Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Dapsone is not a Pharmacodynamic Lead Compound for its Aryl Derivatives

Author(s): Thomas Scior*, Hassan H. Abdallah, Kenia Salvador-Atonal and Stefan Laufer

Volume 16, Issue 3, 2020

Page: [327 - 339] Pages: 13

DOI: 10.2174/1573409915666191010104527

Price: $65

Abstract

Background: The relatedness between the linear equations of thermodynamics and QSAR was studied thanks to the recently elucidated crystal structure complexes between sulfonamide pterin conjugates and dihydropteroate synthase (DHPS) together with a published set of thirty- six synthetic dapsone derivatives with their reported entropy-driven activity data. Only a few congeners were slightly better than dapsone.

Objective: Our study aimed at demonstrating the applicability of thermodynamic QSAR and to shed light on the mechanistic aspects of sulfone binding to DHPS.

Methods: To this end ligand docking to DHPS, quantum mechanical properties, 2D- and 3D-QSAR as well as Principle Component Analysis (PCA) were carried out.

Results: The short aryl substituents of the docked pterin-sulfa conjugates were outward oriented into the solvent space without interacting with target residues which explains why binding enthalpy (ΔH) did not correlate with potency. PCA revealed how chemically informative descriptors are evenly loaded on the first three PCs (interpreted as ΔG, ΔH and ΔS), while chemically cryptic ones reflected higher dimensional (complex) loadings.

Conclusion: It is safe to utter that synthesis efforts to introduce short side chains for aryl derivatization of the dapsone scaffold have failed in the past. On theoretical grounds we provide computed evidence why dapsone is not a pharmacodynamic lead for drug profiling because enthalpic terms do not change significantly at the moment of ligand binding to target.

Keywords: Sulfonamides, docking, descriptors, thermodynamic QSAR, CoMFA, PCA.

Graphical Abstract

[1]
Cramer, R.D. The inevitable QSAR renaissance. J. Comput. Aided Mol. Des., 2012, 26(1), 35-38.
[http://dx.doi.org/10.1007/s10822-011-9495-0] [PMID: 22127732]
[2]
Gautam, N.; Guleria, A.; Sharma, M.K.; Gupta, S.K.; Goyal, A.; Gautam, D.C. Synthesis and Biological Evaluation of Some Novel 10H-Phenothiazines, their Sulfones and Nucleosides as Possible Antimicrobial Agents. Curr. Bioact. Compd., 2014, 10(3), 189-195.
[http://dx.doi.org/10.2174/1573407210666140728174315]
[3]
Borys, K.M.; Ochal, Z. Approaches to Aryl Halomethyl Sulfones. Curr. Org. Chem., 2016, 20(9), 963-970.
[4]
Gizińska, M.; Staniszewska, M.; Ochal, Z. Novel Sulfones with Antifungal Properties: Antifungal Activities and Interactions with Candida spp. Virulence Factors. Mini Rev. Med. Chem., 2019, 19(1), 12-21.
[http://dx.doi.org/10.2174/1389557518666180924121209] [PMID: 30246638]
[5]
Lopez de Compadre, R.L.; Pearlstein, R.A.; Hopfinger, A.J.; Seydel, J.K. A quantitative structure-activity relationship analysis of some 4-aminodiphenyl sulfone antibacterial agents using linear free energy and molecular modeling methods. J. Med. Chem., 1987, 30(5), 900-906.
[http://dx.doi.org/10.1021/jm00388a026] [PMID: 3572979]
[6]
Hopfinger, A.J.; Lopez de Compadre, R.L.; Koehler, M.G.; Emery, S.; Seydel, J.K. An extended QSAR analysis of some 4-aminodiphenylsulfone antibacterial agents using molecular modeling and LFE-relationships. QSAR, 1987, 6(3), 111-117.
[http://dx.doi.org/10.1002/qsar.19870060304]
[7]
Koehler, M.G.; Hopfinger, A.J.; Seydel, J.K. A comparison of QSARs proposed for the inhibition of dihydropteroate synthase by substituted 4-amino-diphenyl-sulfones. J. Mol. Struct. THEOCHEM, 1988, 48, 319-332.
[http://dx.doi.org/10.1016/0166-1280(88)80132-5]
[8]
Agrawal, V.K.; Bano, S.; Khadikar, P.V. QSAR analysis of antibacterial activity of some 4-aminodiphenylsulfone derivatives. Acta Microbiol. Immunol. Hung., 2003, 50(4), 385-393.
[http://dx.doi.org/10.1556/AMicr.50.2003.4.6] [PMID: 14750439]
[9]
Zhao, Y.; Shadrick, W.R.; Wallace, M.J.; Wu, Y.; Griffith, E.C.; Qi, J.; Yun, M.K.; White, S.W.; Lee, R.E. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 3950-3954.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.006] [PMID: 27423480]
[10]
Griffith, E.C.; Wallace, M.J.; Wu, Y.; Kumar, G.; Gajewski, S.; Jackson, P.; Phelps, G.A.; Zheng, Z.; Rock, C.O.; Lee, R.E.; White, S.W. Staphylococcus aureusDihydropteroate Synthase (saDHPS) F17L E208K double mutant structure. Front. Microbiol., 2018, 9, 1369-1369.
[http://dx.doi.org/10.3389/fmicb.2018.01369] [PMID: 30065703]
[11]
Kim, K.H. Thermodynamic aspects of hydrophobicity and biological QSAR. J. Comput. Aided Mol. Des., 2001, 15(4), 367-380.
[http://dx.doi.org/10.1023/A:1011163527770] [PMID: 11349818]
[12]
Romeiro, N.C.; Albuquerque, M.G.; de Alencastro, R.B.; Ravi, M.; Hopfinger, A.J. Free-energy force-field three-dimensional quantitative structure-activity relationship analysis of a set of p38-mitogen activated protein kinase inhibitors. J. Mol. Model., 2006, 12(6), 855-868.
[http://dx.doi.org/10.1007/s00894-006-0106-2] [PMID: 16541250]
[13]
Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015, 28(2), 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14] [PMID: 25788514]
[14]
Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol., 2016, 90(7), 1585-1604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[15]
Hansch, C.; Leo, A. Exploring QSAR: Fundamentals and Applications in Chemistry and Biology; Am. Chem. Soc.: Washington, DC, 1995, p. 433.
[16]
Gangjee, A.; Kurup, S.; Namjoshi, O. Dihydrofolate reductase as a target for chemotherapy in parasites. Curr. Pharm. Des., 2007, 13(6), 609-639.
[http://dx.doi.org/10.2174/138161207780162827] [PMID: 17346178]
[17]
Bueso-Bordils, J.I.; Aleman, P.A.; Zamora, L.L.; Martin-Algarra, R.; Duart, M.J.; Antón-Fos, G.M. Topological Model for the Search of New Antibacterial Drugs. 158 Theoretical Candidates. Curr Comput Aided Drug Des, 2015, 11(4), 336-345.
[http://dx.doi.org/10.2174/1573409912666151126214242] [PMID: 26750567]
[18]
Pedretti, A.; Villa, L.; Vistoli, G. VEGA--an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Aided Mol. Des., 2004, 18(3), 167-173.
[http://dx.doi.org/10.1023/B:JCAM.0000035186.90683.f2] [PMID: 15368917]
[19]
HyperChem(TM) Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA; 2010.
[20]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[21]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.C.; Adamo, C.J.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.C.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09. Rev. B1 Gaussian Inc. Wallingford CT , 2009.
[22]
ChemDraw uses a proprietary naming algorithm developed by CambridgeSoft. http://www.cambridesoft.com
[23]
Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON software: An easy approach to molecular descriptor calculations. Match (Mulh.), 2006, 56, 237-248.
[24]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[25]
Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new Software for the Development, Analysis, and Validation of QSAR MLR Models. J. Comput. Chem., 2013, 34, 2121-2132.
[http://dx.doi.org/10.1002/jcc.23361]
[26]
Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044.
[http://dx.doi.org/10.1002/jcc.23576] [PMID: 24599647]
[27]
Tetko, I.V.; Maran, U.; Tropsha, A. Public (Q)SAR Services, Integrated Modeling Environments, and Model Repositories on the Web: State of the Art and Perspectives for Future Development. Mol. Inform., 2017, 36(3)1600082
[http://dx.doi.org/10.1002/minf.201600082] [PMID: 27778468]
[28]
STATISTICA (data analysis software system), StatSoft, Inc., 2011, version 10 www.statsoft.com
[29]
Thompson, M.A. Molecular docking using ArgusLab, an efficient shape-based search algorithm and the AScore scoring function ACS meeting; Philadelphia, 172, CINF 42, PA; , 2004.
[30]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q.Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des., 2011, 25(6), 533-554.
[http://dx.doi.org/10.1007/s10822-011-9440-2] [PMID: 21660515]
[31]
Zvinavashe, E.; Murk, A.J.; Rietjens, I.M. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Chem. Res. Toxicol., 2008, 21(12), 2229-2236.
[http://dx.doi.org/10.1021/tx800252e] [PMID: 19548346]
[32]
Scior, T.; Medina-Franco, J.L.; Do, Q.T.; Martínez-Mayorga, K.; Yunes Rojas, J.A.; Bernard, P. How to recognize and workaround pitfalls in QSAR studies: a critical review. Curr. Med. Chem., 2009, 16(32), 4297-4313.
[http://dx.doi.org/10.2174/092986709789578213] [PMID: 19754417]
[33]
Dearden, J.C.; Cronin, M.T.; Kaiser, K.L. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ. Res., 2009, 20(3-4), 241-266.
[http://dx.doi.org/10.1080/10629360902949567] [PMID: 19544191]
[34]
Huang, J.; Fan, X. Why QSAR fails: an empirical evaluation using conventional computational approach. Mol. Pharm., 2011, 8(2), 600-608.
[http://dx.doi.org/10.1021/mp100423u] [PMID: 21370915]
[35]
Tseng, Y.J.; Hopfinger, A.J.; Esposito, E.X. The great descriptor melting pot: mixing descriptors for the common good of QSAR models. J. Comput. Aided Mol. Des., 2012, 26(1), 39-43.
[http://dx.doi.org/10.1007/s10822-011-9511-4] [PMID: 22200979]
[36]
Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.; Todeschini, R.; Consonni, V.; Kuz’min, V.E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR modeling: where have you been? Where are you going to? J. Med. Chem., 2014, 57(12), 4977-5010.
[http://dx.doi.org/10.1021/jm4004285] [PMID: 24351051]
[37]
Wang, T.; Wu, M.B.; Lin, J.P.; Yang, L.R. Quantitative structure-activity relationship: promising advances in drug discovery platforms. Expert Opin. Drug Discov., 2015, 10(12), 1283-1300.
[http://dx.doi.org/10.1517/17460441.2015.1083006] [PMID: 26358617]
[38]
Danishuddin, K.; Khan, A.U. Descriptors and their selection methods in QSAR analysis: paradigm for drug design. Drug Discov. Today, 2016, 21(8), 1291-1302.
[http://dx.doi.org/10.1016/j.drudis.2016.06.013] [PMID: 27326911]
[39]
Wang, T.; Yuan, X.S.; Wu, M.B.; Lin, J.P.; Yang, L.R. The advancement of multidimensional QSAR for novel drug discovery - where are we headed? Expert Opin. Drug Discov., 2017, 12(8), 769-784.
[http://dx.doi.org/10.1080/17460441.2017.1336157] [PMID: 28562095]
[40]
Tokarski, J.S.; Hopfinger, A.J. Prediction of ligand-receptor binding thermodynamics by free energy force field (FEFF) 3D-QSAR analysis: application to a set of peptidometic renin inhibitors. J. Chem. Inf. Comput. Sci., 1997, 37(4), 792-811.
[http://dx.doi.org/10.1021/ci970006g] [PMID: 9254912]
[41]
Adenot, M.; Benezech, V.; Bornpart, J.; Bonnet, P.A.; Chapat, J.P.; Grassy, G. Interest of cluster significance analysis in structure-affinity relationships for non-xanthine heterocyclic antagonists of adenosine. Eur. J. Med. Chem., 1997, 32, 493-504.
[http://dx.doi.org/10.1016/S0223-5234(97)84012-3]
[42]
Vedani, A.; Dobler, M.; Lill, M.A. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor. J. Med. Chem., 2005, 48(11), 3700-3703.
[http://dx.doi.org/10.1021/jm050185q] [PMID: 15916421]
[43]
Datar, P.A.; Khedkar, S.A.; Malde, A.K.; Coutinho, E.C. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J. Comput. Aided Mol. Des., 2006, 20(6), 343-360.
[http://dx.doi.org/10.1007/s10822-006-9051-5] [PMID: 17009094]
[44]
Cronin, M.T.D.; Schultz, T.W. Pitfalls in QSAR. J. Mol. Str. (Theochem), 2003, 622, 39-44.
[http://dx.doi.org/10.1016/S0166-1280(02)00616-4]
[45]
Guimarães Barbosa, E.; Castro Ferreira, M.M. Digital Filters for Molecular Interaction Field Descriptors. Mol. Inform., 2012, 31(1), 75-84.
[http://dx.doi.org/10.1002/minf.201000181]
[46]
Hechinger, M.; Leonhard, K.; Marquardt, W. What is wrong with quantitative structure-property relations models based on three-dimensional descriptors? J. Chem. Inf. Model., 2012, 52(8), 1984-1993.
[http://dx.doi.org/10.1021/ci300246m] [PMID: 22775241]
[47]
Scior, T.; Lozano-Aponte, J.; Figueroa-Vazquez, V.; Yunes-Rojas, J.A.; Zähringer, U.; Alexander, C. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system. Comput. Struct. Biotechnol. J., 2013, 7(9)e201305003
[http://dx.doi.org/10.5936/csbj.201305003] [PMID: 24688739]
[48]
Nakamura, K.; Hayashi, K.; Ueda, I.; Fujiwara, H. Micelle/water partition properties of phenols determined by liquid chromatographic method. Proposal for versatile measure of hydrophobicity. Chem. Pharm. Bull. (Tokyo), 1995, 43(3), 369-373.
[http://dx.doi.org/10.1248/cpb.43.369] [PMID: 7774021]
[49]
Pan, A.; Biswas, T.; Rakshit, A.K.; Moulik, S.P. Enthalpy-Entropy Compensation (EEC) Effect: A Revisit. J. Phys. Chem. B, 2015, 119(52), 15876-15884.
[http://dx.doi.org/10.1021/acs.jpcb.5b09925] [PMID: 26641279]
[50]
Scior, T.; Raddatz, G.; Figueroa, R.; Roth, H.J.; Bisswanger, H.A. Molecular modeling study on dapsone and sulfonamides comparing structures and properties with respect to anti-leprosy activity. Molec. Model. Annual., 1997, 3(8), 332-337.
[http://dx.doi.org/10.1007/s008940050047]
[51]
Scior, T.; Garcés-Eisele, S.J. Isoniazid is not a lead compound for its pyridyl ring derivatives, isonicotinoyl amides, hydrazides, and hydrazones: a critical review. Curr. Med. Chem., 2006, 13(18), 2205-2219.
[http://dx.doi.org/10.2174/092986706777935249] [PMID: 16918349]
[52]
Scior, T.; Meneses Morales, I. GarcésEisele, S.J; Domeyer, D; Laufer, S; Antitubercular Isoniazid and Drug Resistance of Mycobacterium tuberculosis — A Review. Arch. Pharm. (Weinheim), 2003, 335(11-12), 511-525.
[PMID: 12596216]
[53]
Scior, T.; Lozano-Aponte, J.; Ajmani, S.; Hernández-Montero, E.; Chávez-Silva, F.; Hernández-Núñez, E.; Moo-Puc, R.; Fraguela-Collar, A.; Navarrete-Vázquez, G. Antiprotozoal Nitazoxanide Derivatives: Synthesis, Bioassays and QSAR Study Combined with Docking for Mechanistic Insight. Curr Comput Aided Drug Des, 2015, 11(1), 21-31.
[http://dx.doi.org/10.2174/1573409911666150414145937] [PMID: 25872791]
[54]
Dennis, M.L.; Lee, M.D.; Harjani, J.R.; Ahmed, M.; DeBono, A.J.; Pitcher, N.P.; Wang, Z.C.; Chhabra, S.; Barlow, N.; Rahmani, R.; Cleary, B.; Dolezal, O.; Hattarki, M.; Aurelio, L.; Shonberg, J.; Graham, B.; Peat, T.S.; Baell, J.B.; Swarbrick, J.D. 8-Mercaptoguanine Derivatives as Inhibitors of Dihydropteroate Synthase. Chemistry, 2018, 24(8), 1922-1930.
[http://dx.doi.org/10.1002/chem.201704730] [PMID: 29171692]
[55]
Scior, T.; Bernard, P.; Medina-Franco, J.L.; Maggiora, G.M. Large compound databases for structure-activity relationships studies in drug discovery. Mini Rev. Med. Chem., 2007, 7(8), 851-860.
[http://dx.doi.org/10.2174/138955707781387858] [PMID: 17692047]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy