-287.
[http://dx.doi.org/10.1016/j.csbj.2018.07.003] [PMID: 30128085]
[22]
Vellinga, T.T.; den Uil, S.; Rinkes, I.H.; Marvin, D.; Ponsioen, B.; Alvarez-Varela, A.; Fatrai, S.; Scheele, C.; Zwijnenburg, D.A.; Snippert, H.; Vermeulen, L.; Medema, J.P.; Stockmann, H.B.; Koster, J.; Fijneman, R.J.; de Rooij, J.; Kranenburg, O. Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion. Oncogene, 2016, 35(40), 5263-5271.
[http://dx.doi.org/10.1038/onc.2016.60] [PMID: 26996663]
[23]
Yu, Y.; Liu, D.; Liu, Z.; Li, S.; Ge, Y.; Sun, W.; Liu, B. The inhibitory effects of COL1A2 on colorectal cancer cell proliferation, migration, and invasion. J. Cancer, 2018, 9(16), 2953-2962.
[http://dx.doi.org/10.7150/jca.25542] [PMID: 30123364]
[24]
Hongo, K.; Tsuno, N.H.; Kawai, K.; Sasaki, K.; Kaneko, M.; Hiyoshi, M.; Murono, K.; Tada, N.; Nirei, T.; Sunami, E.; Takahashi, K.; Nagawa, H.; Kitayama, J.; Watanabe, T. Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J. Surg. Res., 2013, 182(1), 75-84.
[http://dx.doi.org/10.1016/j.jss.2012.08.034] [PMID: 22959209]
[25]
Zhang, Y.; Wang, H. Integrin signalling and function in immune cells. Immunology, 2012, 135(4), 268-275.
[http://dx.doi.org/10.1111/j.1365-2567.2011.03549.x] [PMID: 22211918]
[26]
Liu, Q.Z.; Gao, X.H.; Chang, W.J.; Gong, H.F.; Fu, C.G.; Zhang, W.; Cao, G.W. Expression of ITGB1 predicts prognosis in colorectal cancer: A large prospective study based on tissue microarray. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12802-12810.
[PMID: 26722470]
[27]
Sun, Q.; Zhou, C.; Ma, R.; Guo, Q.; Huang, H.; Hao, J.; Liu, H.; Shi, R.; Liu, B. Prognostic value of increased integrin-beta 1 expression in solid cancers: A meta-analysis. OncoTargets Ther., 2018, 11, 1787-1799.
[http://dx.doi.org/10.2147/OTT.S155279] [PMID: 29636624]
[28]
Galatenko, V.V.; Maltseva, D.V.; Galatenko, A.V.; Rodin, S.; Tonevitsky, A.G. Cumulative prognostic power of laminin genes in colorectal cancer. BMC Med. Genomics, 2018, 11(Suppl. 1), 9.
[http://dx.doi.org/10.1186/s12920-018-0332-3] [PMID: 29504916]
[29]
Saito, N.; Kameoka, S. Serum laminin is an independent prognostic factor in colorectal cancer. Int. J. Colorectal Dis., 2005, 20(3), 238-244.
[http://dx.doi.org/10.1007/s00384-004-0676-3] [PMID: 15592676]
[30]
Bartolini, A.; Cardaci, S.; Lamba, S.; Oddo, D.; Marchiò, C.; Cassoni, P.; Amoreo, C.A.; Corti, G.; Testori, A.; Bussolino, F.; Pasqualini, R.; Arap, W.; Corà, D.; Di Nicolantonio, F.; Marchiò, S. BCAM and LAMA5 mediate the recognition between tumor cells and the endothelium in the metastatic spreading of KRAS-mutant colorectal cancer. Clin. Cancer Res., 2016, 22(19), 4923-4933.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2664] [PMID: 27143691]
[31]
Huang, D.; Du, C.; Ji, D.; Xi, J.; Gu, J. Overexpression of LAMC2 predicts poor prognosis in colorectal cancer patients and promotes cancer cell proliferation, migration, and invasion. Tumour Biol., 2017, 39(6)1010428317705849
[http://dx.doi.org/10.1177/1010428317705849] [PMID: 28653882]
[32]
Beauchemin, N.; Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev., 2013, 32(3-4), 643-671.
[http://dx.doi.org/10.1007/s10555-013-9444-6] [PMID: 23903773]
[33]
Gold, P.; Freedman, S.O. Specific carcinoembryonic antigens of the human digestive system. J. Exp. Med., 1965, 122(3), 467-481.
[http://dx.doi.org/10.1084/jem.122.3.467] [PMID: 4953873]
[34]
Thomas, P.; Toth, C.A.; Saini, K.S.; Jessup, J.M.; Steele, G., Jr The structure, metabolism and function of the carcinoembryonic antigen gene family. Biochim. Biophys. Acta, 1990, 1032(2-3), 177-189.
[PMID: 2261493]
[35]
Oikawa, S.; Inuzuka, C.; Kuroki, M.; Matsuoka, Y.; Kosaki, G.; Nakazato, H. Cell adhesion activity of non-specific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) expressed on CHO cell surface: homophilic and heterophilic adhesion. Biochem. Biophys. Res. Commun., 1989, 164(1), 39-45.
[http://dx.doi.org/10.1016/0006-291X(89)91679-3] [PMID: 2803308]
[36]
Blumenthal, R.D.; Hansen, H.J.; Goldenberg, D.M. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res., 2005, 65(19), 8809-8817.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0420] [PMID: 16204051]
[37]
Ordoñez, C.; Screaton, R.A.; Ilantzis, C.; Stanners, C.P. Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res., 2000, 60(13), 3419-3424.
[PMID: 10910050]
[38]
Duxbury, M.S.; Ito, H.; Zinner, M.J.; Ashley, S.W.; Whang, E.E. CEACAM6 gene silencing impairs anoikis resistance and in vivo metastatic ability of pancreatic adenocarcinoma cells. Oncogene, 2004, 23(2), 465-473.
[http://dx.doi.org/10.1038/sj.onc.1207036] [PMID: 14724575]
[39]
Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin. Chem., 2001, 47(4), 624-630.
[PMID: 11274010]
[40]
Wei, R.; Wong, J.P.C.; Kwok, H.F. Osteopontin -- a promising biomarker for cancer therapy. J. Cancer, 2017, 8(12), 2173-2183.
[http://dx.doi.org/10.7150/jca.20480] [PMID: 28819419]
[41]
Wang, K.X.; Denhardt, D.T. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev., 2008, 19(5-6), 333-345.
[http://dx.doi.org/10.1016/j.cytogfr.2008.08.001] [PMID: 18952487]
[42]
Castello, L.M.; Raineri, D.; Salmi, L.; Clemente, N.; Vaschetto, R.; Quaglia, M.; Garzaro, M.; Gentilli, S.; Navalesi, P.; Cantaluppi, V.; Dianzani, U.; Aspesi, A.; Chiocchetti, A. Osteopontin at the crossroads of inflammation and tumor progression. Mediators Inflamm., 2017, 20174049098
[http://dx.doi.org/10.1155/2017/4049098] [PMID: 28769537]
[43]
Fan, C.S.; Chen, W.S.; Chen, L.L.; Chen, C.C.; Hsu, Y.T.; Chua, K.V.; Wang, H.D.; Huang, T.S. Osteopontin-integrin engagement induces HIF-1α-TCF12-mediated endothelial-mesenchymal transition to exacerbate colorectal cancer. Oncotarget, 2017, 9(4), 4998-5015.
[PMID: 29435158]
[44]
Chen, J.; Wang, X.; Pang, L.; Zhang, J.Z.H.; Zhu, T. Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Res., 2019, 47(13), 6618-6631.
[http://dx.doi.org/10.1093/nar/gkz499] [PMID: 31173143]
[45]
Ye, J.; Wu, X.; Wu, D.; Wu, P.; Ni, C.; Zhang, Z.; Chen, Z.; Qiu, F.; Xu, J.; Huang, J. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One, 2013, 8(4)e60687
[http://dx.doi.org/10.1371/journal.pone.0060687] [PMID: 23593282]
[46]
Luo, Y.; Yu, S.Y.; Chen, J.J.; Qin, J.; Qiu, Y.E.; Zhong, M.; Chen, M. MiR-27b directly targets Rab3D to inhibit the malignant phenotype in colorectal cancer. Oncotarget, 2017, 9(3), 3830-3841.
[PMID: 29423086]
[47]
Matsuyama, R.; Okuzaki, D.; Okada, M.; Oneyama, C. MicroRNA-27b suppresses tumor progression by regulating ARFGEF1 and focal adhesion signaling. Cancer Sci., 2016, 107(1), 28-35.
[http://dx.doi.org/10.1111/cas.12834] [PMID: 26473412]
[48]
Nishida, N.; Yokobori, T.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Kuwano, H.; Mori, M. MicroRNA miR-125b is a prognostic marker in human colorectal cancer. Int. J. Oncol., 2011, 38(5), 1437-1443.
[PMID: 21399871]
[49]
Mei, L.L.; Wang, W.J.; Qiu, Y.T.; Xie, X.F.; Bai, J.; Shi, Z.Z. miR-125b-5p functions as a tumor suppressor gene partially by regulating HMGA2 in esophageal squamous cell carcinoma. PLoS One, 2017, 12(10)e0185636
[http://dx.doi.org/10.1371/journal.pone.0185636] [PMID: 28968424]
[50]
Robertson, E.D.; Wasylyk, C.; Ye, T.; Jung, A.C.; Wasylyk, B. The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS One, 2014, 9(11) e113050
[http://dx.doi.org/10.1371/journal.pone.0113050] [PMID: 25401928]
[51]
Yang, D.; Wang, J.; Xiao, M.; Zhou, T.; Shi, X. Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Sci. Rep., 2016, 6, 35316.
[http://dx.doi.org/10.1038/srep35316] [PMID: 27731397]
[52]
Omrane, I.; Kourda, N.; Stambouli, N.; Privat, M.; Medimegh, I.; Arfaoui, A.; Uhrhammer, N.; Bougatef, K.; Baroudi, O.; Bouzaienne, H.; Marrakchi, R.; Bignon, Y.J.; Benammar-Elgaaied, A. MicroRNAs 146a and 147b biomarkers for colorectal tumor’s localization. BioMed Res. Int., 2014, 2014584852
[http://dx.doi.org/10.1155/2014/584852] [PMID: 24800242]
[53]
Omrane, I.; Benammar-Elgaaied, A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim. Biophys. Acta, 2015, 1856(1), 28-38.
[PMID: 25911397]
[54]
Markou, A.; Zavridou, M.; Lianidou, E.S. miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl.), 2016, 7, 19-27.
[PMID: 28210157]
[55]
Volinia, S.; Calin, G.A.; Liu, C.G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; Prueitt, R.L.; Yanaihara, N.; Lanza, G.; Scarpa, A.; Vecchione, A.; Negrini, M.; Harris, C.C.; Croce, C.M. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA, 2006, 103(7), 2257-2261.
[http://dx.doi.org/10.1073/pnas.0510565103] [PMID: 16461460]
[56]
Cheng, Y.W.; Chou, C.J.; Yang, P.M. Ten-eleven translocation 1 (TET1) gene is a potential target of miR-21-5p in human colorectal cancer. Surg. Oncol., 2018, 27(1), 76-81.
[http://dx.doi.org/10.1016/j.suronc.2017.12.004] [PMID: 29549908]
[57]
Laudato, S.; Patil, N.; Abba, M.L.; Leupold, J.H.; Benner, A.; Gaiser, T.; Marx, A.; Allgayer, H. P53-induced miR-30e-5p inhibits colorectal cancer invasion and metastasis by targeting ITGA6 and ITGB1. Int. J. Cancer, 2017, 141(9), 1879-1890.
[http://dx.doi.org/10.1002/ijc.30854] [PMID: 28656629]
[58]
Wang, G.; Zhang, H.; He, H.; Tong, W.; Wang, B.; Liao, G.; Chen, Z.; Du, C. Up-regulation of microRNA in bladder tumor tissue is not common. Int. Urol. Nephrol., 2010, 42(1), 95-102.
[http://dx.doi.org/10.1007/s11255-009-9584-3] [PMID: 19475496]
[59]
Markou, A.; Sourvinou, I.; Vorkas, P.A.; Yousef, G.M.; Lianidou, E. Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer, 2013, 81(3), 388-396.
[http://dx.doi.org/10.1016/j.lungcan.2013.05.007] [PMID: 23756108]
[60]
Yu, M.; Zhang, X.; Li, H.; Zhang, P.; Dong, W. MicroRNA-588 is downregulated and may have prognostic and functional roles in human breast cancer. Med. Sci. Monit., 2017, 23, 5690-5696.
[http://dx.doi.org/10.12659/MSM.905126] [PMID: 29187727]
[61]
Zhao, N.; Lin, T.; Zhao, C.; Zhao, S.; Zhou, S.; Li, Y. MicroRNA-588 is upregulated in human prostate cancer with prognostic and functional implications. J. Cell. Biochem., 2017. [Epub ahead of print]
[PMID: 28980707]
[62]
Qian, L.; Lin, L.; Du, Y.; Hao, X.; Zhao, Y.; Liu, X. MicroRNA-588 suppresses tumor cell migration and invasion by targeting GRN in lung squamous cell carcinoma. Mol. Med. Rep., 2016, 14(4), 3021-3028.
[http://dx.doi.org/10.3892/mmr.2016.5643] [PMID: 27571908]
[63]
Jiang, H.; Zhang, G.; Wu, J.H.; Jiang, C.P. Diverse roles of miR-29 in cancer (review). Oncol. Rep., 2014, 31(4), 1509-1516.
[http://dx.doi.org/10.3892/or.2014.3036] [PMID: 24573597]
[64]
Dong, Y.; Yu, J.; Ng, S.S. MicroRNA dysregulation as a prognostic biomarker in colorectal cancer. Cancer Manag. Res., 2014, 6, 405-422.
[PMID: 25342918]
[65]
Nishikawa, R.; Goto, Y.; Kojima, S.; Enokida, H.; Chiyomaru, T.; Kinoshita, T.; Sakamoto, S.; Fuse, M.; Nakagawa, M.; Naya, Y.; Ichikawa, T.; Seki, N. Tumor-suppressive microRNA-29s inhibit cancer cell migration and invasion via targeting LAMC1 in prostate cancer. Int. J. Oncol., 2014, 45(1), 401-410.
[http://dx.doi.org/10.3892/ijo.2014.2437] [PMID: 24820027]
[66]
Liu, J.X.; Li, W.; Li, J.T.; Liu, F.; Zhou, L. Screening key long non-coding RNAs in early-stage colon adenocarcinoma by RNA-sequencing. Epigenomics, 2018, 10(9), 1215-1228.
[http://dx.doi.org/10.2217/epi-2017-0155] [PMID: 30182733]
[67]
He, Z.; Dang, J.; Song, A.; Cui, X.; Ma, Z.; Zhang, Z. Identification of LINC01234 and MIR210HG as novel prognostic signature for colorectal adenocarcinoma. J. Cell. Physiol., 2019, 234(5), 6769-6777.
[http://dx.doi.org/10.1002/jcp.27424] [PMID: 30362555]
[68]
Guo, L.; Peng, Y.; Meng, Y.; Liu, Y.; Yang, S.; Jin, H.; Li, Q. Expression profiles analysis reveals an integrated miRNA-lncRNA signature to predict survival in ovarian cancer patients with wild-type BRCA1/2. Oncotarget, 2017, 8(40), 68483-68492.
[http://dx.doi.org/10.18632/oncotarget.19590] [PMID: 28978132]
[69]
Chen, J.; Bacanu, S.A.; Yu, H.; Zhao, Z.; Jia, P.; Kendler, K.S.; Kranzler, H.R.; Gelernter, J.; Farrer, L.; Minica, C.; Pool, R.; Milaneschi, Y.; Boomsma, D.I.; Penninx, B.W.; Tyndale, R.F.; Ware, J.J.; Vink, J.M.; Kaprio, J.; Munafò, M.; Chen, X. Cotinine meta-analysis group; FTND meta-analysis group. Genetic Relationship between Schizophrenia and Nicotine Dependence. Sci. Rep., 2016, 6, 25671.
[http://dx.doi.org/10.1038/srep25671] [PMID: 27164557]
[70]
Rafiq, S.; Khan, S.; Tapper, W.; Collins, A.; Upstill-Goddard, R.; Gerty, S.; Blomqvist, C.; Aittomäki, K.; Couch, F.J.; Liu, J.; Nevanlinna, H.; Eccles, D. A genome wide meta-analysis study for identification of common variation associated with breast cancer prognosis. PLoS One, 2014, 9(12) e101488
[http://dx.doi.org/10.1371/journal.pone.0101488] [PMID: 25526632]
[71]
Zhao, B.; Xu, H.; Ai, X.; Adalat, Y.; Tong, Y.; Zhang, J.; Yang, S. Expression profiles of long noncoding RNAs in lung adenocarcinoma. OncoTargets Ther., 2018, 11, 5383-5390.
[http://dx.doi.org/10.2147/OTT.S167633] [PMID: 30233202]
[72]
Zhao, L.; Cao, H.; Chi, W.; Meng, W.; Cui, W.; Guo, W.; Wang, B. Expression profile analysis identifies the long non-coding RNA landscape and the potential carcinogenic functions of LINC00668 in laryngeal squamous cell carcinoma. Gene, 2019, 687, 47-55.
[http://dx.doi.org/10.1016/j.gene.2018.11.020] [PMID: 30415008]
[73]
Zhang, C.Z. Long intergenic non-coding RNA 668 regulates VEGFA signaling through inhibition of miR-297 in oral squamous cell carcinoma. Biochem. Biophys. Res. Commun., 2017, 489(4), 404-412.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.155] [PMID: 28564590]
[74]
Zhang, E.; Yin, D.; Han, L.; He, X.; Si, X.; Chen, W.; Xia, R.; Xu, T.; Gu, D.; De, W.; Guo, R.; Xu, Z.; Chen, J. E2F1-induced upregulation of long noncoding RNA LINC00668 predicts a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically silencing of CKIs. Oncotarget, 2016, 7(17), 23212-23226.
[http://dx.doi.org/10.18632/oncotarget.6745] [PMID: 27036039]
[75]
Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle, 2018, 17(15), 1886-1900.
[http://dx.doi.org/10.1080/15384101.2018.1502574] [PMID: 30200804]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy